Randomness connecting to set theory and to reverse mathematics

André Nies

June 2016

CIRM
Slides are on my web site under "talks".

Goals

- ► Connect randomness and computability to cardinal characteristics in set theory:
 - \blacktriangleright define a dual $\Delta(A)$ of the Gamma operator,
 - ▶ show $\Delta(A) > 0 \rightarrow \Delta(A) = 1/2$ by dualising Monin's proof

Goals

- ► Connect randomness and computability to cardinal characteristics in set theory:
 - \blacktriangleright define a dual $\Delta(A)$ of the Gamma operator,
 - ▶ show $\Delta(A) > 0 \rightarrow \Delta(A) = 1/2$ by dualising Monin's proof
- ▶ Connect randomness to reverse mathematics:
 - ▶ study the axiom power needed to verify equivalence of randomness notions;
 - ▶ study strength of randomness existence axioms in the setting of reverse mathematics

PART I:

The Γ and Δ operators, and cardinal characteristics in set theory

The Γ operator

For $Z \subseteq \mathbb{N}$ the lower density is defined to be

$$\underline{\rho}(Z) = \liminf_n \frac{|Z \cap [0,n)|}{n}.$$

Recall that

$$\gamma(A) = \sup_{X \text{ computable}} \underline{\rho}(A \leftrightarrow X)$$

The Γ operator was introduced by Andrews, Cai, Diamondstone, Jockusch and Lempp (2013):

$$\Gamma(A) = \inf\{\gamma(Y) \colon Y \leq_T A\}.$$

This only depends on the Turing degree of A.

Viewing $1 - \Gamma$ as a Hausdorff pseudodistance

For $Z \subseteq \mathbb{N}$ the upper density is defined by

$$\overline{\rho}(Z) = \limsup_{n} \frac{|Z \cap [0, n]|}{n}.$$

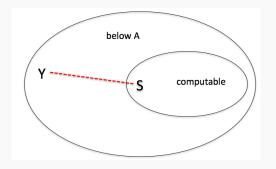
- ▶ For $X, Y \in 2^{\mathbb{N}}$ let $d(X, Y) = \overline{\rho}(X \triangle Y)$ be the upper density of the symmetric difference of X and Y
- ▶ this is a pseudodistance on Cantor space $2^{\mathbb{N}}$ (that is, two objects may have distance 0 without being equal).

Let $\mathcal{R} \subseteq \mathcal{A} \subseteq M$ for a pseudometric space(M, d). The Hausdorff distance is $d_H(\mathcal{A}, \mathcal{R}) = \sup_{Y \in \mathcal{A}} \inf_{S \in \mathcal{R}} d(Y, S)$).

Let $\mathcal{R} \subseteq \mathcal{A} \subseteq M$ for a pseudometric space(M, d). The Hausdorff distance is $d_H(\mathcal{A}, \mathcal{R}) = \sup_{Y \in \mathcal{A}} \inf_{S \in \mathcal{R}} d(Y, S)$).

Given an oracle set A let $\mathcal{A} = \{Y \colon Y \leq_{\mathrm{T}} A\}$. Let $\mathcal{R} \subseteq \mathcal{A}$ denote the collection of computable sets. We have

$$1 - \Gamma(A) = d_H(\mathcal{A}, \mathcal{R}).$$



Δ operator, a dual to Γ

$$\delta(Y) = \inf{\{\underline{\rho}(Y \leftrightarrow S) : S \text{ computable}\}}$$

 $\Delta(A) = \sup{\{\delta(Y) : Y \leq_T A\}}.$

Δ operator, a dual to Γ

$$\delta(Y) = \inf\{\underline{\rho}(Y \leftrightarrow S) \colon S \text{ computable}\}\$$

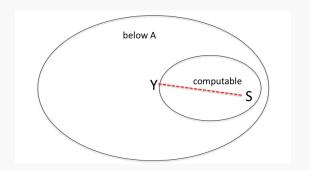
 $\Delta(A) = \sup\{\delta(Y) \colon Y \leq_T A\}.$

- ▶ $\Gamma(A)$ measures how well computable sets can approximate the sets that A computes. " $\Gamma(A) > p$ " for fixed $p \in [0,1)$ is a lowness property.
- ▶ $\Delta(A)$ measures how well the sets that A computes can approximate the computable sets. " $\Delta(A) > p$ " is a highness property.

