On totally ω -c.e. degrees and complex left-c.e. reals

Martin Monath Joint work with Klaus Ambos-Spies and Nadine Losert

Universität Heidelberg

martin.monath @informatik.uni-heidelberg.de

24.07.2016

Background on array noncomputable sets and degrees

2 Statement of the theorem

• Reformulation of the Theorem

3 About maximal pairs

Idea of the proof

- First Main Lemma
- Second Main Lemma

5 Conclusion

In 1990, Downey, Jockusch and Stob introduced the array noncomputable (a.n.c.) sets and degrees [DJS90].

In 1990, Downey, Jockusch and Stob introduced the array noncomputable (a.n.c.) sets and degrees [DJS90].

Definition

A strong array is a sequence of finite sets $\mathcal{F} = \{F_n\}_{n\geq 0}$ such that there exists a computable function f such that $F_n = D_{f(n)}$. A very strong array $\{v.s.a.\}$ is strong array $\{F_n\}_{n\geq 0}$ with the F_n 's being pairwise disjoint and growing in size.

In 1990, Downey, Jockusch and Stob introduced the array noncomputable (a.n.c.) sets and degrees [DJS90].

Definition

A strong array is a sequence of finite sets $\mathcal{F} = \{F_n\}_{n\geq 0}$ such that there exists a computable function f such that $F_n = D_{f(n)}$. A very strong array (v.s.a.) is strong array $\{F_n\}_{n\geq 0}$ with the F_n 's being pairwise disjoint and growing in size.

Definition

Let $\mathcal{F} = \{F_n\}_{n \ge 0}$ be a v.s.a. A c.e. set A is called \mathcal{F} -array noncomputable $(\mathcal{F}$ -a.n.c.) if for all c.e. sets B,

 $\exists^{\infty} n \ (A \cap F_n = B \cap F_n).$

A is called array noncomputable (a.n.c.) if it is \mathcal{F} -a.n.c. for some v.s.a. \mathcal{F} .

Definition

A c.e. degree **a** is array noncomputable (a.n.c.) if it contains some c.e. a.n.c. set A.

A c.e. degree **a** is array noncomputable (a.n.c.) if it contains some c.e. a.n.c. set A.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A (take $A = \bigcup_{n \in \omega} W_n \cap F_n$).
- For every c.e. set A, there is a v.s.a. F such that A is not F-a.n.c. (for A noncomputable, take a computable infinite subset D of A and a v.s.a. F = {F_n}_{n≥0} such that ∀n D ∩ F_n ≠ Ø.

A c.e. degree **a** is array noncomputable (a.n.c.) if it contains some c.e. a.n.c. set A.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A (take $A = \bigcup_{n \in \omega} W_n \cap F_n$).
- For every c.e. set A, there is a v.s.a. F such that A is not F-a.n.c. (for A noncomputable, take a computable infinite subset D of A and a v.s.a. F = {F_n}_{n≥0} such that ∀n D ∩ F_n ≠ Ø. Then it holds that Ø ∩ F_n ≠ A ∩ F_n for all n.)

A c.e. degree **a** is array noncomputable (a.n.c.) if it contains some c.e. a.n.c. set A.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A (take $A = \bigcup_{n \in \omega} W_n \cap F_n$).
- For every c.e. set A, there is a v.s.a. F such that A is not F-a.n.c. (for A noncomputable, take a computable infinite subset D of A and a v.s.a. F = {F_n}_{n≥0} such that ∀n D ∩ F_n ≠ Ø. Then it holds that Ø ∩ F_n ≠ A ∩ F_n for all n.)
- Downey, Jockusch and Stob showed that the c.e. a.n.c. degrees are exactly the c.e. degrees that allow a certain kind of permitting, called *multiple permitting*.

A c.e. degree **a** is array noncomputable (a.n.c.) if it contains some c.e. a.n.c. set A.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A (take $A = \bigcup_{n \in \omega} W_n \cap F_n$).
- For every c.e. set A, there is a v.s.a. F such that A is not F-a.n.c. (for A noncomputable, take a computable infinite subset D of A and a v.s.a. F = {F_n}_{n≥0} such that ∀n D ∩ F_n ≠ Ø. Then it holds that Ø ∩ F_n ≠ A ∩ F_n for all n.)
- Downey, Jockusch and Stob showed that the c.e. a.n.c. degrees are exactly the c.e. degrees that allow a certain kind of permitting, called *multiple permitting*.

