The Gamma question

Benoit Monin

LACL Université Paris-Est Créteil

PARIS-EST CRÉTEIL VAL DE MARNE

23 June 2016

Connaissance - Action

Given a set $A \subseteq \mathbb{N}$. How close is A to being computable?

A recent paradigm : A is coarsely computable. This means there is a computable set R such that the asymptotic density of

$$\{n: A(n) = R(n)\}$$

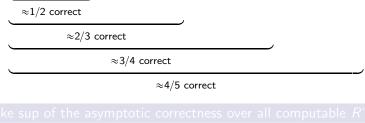
equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of Mathematical Logic, 13, No. 2 (2013)

The γ -value of a set $A \subseteq \mathbb{N}$

A computable set R tries to approximate a complicated set A :

- A : 100100100100 000101001001 010101111010 101010101111
- $R: \underbrace{000010110111}_{010101000101} 0100001010101010101010101111$



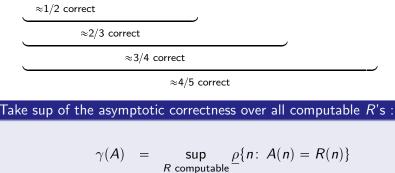
$$\gamma(A) = \sup_{\substack{R \text{ computable} \\ n \text{ of } n}} \underline{\rho}\{n \colon A(n) = R(n)\}$$

where $\underline{\rho}(Z) = \liminf_{n} \frac{|Z \cap [0, n)|}{n}.$

The γ -value of a set $A \subseteq \mathbb{N}$

A computable set R tries to approximate a complicated set A :

- A : 100100100100 000101001001 010101111010 10101010111
- $R: \underbrace{000010110111}_{010101000101} 0100001010101010101010101111$



where
$$\underline{\rho}(Z) = \liminf_{n} \frac{|Z \cap [0, n)|}{n}$$
.

Recall

$$\begin{split} \gamma(A) &= \sup_{\substack{R \text{ computable}}} \underline{\rho}\{n: A(n) = R(n)\}\\ \text{where } \underline{\rho}(Z) &= \liminf_{n} \frac{|Z \cap [0, n)|}{n}. \end{split}$$

Some possible values

$$\begin{array}{rcl} A \, {\rm computable} & \Rightarrow & \gamma(A) = 1 \\ A \, {\rm random} & \Rightarrow & \gamma(A) = 1/2. \end{array}$$

Γ-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked at Turing degrees, rather than sets. They defined

 $\Gamma(A) = \inf\{\gamma(B): B \text{ has the same Turing degree as } A\}$

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that A computes is below a computable function. *They show :*

- If A is random and computably dominated, then $\Gamma(A) = 1/2$.
- If A is not computably dominated then $\Gamma(A) = 0$.

$\Gamma(A) > 1/2$ implies $\Gamma(A) = 1$

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

If $\Gamma(A) > 1/2$ then A is computable (so that $\Gamma(A) = 1$).

The idea is to obtain B of the same Turing degree as A by "padding":

- "Stretch" the value A(n) over the whole interval $I_n = [(n-1)!, n!)$.
- Since γ(B) > 1/2 there is a computable R agreeing with B on more than half of the bits in almost every interval I_n.
- So for almost all *n*, the bit A(n) equals the majority of values R(k) where $k \in I_n$.

The **F**-question

Question (Γ -question, Andrews et al., 2013)

Is there a set $A \subseteq \mathbb{N}$ such that $0 < \Gamma(A) < 1/2$?

• ????????? •
$$\times \times \times \times \times \times \times$$
 •
 $\Gamma = 0$ $\Gamma = 1/2$ $\Gamma = 1$

Theorem

Let
$$A \in 2^{\mathbb{N}}$$
. If $\Gamma(A) < 1/2$ then $\Gamma(A) = 0$.

The proof uses the field of error-correcting codes.

Examples of $\Gamma(A) = 0$: infinitely often equal

We know that $A \subseteq \mathbb{N}$ not computably dominated implies $\Gamma(A) = 0$.

- We say $g : \mathbb{N} \to \mathbb{N}$ is infinitely often equal (i.o.e.) if $\exists^{\infty} n f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.
- We say that $A \subseteq \mathbb{N}$ is i.o.e. if A computes function g that is i.o.e.

