
The Gamma question

Benoit Monin

LACL
Université Paris-Est Créteil

23 June 2016

Coarse computability

Given a set A � N. How close is A to being computable ?

A recent paradigm : A is coarsely computable. This means there is
a computable set R such that the asymptotic density of

tn : Apnq � Rpnqu

equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of

Mathematical Logic, 13, No. 2 (2013)

The γ-value of a set A � N
A computable set R tries to approximate a complicated set A :

A : 100100100100 000101001001 010101111010 101010100111
R : 000010110111loooooooooooooooooon

�1{2 correct

010101000101

loooooooooooooooooooooooooooooooooooooon

�2{3 correct

010001011010

loon

�3{4 correct

101010100111

loon

�4{5 correct

Take sup of the asymptotic correctness over all computable R’s :

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZ q � lim inf
n

|Z X r0, nq|

n
.

The γ-value of a set A � N
A computable set R tries to approximate a complicated set A :

A : 100100100100 000101001001 010101111010 101010100111
R : 000010110111loooooooooooooooooon

�1{2 correct

010101000101

loooooooooooooooooooooooooooooooooooooon

�2{3 correct

010001011010

loon

�3{4 correct

101010100111

loon

�4{5 correct

Take sup of the asymptotic correctness over all computable R’s :

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZ q � lim inf
n

|Z X r0, nq|

n
.

Some examples of values γpAq

Recall

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZ q � lim inf
n

|Z X r0, nq|

n
.

Some possible values

A computable ñ γpAq � 1

A random ñ γpAq � 1{2.

Γ-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked
at Turing degrees, rather than sets. They defined

ΓpAq � inftγpBq : B has the same Turing degree asAu

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show :

If A is random and computably dominated, then ΓpAq � 1{2.

If A is not computably dominated then ΓpAq � 0.

ΓpAq ¡ 1{2 implies ΓpAq � 1

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

If ΓpAq ¡ 1{2 then A is computable (so that ΓpAq � 1).

The idea is to obtain B of the same Turing degree as A by
“padding” :

“Stretch” the value Apnq over the whole interval
In � rpn � 1q!, n!q.

Since γpBq ¡ 1{2 there is a computable R agreeing with B on
more than half of the bits in almost every interval In.

So for almost all n, the bit Apnq equals the majority of values
Rpkq where k P In.

The Γ-question

Question (Γ-question, Andrews et al., 2013)

Is there a set A � N such that 0 ΓpAq 1{2 ?

 ? ? ? ? ? ? ? ? ? ? � ������
Γ � 0 Γ � 1{2 Γ � 1

Theorem

Let A P 2N. If ΓpAq 1{2 then ΓpAq � 0.

The proof uses the field of error-correcting codes.

Examples of ΓpAq � 0 : infinitely often equal

We know that A � N not computably dominated implies ΓpAq � 0.

We say g : NÑ N is infinitely often equal (i.o.e.) if
D8n f pnq � gpnq for each computable function f : NÑ N.

We say that A � N is i.o.e. if A computes function g that is i.o.e.

Surprising fact : A is i.o.e ô A not computably dominated.

ñ Suppose A computes a function g that equals infinitely often to every
computable function. Then no computable function bounds g .

ð Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time of
any computable total function.

New Examples of ΓpAq � 0 : weaken infinitely often equal

We know A not computably dominated implies ΓpAq � 0.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function g
such that D8n f pnq � gpnq for each computable function f : NÑ N.

We can weaken this :

Let H : NÑ N be computable. We say that A is H-infinitely often equal if
A computes a function g such that D8n f pnq � gpnq for each computable
function f bounded by H.

This appears to get harder for A the faster H grows.

A i.o.e. implies ΓpAq � 0

Let H : N Ñ N be computable. We say that A � N is H-infinitely often

equal if A computes a function g such that D8n f pnq � gpnq for each

computable function f bounded by H.

Theorem (Monin, Nies)

Let A be 2pα
nq-i.o.e. for some α ¡ 1. Then ΓpAq � 0.

New example of ΓpAq � 0

Recall : A is H-infinitely often equal if A computes a function g such that

D8n f pnq � gpnq for each computable function f bounded by H.

Theorem

Let A be 2pα
nq-i.o.e. for some computable α ¡ 1. Then ΓpAq � 0.

Proof sketch. First step : Let f be 2pα
nq-i.o.e. Then for any k P N, f

computes a function g that is 2pk
nq-i.o.e.

f(0) f(1) f(2) f(3) f(4) f(5) . . . i.o.e. every comp. funct. ¤ 2pα
nq

Ñ f p0qf p2qf p4q . . . i.o.e. every comp. funct. ¤ n ÞÑ 2pα
2nq

or f p1qf p3qf p5q . . . i.o.e. every comp. funct. ¤ n ÞÑ 2pα
2n�1q

Iterating this Ñ f ¥T g which i.o.e. every comp. funct. ¤ 2pk
nq

Proof sketch. Second step : g is 2pk
nq-i.o.e. implies g ¥T Z with

ΓpZ q ¤ 1{k .

gp0q gp1q . . . gpnq . . .
� � . . . � . . .