Interpreting $1 - \Delta(A)$ metrically

We can view $1 - \Delta(A)$ as a one-sided "dual" of the Hausdorff distance:

$$1 - \Delta(A) = d_H^*(\mathcal{A}, \mathcal{R}) = \inf_{Y \in \mathcal{A}} \sup_{S \in \mathcal{R}} d(Y, S).$$



Example: for the unit disc $D \subseteq \mathbb{R}^2$ we have $d_H^*(D, D) = 1$.

$$\delta(Y) = \inf{\{\underline{\rho}(Y \leftrightarrow S) : S \text{ computable}\}}$$

 $\Delta(A) = \sup{\{\delta(Y) : Y \leq_T A\}}.$

Properties of δ and Δ (w. Merkle and Stephan)

- ▶ $\delta(Y) \leq 1/2$ for each Y (by considering also the complement of S)
- ► Y Schnorr random $\Rightarrow \delta(Y) = 1/2$ (by law of large numbers)
- $ightharpoonup A computable <math>\Rightarrow \Delta(A) = 0.$
- ▶ $\Delta(A) = 0$ is possible for noncomputable A, e.g. if A is low and c.e., or 2-generic .

Cardinal characteristics and their analogs

We use analogs of cardinal characteristics in set theory. Consider a binary relation $R \subseteq \mathcal{X} \times \mathcal{Y}$ between sets, functions (or other objects encoded by reals).

▶ In set theory one lets

$$\mathfrak{b}(R) = \min\{|F| : F \subseteq \mathcal{X} \land \forall y \in \mathcal{Y} \exists x \in F [\neg xRy]\}$$

(e.g. if R is almost everywhere domination of functions, one gets the unbounding number \mathfrak{b})

Cardinal characteristics and their analogs

We use analogs of cardinal characteristics in set theory. Consider a binary relation $R \subseteq \mathcal{X} \times \mathcal{Y}$ between sets, functions (or other objects encoded by reals).

▶ In set theory one lets

$$\mathfrak{b}(R) = \min\{|F| : F \subseteq \mathcal{X} \land \forall y \in \mathcal{Y} \exists x \in F [\neg x R y]\}$$

(e.g. if R is almost everywhere domination of functions, one gets the unbounding number \mathfrak{b})

▶ In computability we let

$$\mathcal{B}(R) = \{A \colon \exists y \leq_{\mathrm{T}} A \forall x \text{ computable } [xRy]\}$$

(e.g., the same R yields highness.)

See Rupprecht, Thesis, 2010; Brooke, Brendle, Ng, N., 2014.

The highness classes $\mathcal{B}(\sim_p)$

Definition (Brendle and N.)

For
$$p \in [0,1/2)$$
 let $S \sim_p Y$ if $\rho(S \leftrightarrow Y) > p$, and

$$\mathcal{B}(\sim_p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } S \sim_p Y \}.$$

The highness classes $\mathcal{B}(\sim_p)$

Definition (Brendle and N.)

For $p \in [0, 1/2)$ let $S \sim_p Y$ if $\underline{\rho}(S \leftrightarrow Y) > p$, and

$$\mathcal{B}(\sim_p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } S \sim_p Y \}.$$

The connection to Δ : for each $p \in [0, 1/2)$ we have

$$\Delta(A) > p \Rightarrow A \in \mathcal{B}(\sim_p) \Rightarrow \Delta(A) \ge p.$$

We will show that all the classes $\mathcal{B}(p)$ coincide, for 0 . Therefore:

$$\Delta(A) > 0 \Rightarrow \Delta(A) = 1/2.$$

A.e. avoiding a computable function

```
Definition (\mathcal{B}(\neq^*, h))
For a computable function h, we let \mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \, \forall r \text{ computable} \\ \forall^{\infty} n \, f(n) \neq r(n) \}.
```

- ightharpoonup This gets easier as h grows faster.
- ▶ In the extreme, $\mathcal{B}(\neq^*)$, i.e. the class obtained when we omit the computable bound, coincides with "high or diagonally noncomputable".

A.e. avoiding a computable function

Definition $(\mathcal{B}(\neq^*, h))$

For a computable function h, we let

$$\mathcal{B}(\neq^*,h) = \{A\colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall r \text{ computable} \\ \forall^{\infty} n \, f(n) \neq r(n) \}.$$

- ightharpoonup This gets easier as h grows faster.
- ▶ In the extreme, $\mathcal{B}(\neq^*)$, i.e. the class obtained when we omit the computable bound, coincides with "high or diagonally noncomputable".