Surprising fact : A is i.o.e \Leftrightarrow A not computably dominated.

 \Rightarrow Suppose A computes a function g that equals infinitely often to every computable function. Then no computable function bounds g.

 \leftarrow *Idea*. Suppose A computes a function g that is dominated by no computable function. Then g is infinitely often above the halting time of any computable total function.

New Examples of $\Gamma(A) = 0$: weaken infinitely often equal

We know A not computably dominated implies $\Gamma(A) = 0$.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.

We can weaken this :

Let $H: \mathbb{N} \to \mathbb{N}$ be computable. We say that A is *H*-infinitely often equal if A computes a function g such that $\exists^{\infty} n f(n) = g(n)$ for each computable function f bounded by H.

This appears to get harder for A the faster H grows.

A i.o.e. implies $\Gamma(A) = 0$

Let $H: \mathbb{N} \to \mathbb{N}$ be computable. We say that $A \subseteq \mathbb{N}$ is *H*-infinitely often equal if *A* computes a function *g* such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function *f* bounded by *H*.

Theorem (Monin, Nies)

Let A be $2^{(\alpha^n)}$ -i.o.e. for some $\alpha > 1$. Then $\Gamma(A) = 0$.

New example of $\Gamma(A) = 0$

Recall : A is H-infinitely often equal if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function f bounded by H.

Theorem

Let A be $2^{(\alpha^n)}$ -i.o.e. for some computable $\alpha > 1$. Then $\Gamma(A) = 0$.

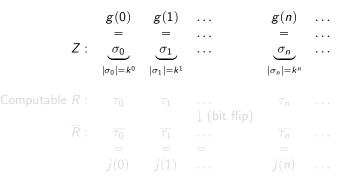
Proof sketch. First step : Let f be $2^{(\alpha^n)}$ -i.o.e. Then for any $k \in \mathbb{N}$, f computes a function g that is $2^{(k^n)}$ -i.o.e.

f(0) f(1) f(2) f(3) f(4) f(5) ... i.o.e. every comp. funct. $\leq 2^{(\alpha^n)}$

 $\rightarrow \qquad f(0)f(2)f(4)\dots \text{ i.o.e. every comp. funct. } \leqslant n \mapsto 2^{(\alpha^{2n})} \\ \text{or } f(1)f(3)f(5)\dots \text{ i.o.e. every comp. funct. } \leqslant n \mapsto 2^{(\alpha^{2n+1})}$

Iterating this $\rightarrow f \ge_T g$ which i.o.e. every comp. funct. $\le 2^{(k^n)}$

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g \ge_T Z$ with $\Gamma(Z) \le 1/k$.

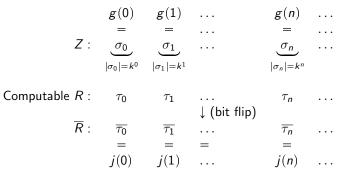


j equals *g* infinitely often. Then for infinitely many *n*, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \ge (k-1) \sum_{i < n} |\tau_i|$$

Then the lim inf of fraction of places where R agrees with Z is bounded by 1/k.

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g \ge_T Z$ with $\Gamma(Z) \le 1/k$.



j equals *g* infinitely often. Then for infinitely many *n*, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \ge (k-1)\sum_{i< n} |\tau_i|$$

Then the liminf of fraction of places where R agrees with Z is bounded by 1/k.

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g \ge_T Z$ with $\Gamma(Z) \le 1/k$.

j equals *g* infinitely often. Then for infinitely many *n*, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \ge (k-1)\sum_{i< n} |\tau_i|$$

Then the lim inf of fraction of places where R agrees with Z is bounded by 1/k.

Theorem

Let $X \in \mathbb{N}$. Suppose that for every $k \in \mathbb{N}$ and every X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, there is a computable sequence $\{\sigma_n\}_{n \in \mathbb{N}}$ with $|\sigma_n| = |\tau_n|$ such that for almost every n, σ_n agrees with τ_n on a fraction of at least α bits.

Then $\Gamma(X) \ge \alpha$.

