On Centauric Subshifts

Andrei Romashchenko joint work with Bruno Durand

CIRM, 22.06.2016

イロン イヨン イヨン イヨン 三日

1/33

Centauric tilings?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Centauric tilings?

Casa della Fortuna Annonaria, Ostia. flickr photo by F. Tronchin ⓒ cc-by-nc-nd

Centauric tilings?

Casa della Fortuna Annonaria, Ostia. flickr photo by F. Tronchin ⓒ cc-by-nc-nd

We mean tilings with seemingly mutually exclusive properties.

The idea: Simple local rules imply the global properties of an infinite structure.

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in an **SFT** we have a finite set of *forbidden finite patterns*

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in a **tiling** we have the matching rules for neighboring tiles

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in a **tiling** we have the matching rules for neighboring tiles

Motivation: dynamical systems, computability, mathematical logic, quasi-crystals, ...

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in a **tiling** we have the matching rules for of neighboring tiles

Motivation: dynamical systems, computability, mathematical logic, quasi-crystals, ...

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides,

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides, i.e, element of C^4

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides, i.e, element of C^4

Tile set: a set $\tau \subset C^4$

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

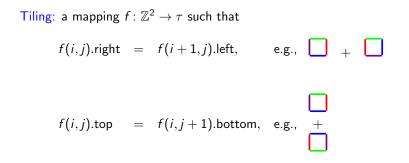
6/33

Tile: a unit square with colored sides, i.e, element of C^4

```
Tile set: a set \tau \subset C^4
```

Tiling: a mapping $f: \mathbb{Z}^2 \to \tau$ that respects the matching rules

Tiling: a mapping $f : \mathbb{Z}^2 \to \tau$ such that f(i,j).right = f(i+1,j).left, e.g., +



Example. A finite pattern from a valid tiling:

local rules can enforce high algorithmic complexity

• There exists a tile set τ such that:

local rules can enforce high algorithmic complexity

• There exists a tile set τ such that:

• all τ -tilings are aperiodic [Berger, 1966]

local rules can enforce high algorithmic complexity

• There exists a tile set τ such that:

- all τ -tilings are aperiodic [Berger, 1966]
- no computable τ -tiling [Hanf, Myers, 1974]

local rules can enforce high algorithmic complexity

There exists a tile set \(\tau\) such that:

- all τ -tilings are aperiodic [Berger, 1966]
- no computable τ -tiling [Hanf, Myers, 1974]
- high information density: each N × N-square in a τ-tiling has high Komogorov complexity [Durand, Levin, Shen, 2001]

local rules can enforce high algorithmic complexity

There exists a tile set \(\tau\) such that:

- all τ -tilings are aperiodic [Berger, 1966]
- no computable τ -tiling [Hanf, Myers, 1974]
- high information density: each N × N-square in a τ-tiling has high Komogorov complexity [Durand, Levin, Shen, 2001]
- Every effectively closed shift in 1D can be simulated by vertical columns of a 2D tiling [Aubrun-Sablik, Durand-R.-Shen]

local rules can enforce interesting dynamical properties

<ロト < 回 > < 臣 > < 臣 > 三 の Q (C) 9 / 33

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns*

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

9/33

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite pattern either *never* appears or appears in *all large enough* squares.

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite pattern either *never* appears or appears in *all large enough* squares. (a uniformly recurrent dynamical system)

Can we enforce at the same time (1) *high algorithmic complexity*

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Some restrictions:

Some restrictions: an irreducible SFT cannot be too complex,

Some restrictions: an irreducible SFT cannot be too complex,

► for every minimal SFT the set of finite patterns is computable

Some restrictions: an irreducible SFT cannot be too complex,

- ► for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration

Some restrictions: an irreducible SFT cannot be too complex,

- ► for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration
- for every quasiperiodic SFT the function of quasiperiodicity is computable [Ballier, Jeandel]

Some restrictions: an irreducible SFT cannot be too complex,

- ► for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration
- for every quasiperiodic SFT the function of quasiperiodicity is computable [Ballier, Jeandel]
- Turing spectrum of quasiperiodic SFT must be upward close [Jeandel, Vanier]

Some restrictions: an irreducible SFT cannot be too complex,

- ► for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration
- for every quasiperiodic SFT the function of quasiperiodicity is computable [Ballier, Jeandel]
- Turing spectrum of quasiperiodic SFT must be upward close [Jeandel, Vanier]
- after all, the standard constructions does not work!

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and quasiperiodic.

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and quasiperiodic. Moreover, exactly the same finite patterns appear in all τ -tilings (minimality).

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and quasiperiodic. Moreover, exactly the same finite patterns appear in all τ -tilings (minimality).