Fact

A computes a Schnorr random $\Rightarrow A \in \mathcal{B}(\neq^*, 2^{\hat{h}})$ whenever \hat{h} is computable and $\infty > \sum_n 1/\hat{h}(n)$. E.g. $\hat{h}(n) = n^2$.

$$\mathcal{B}(\sim_p) = \{A\colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\sim_p)$.

$$\mathcal{B}(\sim_p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\sim_p)$.

$$\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall r \text{ computable} \\ \forall^{\infty} n \, r(n) \neq f(n) \}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\neq^*, 2^{n^2})$.

$$\mathcal{B}(\sim_p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\sim_p)$.

$$\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall r \text{ computable} \\ \forall^{\infty} n \, r(n) \neq f(n) \}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\neq^*, 2^{n^2})$.

Theorem (N., dual form of Monin's result)

$$\mathcal{B}(\sim_p) = \mathcal{B}(\neq^*, 2^{(2^n)})$$
 for each $p \in (0, 1/2)$.

$$\mathcal{B}(\sim_p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\sim_p)$.

$$\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall r \text{ computable} \\ \forall^{\infty} n \, r(n) \neq f(n) \}.$$

If A computes a Schnorr random then $A \in \mathcal{B}(\neq^*, 2^{n^2})$.

Theorem (N., dual form of Monin's result)

$$\mathcal{B}(\sim_p) = \mathcal{B}(\neq^*, 2^{(2^n)})$$
 for each $p \in (0, 1/2)$.

Corollary

$$\Delta(A) > 0 \Leftrightarrow \Delta(A) = 1/2 \Leftrightarrow A \in \mathcal{B}(\neq^*, 2^{(2^n)}).$$

Relation 1: Let q > p such that q < 1/2. For $h(n) = 2^{\hat{h}(n)}$ and functions x, y < h, view x(n) as string of length $\hat{h}(n)$.

$$x \neq_{\hat{h},q}^* y \Leftrightarrow \forall^{\infty} n \left| \left\{ i < \hat{h}(n) \colon x(n)(i) \neq y(n)(i) \right\} \right| \ge nq.$$

Four steps:

1. there is k such that where $\hat{h}(n) = \lfloor 2^{n/k} \rfloor$ $\mathcal{B}(\sim_p) \supseteq \mathcal{B}(\neq_{\hat{h},q}^*).$

Relation 1: Let q > p such that q < 1/2. For $h(n) = 2^{\hat{h}(n)}$ and functions x, y < h, view x(n) as string of length $\hat{h}(n)$.

$$x \neq_{\hat{h},q}^* y \Leftrightarrow \forall^{\infty} n |\{i < \hat{h}(n) \colon x(n)(i) \neq y(n)(i)\}| \ge nq.$$

Relation 2: Let $L \in \mathbb{N}$ and u be a function. For a trace s consisting of L-element sets, and a function y < u, let

$$s \not\ni_{u,L}^* y \Leftrightarrow \forall^{\infty} n[s(n) \not\ni y(n)].$$

Four steps:

2. There are $L \in \mathbb{N}$, $\epsilon > 0$ such that where $u(n) = 2^{\lfloor \epsilon \hat{h}(n) \rfloor}$, we have $\mathcal{B}(\neq_{\hat{h},q}^*) \supseteq \mathcal{B}(\not\ni_{u,L}^*)$.

Relation 2: Let $L \in \mathbb{N}$ and u be a function. For a trace s consisting of L-element sets, and a function y < u, let $s \not\ni_{u,L}^* y \Leftrightarrow \forall^{\infty} n[s(n) \not\ni y(n)].$

Four steps:

3.
$$\mathcal{B}(\not\ni_{u,L}^*) \supseteq \mathcal{B}(\not\ni_{2^{(L2^n)},L}^*).$$

Relation 1: Let q > p such that q < 1/2. For $h(n) = 2^{\hat{h}(n)}$ and functions x, y < h, view x(n) as string of length $\hat{h}(n)$.

$$x \neq_{\hat{h}, q}^* y \Leftrightarrow \forall^{\infty} n |\{i < \hat{h}(n) \colon x(n)(i) \neq y(n)(i)\}| \geq nq.$$

Relation 2: Let $L \in \mathbb{N}$ and u be a function. For a trace s consisting of L-element sets, and a function y < u, let

$$s \not\ni_{u,L}^* y \Leftrightarrow \forall^{\infty} n[s(n) \not\ni y(n)].$$

Four steps:

- 1. there is k such that where $\hat{h}(n) = \lfloor 2^{n/k} \rfloor$ $\mathcal{B}(\sim_p) \supseteq \mathcal{B}(\neq_{\hat{h},q}^*).$
- 2. There are $L \in \mathbb{N}$, $\epsilon > 0$ such that where $u(n) = 2^{\lfloor \epsilon \hat{h}(n) \rfloor}$, we have $\mathcal{B}(\neq_{\hat{h},q}^*) \supseteq \mathcal{B}(\not\ni_{u,L}^*)$.
- 3. $\mathcal{B}(\not\ni_{u,L}^*) \supseteq \mathcal{B}(\not\ni_{2^{(L2^n)},L}^*).$
- 4. Finally, $\mathcal{B}(\not\ni^*, 2^{(L2^n)}, L) \supseteq \mathcal{B}(\not\models^*, 2^{(2^n)})$

Separations?

Recall: For a computable function h, we let

$$\mathcal{B}(\neq^*,h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \, \forall r \text{ computable}$$

$$\forall^{\infty} n f(n) \neq r(n) \}.$$

It is easy to show $\mathcal{B}(\sim_0) \subseteq B(\neq^*, 2^{n!})$.

Question

Is
$$\mathcal{B}(1/4) \subset \mathcal{B}(\sim_0)$$
? Is $\mathcal{B}(\neq^*, 2^{(2^n)}) \subset \mathcal{B}(\neq^*, 2^{n!})$?

In fact we don't know much about any separations $\mathcal{B}(\neq^*, g) \subset \mathcal{B}(\neq^*, h)$ for g << h.

Maybe set theory can help: the analog of $\mathcal{B}(\neq^*, h)$ is the cardinal characteristic

 $\mathfrak{b}(\neq_h^*)$ = the least size of a set F of functions such that for each h-bounded function y,

there is a function
$$x \in F$$
 with $\exists^{\infty} n \ [x(n) = y(n)]$.

Separating the $\mathfrak{b}(\neq_h^*)$ in a suitable model of ZFC

 $\mathfrak{b}(\neq_h^*)$ = the least size of a set F of functions such that for each h-bounded function y, there is a function x in F with $\exists^{\infty} n \ [x(n) = y(n)].$

Theorem (Kamo and Osuga 2014, special case)

Let $\langle \lambda_n \rangle_{n < \omega}$ be a strictly increasing sequence of regular cardinals $> \aleph_0$, e.g. $\lambda_n = \aleph_{n+1}$.

There is a forcing notion \mathbb{P} with the countable (anti)chain condition that forces:

there is a sequence of functions $\langle h_n \rangle_{n < \omega}$ in the ground model such that $\mathfrak{b}(\neq_{h_n}^*) = \lambda_n$ for each n.

The c.c.c. implies that cardinals remain cardinals.

PART II:

Randomness, analysis, reverse mathematics

Systems based on randomness notions

Let C denote a randomness notion. We study the strength of the subsystem of second-order arithmetic

$$C_0 = \mathsf{RCA}_0 + \forall X \exists Y [Y \in \mathsf{C}^X].$$

Systems based on randomness notions

Let C denote a randomness notion. We study the strength of the subsystem of second-order arithmetic

$$C_0 = \mathsf{RCA}_0 + \forall X \exists Y \, [Y \in \mathsf{C}^X].$$

Notation:

- ► MLR is ML-randomness,
- ► CRand is computable randomness,
- ► SRand is Schnorr randomness.

$$MLR \Rightarrow CRand \Rightarrow SRand$$

Systems based on randomness notions

Let C denote a randomness notion. We study the strength of the subsystem of second-order arithmetic

$$C_0 = \mathsf{RCA}_0 + \forall X \exists Y \, [Y \in \mathsf{C}^X].$$

Notation:

- ► MLR is ML-randomness,
- ► CRand is computable randomness,
- ▶ SRand is Schnorr randomness.

$$MLR \Rightarrow CRand \Rightarrow SRand$$

We will also use C to denote the axiom $\forall X \exists Y [Y \in C^X]$.

Theorem (Simpson and X. Yu, 1990)

MLR is equivalent to WWKL over RCA_0 .

Formalising randomness notions

Care has to be taken how to formalise the corresponding systems. For instance we can't assume measure theory to define MLR, as this needs WWKL.