Idea : The length of the *n*-th string equals $2^{1/k} - 1$ times the sum of the length of the previous strings. For *c* as large as we want, let *k* be large enough so that $2^{1/k} - 1 < 1/c$.

For $Y \leq_{\mathcal{T}} X$, we split Y in strings $\{\tau_n\}_{n \in \mathbb{N}}$ of length $2^{n/k}$. The computable sequence $\{\sigma_n\}_{n \in \mathbb{N}}$ given above implies $\gamma(Y) \ge \frac{\alpha}{1+1/c}$.

If this is true for every c we have $\gamma(Y) \ge \alpha$. If this is true for every $Y \le_T X$ we have $\Gamma(X) \ge \alpha$.

Theorem

Let $X \in \mathbb{N}$. Suppose that for every $k \in \mathbb{N}$ and every X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, there is a computable sequence $\{\sigma_n\}_{n \in \mathbb{N}}$ with $|\sigma_n| = |\tau_n|$ such that for almost every n, σ_n agrees with τ_n on a fraction of at least α bits.

Then $\Gamma(X) \ge \alpha$.

Idea : The length of the *n*-th string equals $2^{1/k} - 1$ times the sum of the length of the previous strings. For *c* as large as we want, let *k* be large enough so that $2^{1/k} - 1 < 1/c$.

For $Y \leq_{\mathcal{T}} X$, we split Y in strings $\{\tau_n\}_{n \in \mathbb{N}}$ of length $2^{n/k}$. The computable sequence $\{\sigma_n\}_{n \in \mathbb{N}}$ given above implies $\gamma(Y) \ge \frac{\alpha}{1+1/c}$.

If this is true for every c we have $\gamma(Y) \ge \alpha$. If this is true for every $Y \le_T X$ we have $\Gamma(X) \ge \alpha$.

Suppose $\Gamma(X) < 1/2 - \varepsilon$. Then there is $k \in \mathbb{N}$ and an X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, such that :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n| = |\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at most $1/2 - \varepsilon$ bits.

By taking the bitwise complement of every such computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ we get :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n| = |\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at least $1/2 + \varepsilon$ bits.

Suppose $\Gamma(X) < 1/2 - \varepsilon$. Then there is $k \in \mathbb{N}$ and an X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, such that :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n| = |\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at most $1/2 - \varepsilon$ bits.

By taking the bitwise complement of every such computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ we get :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n| = |\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at least $1/2 + \varepsilon$ bits.

The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We use an injection $\Phi : 2^m \to 2^n$ for n > m in such a way that the strings in the range of Φ are pairwise as far as possible.

If δ is the smallest relative Hamming distance between two strings in the range of Φ , we can correct up to a fraction of $\delta/2$ errors.

We cannot in general correct more than a ratio of 1/4 of errors. To go beyond we need to use List decoding :

Theorem (List decoding theorem)

Let $\varepsilon > 0$ and $n \in \mathbb{N}$. For $L \in \mathbb{N}$ sufficiently large and $\beta > 0$ sufficiently small, there exists a set C of $2^{\beta n}$ many strings of length n such that :

For any string σ of length n, there are at most L elements τ of C such that σ agrees with τ on a fraction of bits of at least $1/2 + \varepsilon$.

The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We use an injection $\Phi : 2^m \to 2^n$ for n > m in such a way that the strings in the range of Φ are pairwise as far as possible.

If δ is the smallest relative Hamming distance between two strings in the range of Φ , we can correct up to a fraction of $\delta/2$ errors.

We cannot in general correct more than a ratio of 1/4 of errors. To go beyond we need to use List decoding :

Theorem (List decoding theorem)

Let $\varepsilon > 0$ and $n \in \mathbb{N}$. For $L \in \mathbb{N}$ sufficiently large and $\beta > 0$ sufficiently small, there exists a set C of $2^{\beta n}$ many strings of length n such that :

For any string σ of length n, there are at most L elements τ of C such that σ agrees with τ on a fraction of bits of at least $1/2 + \varepsilon$.

Suppose $\Gamma(X) < 1/2 - \varepsilon$.

Then there is $k \in \mathbb{N}$ and an X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, such that :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n| = |\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at least $1/2 + \varepsilon$ bits.

