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Restricted Value Martingales

Definition

1. A martingale is a function M : {0, 1}<N → R such that

M(σ) =
M(σ0) + M(σ1)

2

for every string σ ∈ {0, 1}<N.

2. Let S ⊆ R+; an S-martingale is any martingale M that
satisfies

|M(σ1)−M(σ)| ∈ S

for all σ ∈ {0, 1}<N.

3. The success set of an S-martingale M is

succ(M) = {X ∈ {0, 1}N : lim sup
n

M(X � n) =∞}.



Anticipation and Evasion
Henceforth let A,B ⊆ R+, and assume 0 ∈ A ∩ B.

Definition

I B singly anticipates A if for every A-martingale X , there
exists a B-martingale Y such that

succ(X ) ⊆ succ(Y ).

Otherwise we say A singly evades B. If A and B singly
anticipate each other then we say A and B are strongly
equivalent.

I B (countably) anticipates A if for every A-martingale X , there
exists a countable set of B-martingales {Y1,Y2, . . .} such that

succ(X ) ⊆
⋃
i∈N

succ(Yi ).

Otherwise we say A (countably) evades B.



Results

Definition
A scales into B if there exists r > 0 such that rA ⊆ B.

Lemma (Bavly/Peretz)

If A scales into B then B singly anticipates A.

Lemma (Bavly/Peretz)

Every subset of R+ is strongly equivalent to its closure.



Bigger Results

Theorem (Bavly/Peretz)

If supA <∞ and 0 6∈ B \ {0}, then B anticipates A if and only if
A scales into B.

Theorem (Bavly/Peretz)

If B is well-ordered, i.e. ∀x ∈ R+x 6∈ B \ [0, x ], then B anticipates
A if and only if A scales into B.

Theorem (Bavly/Peretz)

Suppose there is a non-increasing function f : R+ → R+ such that

1. B ⊃ f (x) · (A ∩ [0, x ]) for every x ∈ R+, and

2.
∫∞
0 f (x)dx =∞.

Then B singly anticipates A.



A Few Examples

I {2n : n ∈ N} evades and singly anticipates {2n + 1 : n ∈ N}.
I {1, π} evades N.

I {1 + 1
n : n ∈ N} evades N.

I { 1n : n ∈ N} evades {0} ∪ [1,∞).

I R+ and [0, 1] are strongly equivalent.

I A = {2−n : n ∈ Z} and B = {2−n : n ∈ N} are strongly
equivalent.

I If B ∩ [0, ε] is dense in [0, ε] for any ε > 0, then B singly
anticipates A for any A.



Open Questions

1. Are there any other kinds of sets that singly anticipate
everything?

2. Are single anticipation and countable anticipation different?
That is, are there sets A,B ⊆ R+ such that B countably
anticipates A but does not singly anticipate A?

3. What can be said about sets that include 0 as an
accumulation point, e.g.

{
1
n : n ∈ N

}
or
{

1
xn : n ∈ N

}
for

some x ∈ R+?



A Partial Answer

Theorem (P.)

Let A = N and Bx = {x−n : n ∈ N} ∪ {0} for
x ∈ R+ \

{
m
√
ϕ : m ∈ N,m ≥ 1

}
where ϕ is the golden ratio,

1+
√
5

2 . Then A singly evades Bx .



Intuitions and Assumptions

We can think in terms of a casino game between Anne (making
wagers from A) and Bob (making wagers from B). In order to
prove our result we must show that Anne can make infinite money
in the long run while Bob does not make infinite money. We may
assume that:

I First Anne bets, then Bob bets, and then the casino flips a
coin. Each player who bet correctly on the result of the coin
flip gains their wager, and each player who bet incorrectly
loses their wager.

I The casino rigs the results of each coin flip in Anne’s favor.

I Anne always bets on heads, and Bob always bets on the same
outcome as Anne.



The Process at Stage i

Fix x as above with x > 1 (the x ≤ 1 case follows from above); we
develop a strategy that guarantees Anne has at least 2x i−1 + 5 at
the beginning of stage i and that gains her at least 2x i during
stage i – all while limiting how much Bob wins.
At the beginning of stage i (we call this START), Anne bets 1,
and then the casino acts based on what Bob bets:

I If Bob bets an amount greater than or equal to 1
x i−1 , the

casino makes both players lose and gambling proceeds along
the Punishing Path.

I If Bob bets an amount less than or equal to 1
x i

, the casino
makes both players win and gambling proceeds along the
Rewarding Route.



The Punishing Path

Once the gamblers are on the “punishing path”, Anne repeatedly
bets 1, and then the casino acts based on what Bob bets:

I If Bob bets an amount greater than or equal to 1
x i−1 , the

casino makes both players lose.