MLR

- ▶ A ML-test relative to X is given by an X-computable sequence of trees $\langle T_i \rangle_{i \in \mathbb{N}}$ such that $\mu[T_i] \geq 1 2^{-i}$, where $\mu[T_i]$ denotes $\lim_n 2^{-n} |T_i^{=n}|$ (relative size of the n-th level). It simulates the ML-test $\langle 2^{\mathbb{N}} [T_i] \rangle_{i \in \mathbb{N}}$
- ▶ Y is ML-random in X if for each such sequence, $Y \in [T_i]$ for some i.

Formalising randomness notions

Care has to be taken how to formalise the corresponding systems. For instance we can't assume measure theory to define MLR, as this needs WWKL.

MI R

- ▶ A ML-test relative to X is given by an X-computable sequence of trees $\langle T_i \rangle_{i \in \mathbb{N}}$ such that $\mu[T_i] \geq 1 2^{-i}$, where $\mu[T_i]$ denotes $\lim_n 2^{-n} |T_i^{=n}|$ (relative size of the n-th level). It simulates the ML-test $\langle 2^{\mathbb{N}} [T_i] \rangle_{i \in \mathbb{N}}$
- ▶ Y is ML-random in X if for each such sequence, $Y \in [T_i]$ for some i.

CRand

Y is computably random in X if each martingale computable in X fails on Y.

Equivalences in the framework of reverse maths

Theorem (Yokoyama and N.)

Over RCA_0 , MLR is equivalent to the statements (suitably formulated)

- every continuous function of bounded variation is differentiable somewhere
- ▶ every continuous function of bounded variation is differentiable almost everywhere.

Original proof uses infinite pigeonhole principle $\mathsf{RT}^1_{<\infty}$ in one important place; we needed to get rid of that.

Equivalences in the framework of reverse maths

 $C^X(\sigma)$ denotes plain Kolmogorov complexity of σ relative to oracle X.

Theorem (Shafer and N.)

Over $B\Sigma_2$, 2Rand is equivalent to the statement for each X there is Z such that $\exists^{\infty} n \, C^X(Z \mid n) \geq n - O(1)$.

- ▶ Right-to-left actually works over RCA
- ▶ left-to-right may as well (wip).

Other equivalences left to be done: e.g. $2\mathsf{Rand} \leftrightarrow \mathsf{MLR} \cap \mathsf{Low}(\Omega)$.

An ω -model of CRand_0 without a d.n.c. function

- ▶ Every high set is Turing above a computably random set (N., Stephan and Terwijn 2005).
- ▶ By the proof of Lemma 4.1 in Cholak, Greenberg, et al. 06, for each set B of non-d.n.c. degree there is a set X, high relative to B, such that $B \oplus X$ is also not of d.n.c. degree.
- ▶ Iterating this in the standard way, we build an ω -model of CRand_0 without a set of d.n.c. degree.
- ▶ In particular, there is no ML-random set.

Let \mathcal{M} be a model of SR_0 . Given a set X of \mathcal{M} , we want to find a set Y in \mathcal{M} that is computably random in X. Let Z be a set of \mathcal{M} that is Schnorr random in X.

 \blacktriangleright If Z is ML-random in X we are done.

- \blacktriangleright If Z is ML-random in X we are done.
- ▶ Else $Z \in \bigcap_m G_m$ for a ML-test $\langle G_m \rangle$ relative to X.

- \blacktriangleright If Z is ML-random in X we are done.
- ▶ Else $Z \in \bigcap_m G_m$ for a ML-test $\langle G_m \rangle$ relative to X.
- ▶ Let $f(m) = \mu s.Z \in G_{m,s}$. Then $f \leq_T Z \oplus X$, hence f exists in \mathcal{M} .

- \blacktriangleright If Z is ML-random in X we are done.
- ▶ Else $Z \in \bigcap_m G_m$ for a ML-test $\langle G_m \rangle$ relative to X.
- ▶ Let $f(m) = \mu s.Z \in G_{m,s}$. Then $f \leq_T Z \oplus X$, hence f exists in \mathcal{M} .
- ▶ There is no function $g \leq_T X$ such that $f(k) \leq g(k)$ for infinitely many k (else $S_m = \bigcup_{k>m} G_{k,g(k)}$ defines a Schnorr test relative X that captures Z).