Z : σ0loooon
|σ0|�k0

σ1loooon
|σ1|�k1

. . . σnloooon
|σn|�kn

. . .

Computable R : τ0 τ1 . . . τn . . .
Ó (bit flip)

R : τ0 τ1 . . . τn . . .
� � � �
jp0q jp1q . . . jpnq . . .

j equals g infinitely often. Then for infinitely many n, τnpiq � σnpiq
everywhere. We have

|τn| ¥ pk � 1q
¸

i n

|τi |

Then the lim inf of fraction of places where R agrees with Z is bounded
by 1{k.

Proof sketch. Second step : g is 2pk
nq-i.o.e. implies g ¥T Z with

ΓpZ q ¤ 1{k .

gp0q gp1q . . . gpnq . . .
� � . . . � . . .

Z : σ0loooon
|σ0|�k0

σ1loooon
|σ1|�k1

. . . σnloooon
|σn|�kn

. . .

Computable R : τ0 τ1 . . . τn . . .
Ó (bit flip)

R : τ0 τ1 . . . τn . . .
� � � �
jp0q jp1q . . . jpnq . . .

j equals g infinitely often. Then for infinitely many n, τnpiq � σnpiq
everywhere. We have

|τn| ¥ pk � 1q
¸

i n

|τi |

Then the lim inf of fraction of places where R agrees with Z is bounded
by 1{k.

Proof sketch. Second step : g is 2pk
nq-i.o.e. implies g ¥T Z with

ΓpZ q ¤ 1{k .

gp0q gp1q . . . gpnq . . .
� � . . . � . . .

Z : σ0loooon
|σ0|�k0

σ1loooon
|σ1|�k1

. . . σnloooon
|σn|�kn

. . .

Computable R : τ0 τ1 . . . τn . . .
Ó (bit flip)

R : τ0 τ1 . . . τn . . .
� � � �
jp0q jp1q . . . jpnq . . .

j equals g infinitely often. Then for infinitely many n, τnpiq � σnpiq
everywhere. We have

|τn| ¥ pk � 1q
¸

i n

|τi |

Then the lim inf of fraction of places where R agrees with Z is bounded
by 1{k.

Nothing between 0 and 1{2

Theorem

Let X P N. Suppose that for every k P N and every X -computable
sequence tτnunPN with |τn| � 2n{k ,
there is a computable sequence tσnunPN with |σn| � |τn| such that
for almost every n, σn agrees with τn on a fraction of at least α
bits.
Then ΓpX q ¥ α.

Idea : The length of the n-th string equals 21{k � 1 times the sum
of the length of the previous strings. For c as large as we want, let
k be large enough so that 21{k � 1 1{c .

For Y ¤T X , we split Y in strings tτnunPN of length 2n{k . The
computable sequence tσnunPN given above implies γpY q ¥ α

1�1{c .

If this is true for every c we have γpY q ¥ α. If this is true for every
Y ¤T X we have ΓpX q ¥ α.

Nothing between 0 and 1{2

Theorem

Let X P N. Suppose that for every k P N and every X -computable
sequence tτnunPN with |τn| � 2n{k ,
there is a computable sequence tσnunPN with |σn| � |τn| such that
for almost every n, σn agrees with τn on a fraction of at least α
bits.
Then ΓpX q ¥ α.

Idea : The length of the n-th string equals 21{k � 1 times the sum
of the length of the previous strings. For c as large as we want, let
k be large enough so that 21{k � 1 1{c .

For Y ¤T X , we split Y in strings tτnunPN of length 2n{k . The
computable sequence tσnunPN given above implies γpY q ¥ α

1�1{c .

If this is true for every c we have γpY q ¥ α. If this is true for every
Y ¤T X we have ΓpX q ¥ α.

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is k P N and an X -computable sequence tτnunPN with
|τn| � 2n{k , such that :

For every computable sequence tσnunPN with |σn| � |τn|, there are
infinitely many n such that σn agrees with τn on a fraction of at
most 1{2 � ε bits.

By taking the bitwise complement of every such computable se-
quence tσnunPN we get :

For every computable sequence tσnunPN with |σn| � |τn|, there are
infinitely many n such that σn agrees with τn on a fraction of at
least 1{2 � ε bits.

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is k P N and an X -computable sequence tτnunPN with
|τn| � 2n{k , such that :

For every computable sequence tσnunPN with |σn| � |τn|, there are
infinitely many n such that σn agrees with τn on a fraction of at
most 1{2 � ε bits.

By taking the bitwise complement of every such computable se-
quence tσnunPN we get :

For every computable sequence tσnunPN with |σn| � |τn|, there are
infinitely many n such that σn agrees with τn on a fraction of at
least 1{2 � ε bits.

The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We
use an injection Φ : 2m Ñ 2n for n ¡ m in such a way that the
strings in the range of Φ are pairwise as far as possible.