I If Bob bets an amount less than or equal to 1
x i

, the casino
makes both players win.



The Punishing Path

This goes on until one of two things happens:

1. Anne has the same amount of money she had at START,
while Bob has lost at least 1

x i−1 − 1
x i

dollars. At this point we
go back to START.

2. Anne has lost dx i−1e+ 1 dollars and Bob has lost at least
dx i−1e+1

x i−1 dollars. At this point Anne bets everything, Bob bets
at most 1, and then the casino makes them both win. Anne
now has more money than she had when the “punishing path”
started, while Bob has lost at least 1

x i−1 . At this point we
again return to START.

No matter what happens we remain in stage i .



The Rewarding Route

Anne bets according to the Fibonacci sequence: she already bet $1
getting onto the “rewarding route”, then she bets $1 again, then
$2, then $3, then $5, and so on as long as she keeps winning. If
Anne ever loses, one of two things must have happened. If her
most recent bet was either $1 or $2, then that means Anne now
has the same amount of money she had at START, so in this
instance the “rewarding route” ends and we go back to START.
Otherwise, Anne goes back two steps in the Fibonacci sequence
and continues betting from that point, e.g. if Anne loses when she
bets $13, she will next bet $5, then $8, and so on.
If Bob ever bets an amount that exceeds the sum of his “previous”
two bets, then the casino makes both gamblers lose; otherwise,
both players win.



The Rewarding Route

In order for Anne to gain the 2x i dollars necessary to reach stage
i + 1, the “rewarding route” must continue until Anne is able to
win a bet of Fk dollars for some k ∈ N satisfying

2x i ≤
k∑

j=0

Fj .

Using several properties of the Fibonacci numbers one can show
that it is sufficient to pick k = di logϕ(x)e+ 3 to guarantee Anne
meets her goal.



Bob’s Total Winnings

To determine how much Bob can earn in total, we must consider
several different cases for x :

1. x ∈ (2,∞),

2. x ∈ (ϕ, 2],

3. x ∈ ( n+1
√
ϕ, n
√
ϕ) ∩ ( m+1

√
2, m
√

2] where n,m ∈ N and
m ≥ n ≥ 1.



The Easy Case

Assume x > 2. Bob bet at most 1
x i

to get onto the “rewarding
route”, Bob’s first bet on the “rewarding route” will always be at
most 1

x i
, and since 2

x i
< 1

x i−1 , Bob’s next wager must also be at

most 1
x i

. Clearly this pattern repeats ad infinitum. Thus, if
gambling proceeds for k rounds as above, the most Bob can earn
during stage i is k+1

x i
dollars. Thus, over the course of all stages

i ∈ N Bob’s total earnings are bounded above by

∞∑
i=0

di logϕ(x)e+ 3

x i

which is finite.



The Medium Case

Assume x ∈ (ϕ, 2]. We see that

x

x i
≤ 2

x i
<

x2

x i

so Bob’s second bet on the “rewarding route” is at most 1
x i−1 .

Consider now Bob’s third wager; since his last two wagers were 1
x i

and 1
x i−1 , clearly he can bet at least 1

x i−1 – can he possibly bet 1
x i−2

though? In fact he cannot: since x > ϕ we know that

x2 − x − 1 > 0.

Rearranging the terms and dividing by x i yields

1

x i−2
>

1

x i−1
+

1

x i

so Bob’s third bet must be at most 1
x i−1 .



The Medium Case

Now that Bob’s previous two wagers are 1
x i−1 and 1

x i−1 , we see that

this pattern continues: Bob’s next two bets will be at most 1
x i−2 ,

the two bets after that will be at most 1
x i−3 , and so on. Thus, after

k rounds on the “rewarding route”, Bob’s winnings are bounded
above by

d k
2
e∑

j=0

2

x i−j
=

2

x i
· x
d k
2
e+1 − 1

x − 1
<

2x4

x − 1
· x i

(
logϕ(x)

2
−1

)
.

Summing up over all stages i ∈ N, we see that Bob’s total earnings
are bounded by

2x4

x − 1

∞∑
i=0

x
i
(

logϕ(x)

2
−1

)

which is finite since logϕ(x) < 2.



The Hard Case
Assume x ∈ ( n+1

√
ϕ, n
√
ϕ) ∩ ( m+1

√
2, m
√

2] where n,m ∈ N and

m ≥ n ≥ 1. Since x ∈ ( m+1
√

2, m
√

2] we know that

xm

x i
≤ 2

x i
<

xm+1

x i

so Bob’s second bet on the “rewarding route” must be at most
1

x i−m . For Bob’s following wagers, note that because x < n
√
ϕ we

know that
1 + xn > x2n

and because x > n+1
√
ϕ we know

1 + xn+1 < (xn+1)2 = x2n+2.