- \blacktriangleright If Z is ML-random in X we are done.
- ▶ Else $Z \in \bigcap_m G_m$ for a ML-test $\langle G_m \rangle$ relative to X.
- ▶ Let $f(m) = \mu s.Z \in G_{m,s}$. Then $f \leq_T Z \oplus X$, hence f exists in \mathcal{M} .
- ▶ There is no function $g \leq_T X$ such that $f(k) \leq g(k)$ for infinitely many k (else $S_m = \bigcup_{k>m} G_{k,g(k)}$ defines a Schnorr test relative X that captures Z).
- ▶ Use f to build a martingale L that dominates all X-computable martingales. Let Y be a set on which L does not succeed.

- \blacktriangleright If Z is ML-random in X we are done.
- ▶ Else $Z \in \bigcap_m G_m$ for a ML-test $\langle G_m \rangle$ relative to X.
- ▶ Let $f(m) = \mu s.Z \in G_{m,s}$. Then $f \leq_T Z \oplus X$, hence f exists in \mathcal{M} .
- ▶ There is no function $g \leq_T X$ such that $f(k) \leq g(k)$ for infinitely many k (else $S_m = \bigcup_{k>m} G_{k,g(k)}$ defines a Schnorr test relative X that captures Z).
- ▶ Use f to build a martingale L that dominates all X-computable martingales. Let Y be a set on which L does not succeed.

W2Rand₀ $\not\vdash$ **2Rand** shown by an ω -model

- ightharpoonup Take a weakly 2-random Z that does not compute a 2-random.
 - For instance, a 2-random is not computably dominated. Any computably dominated ML-random Z is weakly 2-random and hence does not compute a 2-random.
- ▶ For each n let Z_n be the n-th column of Z, that is, $Z_n = \{k \colon \langle k, n \rangle \in Z\}.$
- ▶ Let $\mathcal{M} = (\omega, \mathcal{S})$ where \mathcal{S} consists of all the sets Turing below the join of finitely many columns of Z.
- ▶ Z_n is weakly 2-random in any finite sum of columns not containing Z_n . So \mathcal{M} is a model of W2Rand₀.

Notions slightly stronger than MLR

An h-Demuth test for computable function h is an effective sequence $\langle \mathcal{U}_n \rangle$ of effectively open (Σ_1^0) subsets of Cantor space such that:

- ▶ For all n, the measure $\lambda(\mathcal{U}_n)$ of \mathcal{U}_n is bounded by 2^{-n}
- ▶ there is an h-c.e. function mapping n to a Σ_1^0 index for \mathcal{U}_n .

A set Z is h-weakly Demuth random if $Z \notin \bigcap_n \mathcal{U}_n$ for every h-Demuth test. Z is balanced random if Z is $O(2^n)$ weakly Demuth random.

Proposition (Figueira et al. 2015)

Let $Z = Z_0 \oplus Z_1$ be ML-random. Then Z_0 or Z_1 is balanced random.

So MLR_0 + sufficient induction \vdash BalancedRd.

$\mathsf{WKL}_0 \not\vdash 2^{n \log \log n} - \mathsf{weakDemRd} \ \mathrm{via} \ \omega\text{-model}$

Definition

For a computable function h, we say that a set Z is h-c.e. if there is a computable approximation such that $Z \upharpoonright n$ changes at most h(n) times.

Proposition (Shafer and N.)

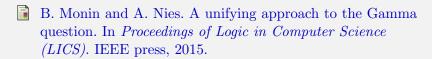
There is an ω -model \mathcal{M} of WKL such that each set of \mathcal{M} is superlow and k^n -c.e. for some $k \in \mathbb{N}$.

- \blacktriangleright An h-c.e. set is not h-weak Demuth random.
- ▶ So \mathcal{M} satisfies WKL₀, but not the axiom for weak h-Demuth randomness, for any function h dominating all the functions k^n (e.g. $h(n) = 2^{n \log \log n}$).

References

J. Brendle, A. Brooke-Taylor, Keng Meng Ng, and A. Nies.

An analogy between cardinal characteristics and highness properties of oracles. In *Proceedings of the 13th Asian Logic Conference: Guangzhou, China*, pages 1–28. World Scientific, 2013. http://arxiv.org/abs/1404.2839.



A. Nies (editor). Logic Blog 2013.

Available at http://arxiv.org/abs/1403.5719, 2013.

A. Nies (editor). Logic Blog 2015.

Available at http://arxiv.org/abs/1602.04432, 2015.