(Ballier and Ollinger [2009] did it with a version of Robinson's tile set)

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem [Durand-R. 2015] There exists a tile set τ such that all tilings are *non computable* and *quasiperiodic*.

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules *non computability* **and** *minimality*?

イロト 不得下 イヨト イヨト 二日

14/33

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules *non computability* and *minimality*? **Answer: NO!**

Can we enforce at the same time

high algorithmic complexity

 (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules *non computability* **and** *minimality*? **Answer: NO!** Every minimal SFT contains a computable point. The message of this talk

Theorem 1. There exists a tile set τ such that all τ -tilings are *non* computable and *quasiperiodic*.

A stronger positive result

Theorem 2. There exists a tile set τ such that Kolmogorov complexity of every finite pattern is large **and** all tilings are quasiperiodic.

What about the Turing spectrum of quasiperiodic tilings?

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

Preliminary remark 2: For every quasiperiodic tile set *the Turing spectrum* of these tilings is alway *upward closed*.

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

Preliminary remark 2: For every quasiperiodic tile set *the Turing spectrum* of these tilings is alway *upward closed*. (Thanks, Pascal!)

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

Preliminary remark 2: For every quasiperiodic tile set *the Turing spectrum* of these tilings is alway *upward closed*. (Thanks, Pascal!)

Theorem 3. For every effectively closed set ${\mathcal A}$ there exists a tile set τ such that

- all τ -tilings are quasiperiodic,
- the Turing spectrum of all τ -tilings = the *upper closure* of A.

(upper closure := all degrees in A + the degrees above them)

Another positive result (motivated by Emmanuel Jeandel)

イロト 不得下 イヨト イヨト 二日

18/33

Theorem 4. For every *minimal* 1D subshift \mathcal{A} there exists a tile set τ such that

- the set of τ -tilings is *minimal*
- \mathcal{A} is *simulated* by vertical columns of τ -tilings

Another positive result (motivated by Emmanuel Jeandel)

Theorem 4. For every minimal 1D subshift \mathcal{A} (minimal \Rightarrow computable) there exists a tile set τ such that

イロト 不得下 イヨト イヨト 二日

19/33

- the set of τ -tilings is *minimal*
- \mathcal{A} is *simulated* by vertical columns of τ -tilings

Another positive result (motivated by Emmanuel Jeandel)

Theorem 4. For every minimal 1D subshift \mathcal{A} (minimal \Rightarrow computable) there exists a tile set τ such that

- the set of τ -tilings is *minimal*
- \mathcal{A} is *simulated* by vertical columns of τ -tilings

cf.

Theorem [Aubrun-Sablik, Durand-R.-Shen 2013]

For every effectively closed 1D subshift A there exists a tile set τ such that A is simulated by vertical columns of τ -tilings.

19/33

Once again, the first nontrivial statement:

Theorem. There exists a tile set τ such that all τ -tilings are *aperiodic* and *quasiperiodic*.

Sketch of the proof:

Sketch of the proof:

In what follows we explain how to guarantee aperiodicity + quasiperiodicity of a tiling.

The plan:

enforce self-similarity of a tiling

The plan:

 enforce self-similarity of a tiling self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács

The plan:

 enforce self-similarity of a tiling self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács (Remember Linda's talk!)

The plan:

- enforce self-similarity of a tiling self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács (Remember Linda's talk!)
- enforce replication of all patterns that you may have in a tiling

Fix a tile set τ and an integer N > 1.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of matching τ -tiles.

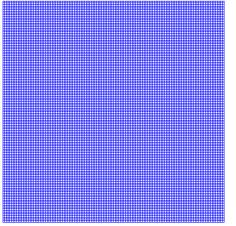
Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of matching τ -tiles.

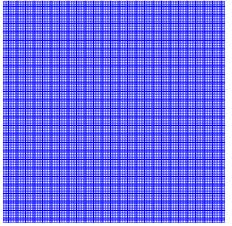
Definition 2. A tile set ρ is **simulated** by τ : there exists a family of τ -macro-tiles *R* isomorphic to ρ such that every τ -tiling can be uniquely split by an $N \times N$ grid into macro-tiles from *R*.

Theorem. Self-similar tile set is aperiodic.

Theorem. Self-similar tile set is aperiodic. Sketch of the proof:



Theorem. Self-similar tile set is aperiodic. Sketch of the proof:



Theorem. Self-similar tile set is aperiodic. Sketch of the proof:

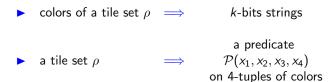
Simulating a given tile set ρ by macro-tiles.