For any *n* we compute a sequence C_n of $2^{(\beta 2^{n/k})}$ many strings of length $2^{n/k}$ such that any string σ of length $2^{n/k}$ agrees with at most *L* elements of C_n on a fraction of at least $1/2 + \varepsilon$ bits.

From $\{\tau_n\}_{n\in\mathbb{N}}$, we compute the sequence $\{D_n\}_{n\in\mathbb{N}}$ of all the strings of length $\beta 2^{n/k}$ whose code in C_n agrees with τ_n on more than $1/2 + \varepsilon$ bits. We have $|D_n| \leq L$ for every n.

Claim : For every computable function g bounded by $2^{(\beta 2^{n/k})}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

Suppose $\Gamma(X) < 1/2 - \varepsilon$.

Then there is $k \in \mathbb{N}$ and an X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, such that :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n| = |\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at least $1/2 + \varepsilon$ bits.

For any *n* we compute a sequence C_n of $2^{(\beta 2^{n/k})}$ many strings of length $2^{n/k}$ such that any string σ of length $2^{n/k}$ agrees with at most *L* elements of C_n on a fraction of at least $1/2 + \varepsilon$ bits.

From $\{\tau_n\}_{n\in\mathbb{N}}$, we compute the sequence $\{D_n\}_{n\in\mathbb{N}}$ of all the strings of length $\beta 2^{n/k}$ whose code in C_n agrees with τ_n on more than $1/2 + \varepsilon$ bits. We have $|D_n| \leq L$ for every n.

Claim : For every computable function g bounded by $2^{(\beta 2^{n/k})}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

Suppose $\Gamma(X) < 1/2 - \varepsilon$. Then there is an X-computable sequence $\{D_n\}_{n \in \mathbb{N}}$ where D_n contains at most L strings of length $\beta 2^{n/k}$ and such that : For every computable function g bounded by $2^{(\beta 2^{n/k})}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

From this we compute : An X-computable sequence $\{D_n\}_{n\in\mathbb{N}}$ where D_n contains at most L strings of length $L2^n$ and such that : For every computable function g bounded by $2^{(L2^n)}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

We see the *i*-th element σ_i of D_n as an *L*-uplet $\langle \sigma_i^1, \ldots, \sigma_i^L \rangle$. Let h_i be the function which to *n* gives σ_i^i where σ_i is the *i*-th string of D_n .

At least one h_i must be $2^{(2^n)}$ -i.o.e., which concludes the proof.

Suppose $\Gamma(X) < 1/2 - \varepsilon$. Then there is an X-computable sequence $\{D_n\}_{n \in \mathbb{N}}$ where D_n contains at most L strings of length $\beta 2^{n/k}$ and such that : For every computable function g bounded by $2^{(\beta 2^{n/k})}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

From this we compute : An X-computable sequence $\{D_n\}_{n\in\mathbb{N}}$ where D_n contains at most L strings of length $L2^n$ and such that : For every computable function g bounded by $2^{(L2^n)}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

We see the *i*-th element σ_i of D_n as an *L*-uplet $\langle \sigma_i^1, \ldots, \sigma_i^L \rangle$. Let h_i be the function which to *n* gives σ_i^i where σ_i is the *i*-th string of D_n .

At least one h_i must be $2^{(2^n)}$ -i.o.e., which concludes the proof.

Suppose $\Gamma(X) < 1/2 - \varepsilon$. Then there is an X-computable sequence $\{D_n\}_{n \in \mathbb{N}}$ where D_n contains at most L strings of length $\beta 2^{n/k}$ and such that : For every computable function g bounded by $2^{(\beta 2^{n/k})}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

From this we compute : An X-computable sequence $\{D_n\}_{n\in\mathbb{N}}$ where D_n contains at most L strings of length $L2^n$ and such that : For every computable function g bounded by $2^{(L2^n)}$, there are infinitely many n such that $g(n) \in D_n$ (seen as a binary string).

We see the *i*-th element σ_i of D_n as an *L*-uplet $\langle \sigma_i^1, \ldots, \sigma_i^L \rangle$. Let h_i be the function which to *n* gives σ_i^i where σ_i is the *i*-th string of D_n .

At least one h_i must be $2^{(2^n)}$ -i.o.e., which concludes the proof.