Dividing by x i in these inequalities shows that if Bob’s last wager
was xn times his wager before that, his current wager can definitely
be at least xn times his previous wager and definitely not xn+2

times his previous wager.



The Hard Case

Since m ≥ n, we can bound Bob’s third wager on the “rewarding
route” by either 1

x i−(m+n) or 1
x i−(m+n+1) . Moreover, after this point

we see that each of Bob’s successive bets will be at most the
previous bet multiplied by either xn or xn+1. The question now is
when can we assume Bob’s bets are going up by n factors of x and
not n + 1 factors of x? To answer this question we must break into
two smaller cases.



The First Subcase

Assume x ∈ [ n+1
2
√
ϕ, n
√
ϕ). Since x ≥ n+1

2
√
ϕ, we know that

1 + xn < 1 + xn+
1
2 ≤ (xn+

1
2 )2 = x2n+1.

Thus, we know that in this case Bob’s wagers are always going to
be xn times his previous wager, and we may bound his third wager
in the “rewarding route” by 1

x i−(m+n) .



The First Subcase

We see for this subcase that after k steps on the “rewarding
route”, Bob’s winnings are bounded above by

2

x i
+

k−2∑
j=0

xm+jn

x i
≤

k−1∑
j=0

xm+jn

x i
=

xm

x i
· x

kn − 1

xn − 1

<
xm

xn − 1
· xkn−i ≤ xm+4n

xn − 1
· x i(n logϕ(x)−1).

As a result we see that Bob’s total winnings over all stages i ∈ N
are bounded by

xm+4n

xn − 1

∞∑
i=0

x i(n logϕ(x)−1)

which we know is finite because logϕ(x) < 1
n .



The Second Subcase

Assume x ∈ ( n+1
√
ϕ, n+1

2
√
ϕ). Whenever Bob’s last wager is xn times

his wager before that, we allow his next wager can be xn+1 times
his last wager; also we say that Bob’s third wager in the
“rewarding route” is bounded by 1

x i−(m+n+1) .
By the same calculations as above, we know that Bob’s next wager
cannot be xn+1 times his current wager, so it must be xn times his
current wager. Observe that this pattern must repeat: Bob’s
wagers alternate between being xn times the previous wager and
xn+1 times the previous wager.



The Second Subcase

We are now able to overestimate Bob’s winnings by considering

each of his wagers as xn+
1
2 times his previous wager and adding in

an extra factor of x
1
2 . This gives the upper bound

2

x i
+

k−2∑
j=0

xm+ 1
2
+j(n+ 1

2
)

x i
≤

k−1∑
j=0

xm+ 1
2
+j(n+ 1

2
)

x i
=

xm+ 1
2

x i
· x

k(n+ 1
2
) − 1

xn+
1
2 − 1

<
xm+ 1

2

xn+
1
2 − 1

· xk(n+
1
2
)−i ≤ xm+4n+ 5

2

xn+
1
2 − 1

· x i((n+
1
2
) logϕ(x)−1).

Adding up these bounds for each stage i ∈ N, we see that Bob’s
total winnings are bounded above by

xm+4n+ 5
2

xn+
1
2 − 1

∞∑
i=0

x i((n+
1
2
) logϕ(x)−1)

which we know is finite since logϕ(x) < n + 1
2 .



Extending the Result

Try using the k-Fibonacci numbers!

Theorem (P.)

Let A = N and Bx = {0} ∪ {x−n : n ∈ N} for x ∈ R+; then A
singly evades Bx .

Corollary (P.)

Let A = N and Bx = {0} ∪ {x−n : n ∈ Z} for x ∈ R+; then A
singly evades Bx .

Conjecture

Let A = Fk and Bx = {x−n : n ∈ N} ∪ {0} with k ∈ N ∪ {∞} and
x ∈ R+ \ { m

√
ϕk : m ∈ N,m ≥ 1}. Then A singly evades Bx .



Thanks for listening!



Relevant Papers

I Bavly and Peretz. How to gamble against all odds. Games
and Economic Behavior 2014.

I Bienvenu, Stephan, and Teutsch. How Powerful Are
Integer-Valued Martingales? Theory of Computing Systems,
51(3):330-351 2012.

I Buss and Minnes. Probabilistic Algorithmic Randomness.
Journal of Symbolic Logic, 78(2):579-601 2013.

I Chalcraft, Dougherty, Freiling, and Teutsch. How to Build a
Probability-Free Casino. Information and Computation,
211:160-164 2012.

I Peretz. Effective Martingales with Restricted Wagers. On
arxiv 2013.

I Teutsch. A Savings Paradox for Integer-Valued Gambling
Strategies. International Journal of Game Theory 2013.