Representation of the tile set ρ :

Representation of the tile set ρ :

• colors of a tile set
$$\rho \implies k$$
-bits strings

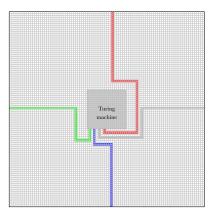
Representation of the tile set ρ :



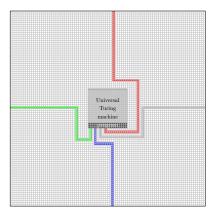
Representation of the tile set ρ :

• colors of a tile set $\rho \implies k$ -bits strings • a tile set $\rho \implies \mathcal{P}(x_1, x_2, x_3, x_4)$ on 4-tuples of colors a TM that accepts only 4-tuples of colors for the ρ -tiles

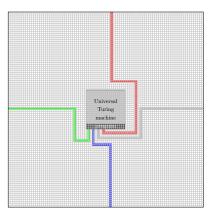
Implementation scheme:



A more generic construction: universal TM + program



A more generic construction: universal TM + program



A fixed point: simulating tile set = simulated tile set

A similar metaphor in pop culture:

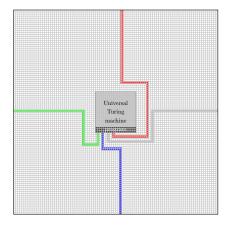
(Picture by Worker, http://OpenClipArt.org/detail/102679/organize)

A similar metaphor in pop culture:

(Picture by Worker, http://OpenClipArt.org/detail/102679/organize)

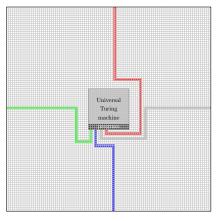
...but we need (infinitely) many levels of self-simulation.

What about quasiperiodicity?



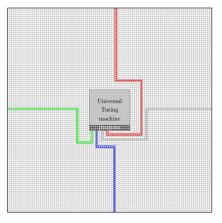
(ロ)、(型)、(注)、(注)、(注)、(注)、(注)、(2)、(30/33)

What about quasiperiodicity?



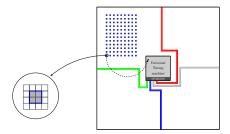
Good news: for self-similar tilings it is enough to prove that each 2×2 -pattern in a tiling has "siblings" hereabouts.

What about quasiperiodicity?

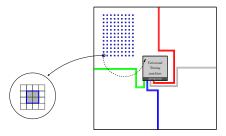


Bad news: the problematic parts are the *computation zone* and the *communication wires*.

Replicate all 2×2 patterns that *may* appear in the computational zone!



Replicate all 2×2 patterns that *may* appear in the computational zone!



A slot for a 2×2 pattern from the comput. zone:

0.118	N+1.(+8	012110	0.13(1.0
0.3+20 0+1.3+20	(+ 1, j + 2) (+ 2, j + 2)	0+2,1+200+2,1+20	0 + 3.5 + 31 0 + 4.5 + 31
(i,j+2)	(s, t + 2)	$(a+1, \ell+2)$	(1+3,j+3)
(i,j+3)	(a, t + 2)	$\{a+1, \ell+2\}$	(i+3,j+3)
$(i,j+2) \qquad (a,i+2)$	(a, t + 1) = (a + 2, t + 2)	$(n + 1, l + 1) \ (n + 2, l + 1)$	(s + 2, t + 2) $(i + 4, j + 2)$
(i, j + 2)	$(x, \ell = \overline{x})$	$(a+1, \ell+1)$	(i+3,j+2)
(i, j + 2)	$(x, t \in \mathbb{I})$	$\{a=1, d=1\}$	$(i + \lambda, j + 2)$
0.110 0.0	$(a,t) \qquad (a+2,t)$	$(n \pm 2, t)$ $(n \pm 2, t)$	(i + 2, i) = (i + 4, j + 1)
$\{i,j+1\}$	(4.0	(a+3,4)	(i+3,j+1)
(1, j + 1)	(4.0	(a + 1, t)	$(i+\lambda,j+1)$
(i, j + 1)	$(r+h_1)=-(r+h_2)$	$(i+\lambda_1) \qquad (i+\lambda_2)$	(i + 3,j) = (i + 4,j)
9.0	0.11.0	(1+2,0)	0+1,0

Proof: The same technique + variable zoom factor

Proof: The same technique + variable zoom factor + embed in a tiling an (infinite) verification of a separator for a pair of recursively non separable sets.

Proof: The same technique + variable zoom factor + embed in a tiling an (infinite) verification of a separator for a pair of recursively non separable sets.

Proofs of Theorems 2-4:

The same idea + more technical tricks.

Proof: The same technique + variable zoom factor + embed in a tiling an (infinite) verification of a separator for a pair of recursively non separable sets.

Proofs of Theorems 2-4:

The same idea + more technical tricks.

That's all!

33 / 33