If δ is the smallest relative Hamming distance between two strings
in the range of Φ, we can correct up to a fraction of δ{2 errors.

We cannot in general correct more than a ratio of 1{4 of errors. To
go beyond we need to use List decoding :

Theorem (List decoding theorem)

Let ε ¡ 0 and n P N . For L P N sufficiently large and β ¡ 0
sufficiently small, there exists a set C of 2βn many strings of length
n such that :
For any string σ of length n, there are at most L elements τ of C
such that σ agrees with τ on a fraction of bits of at least 1{2 � ε.

The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We
use an injection Φ : 2m Ñ 2n for n ¡ m in such a way that the
strings in the range of Φ are pairwise as far as possible.

If δ is the smallest relative Hamming distance between two strings
in the range of Φ, we can correct up to a fraction of δ{2 errors.

We cannot in general correct more than a ratio of 1{4 of errors. To
go beyond we need to use List decoding :

Theorem (List decoding theorem)

Let ε ¡ 0 and n P N . For L P N sufficiently large and β ¡ 0
sufficiently small, there exists a set C of 2βn many strings of length
n such that :
For any string σ of length n, there are at most L elements τ of C
such that σ agrees with τ on a fraction of bits of at least 1{2 � ε.

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is k P N and an X -computable sequence tτnunPN with
|τn| � 2n{k , such that :
For every computable sequence tσnunPN with |σn| � |τn|, there are
infinitely many n such that σn agrees with τn on a fraction of at
least 1{2 � ε bits.

For any n we compute a sequence Cn of 2pβ2n{k q many strings of
length 2n{k such that any string σ of length 2n{k agrees with at
most L elements of Cn on a fraction of at least 1{2 � ε bits.

From tτnunPN, we compute the sequence tDnunPN of all the strings of
length β2n{k whose code in Cn agrees with τn on more than 1{2� ε
bits. We have |Dn| ¤ L for every n.

Claim : For every computable function g bounded by 2pβ2n{k q, there
are infinitely many n such that gpnq P Dn (seen as a binary string).

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is k P N and an X -computable sequence tτnunPN with
|τn| � 2n{k , such that :
For every computable sequence tσnunPN with |σn| � |τn|, there are
infinitely many n such that σn agrees with τn on a fraction of at
least 1{2 � ε bits.

For any n we compute a sequence Cn of 2pβ2n{k q many strings of
length 2n{k such that any string σ of length 2n{k agrees with at
most L elements of Cn on a fraction of at least 1{2 � ε bits.

From tτnunPN, we compute the sequence tDnunPN of all the strings of
length β2n{k whose code in Cn agrees with τn on more than 1{2� ε
bits. We have |Dn| ¤ L for every n.

Claim : For every computable function g bounded by 2pβ2n{k q, there
are infinitely many n such that gpnq P Dn (seen as a binary string).

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is an X -computable sequence tDnunPN where Dn

contains at most L strings of length β2n{k and such that :
For every computable function g bounded by 2pβ2n{k q, there are in-
finitely many n such that gpnq P Dn (seen as a binary string).

From this we compute :
An X -computable sequence tDnunPN where Dn contains at most L
strings of length L2n and such that :
For every computable function g bounded by 2pL2nq, there are infi-
nitely many n such that gpnq P Dn (seen as a binary string).

We see the i-th element σi of Dn as an L-uplet xσ1
i , . . . , σ

L
i y. Let

hi be the function which to n gives σii where σi is the i-th string of
Dn.

At least one hi must be 2p2
nq-i.o.e., which concludes the proof.

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is an X -computable sequence tDnunPN where Dn

contains at most L strings of length β2n{k and such that :
For every computable function g bounded by 2pβ2n{k q, there are in-
finitely many n such that gpnq P Dn (seen as a binary string).

From this we compute :
An X -computable sequence tDnunPN where Dn contains at most L
strings of length L2n and such that :
For every computable function g bounded by 2pL2nq, there are infi-
nitely many n such that gpnq P Dn (seen as a binary string).

We see the i-th element σi of Dn as an L-uplet xσ1
i , . . . , σ

L
i y. Let

hi be the function which to n gives σii where σi is the i-th string of
Dn.

At least one hi must be 2p2
nq-i.o.e., which concludes the proof.

Nothing between 0 and 1{2

Suppose ΓpX q 1{2 � ε.
Then there is an X -computable sequence tDnunPN where Dn

contains at most L strings of length β2n{k and such that :
For every computable function g bounded by 2pβ2n{k q, there are in-
finitely many n such that gpnq P Dn (seen as a binary string).

From this we compute :
An X -computable sequence tDnunPN where Dn contains at most L
strings of length L2n and such that :
For every computable function g bounded by 2pL2nq, there are infi-
nitely many n such that gpnq P Dn (seen as a binary string).

We see the i-th element σi of Dn as an L-uplet xσ1
i , . . . , σ

L
i y. Let

hi be the function which to n gives σii where σi is the i-th string of
Dn.

At least one hi must be 2p2
nq-i.o.e., which concludes the proof.

	Intro
	Developppement