In simple A-permitting arguments where A is a (possibly given) c.e. set, enumeration of an element x into some c.e. set B (under construction) is conditional on a simultaneous enumeration of an element y into A such that y ≤ x. Note that this implies B ≤_T A.

- In simple A-permitting arguments where A is a (possibly given) c.e. set, enumeration of an element x into some c.e. set B (under construction) is conditional on a simultaneous enumeration of an element y into A such that y ≤ x. Note that this implies B ≤_T A.
- In multiple permitting arguments, at least one witness x is supposed to be permitted not only once, but f(x) many times for some computable function f.

- In simple A-permitting arguments where A is a (possibly given) c.e. set, enumeration of an element x into some c.e. set B (under construction) is conditional on a simultaneous enumeration of an element y into A such that y ≤ x. Note that this implies B ≤_T A.
- In multiple permitting arguments, at least one witness x is supposed to be permitted not only once, but f(x) many times for some computable function f.

An important example of a multiple permitting argument shown by Downey, Jokusch and Stob is that the choice of the v.s.a. \mathcal{F} in an a.n.c. degree is independent up to equivalence.

- In simple A-permitting arguments where A is a (possibly given) c.e. set, enumeration of an element x into some c.e. set B (under construction) is conditional on a simultaneous enumeration of an element y into A such that y ≤ x. Note that this implies B ≤_T A.
- In multiple permitting arguments, at least one witness x is supposed to be permitted not only once, but f(x) many times for some computable function f.

An important example of a multiple permitting argument shown by Downey, Jokusch and Stob is that the choice of the v.s.a. \mathcal{F} in an a.n.c. degree is independent up to equivalence.

Theorem (Downey, Jockusch, Stob)

Let \mathcal{F} and \mathcal{E} be very strong arrays and let A be c.e. and \mathcal{F} -a.n.c. Then there exists a \mathcal{E} -a.n.c. c.e. set $B \in deg(A)$.

Array-noncomputable and not totally ω -c.e. degrees

Array-noncomputable and not totally ω -c.e. degrees

Theorem (Downey, Jockusch, Stob)

The following are equivalent for a c.e. degree **a**.

- a is a.n.c.
- For every computable order h there exists a function g ≤_T a such that for all computable approximations {g_s}_{s≥0} of g, there exists x such that

$$|\{s: g_{s+1}(x) \neq g_s(x)\}| > h(x)$$

Array-noncomputable and not totally ω -c.e. degrees

Theorem (Downey, Jockusch, Stob)

The following are equivalent for a c.e. degree **a**.

- a is a.n.c.
- For every computable order h there exists a function g ≤_T a such that for all computable approximations {g_s}_{s≥0} of g, there exists x such that

$$|\{s: g_{s+1}(x) \neq g_s(x)\}| > h(x)$$

Definition

A degree **a** is not totally ω -c.e. if there exists a function $g \leq_T \mathbf{a}$ which is not ω -c.e., i.e., for all computable orders h and all computable approximations $\{g_s\}_{s\geq 0}$ of g, there exists x such that

$$|\{s: g_{s+1}(x) \neq g_s(x)\}| > h(x)$$

Theorem (Ambos-Spies, Losert, Monath)

For a c.e. degree **a**, the following are equivalent.

- **1 a** is not totally ω -c.e.
- ② There is a left-c.e. real A ∈ a such that A is not cl-reducible to any left-c.e. complex real.

(A left-c.e. real is complex if there exists a computable order h such that $C(A \upharpoonright n) \ge h(n)$.)

Theorem (Ambos-Spies, Losert, Monath)

For a c.e. degree **a**, the following are equivalent.

- **1 a** is not totally ω -c.e.
- ② There is a left-c.e. real A ∈ a such that A is not cl-reducible to any left-c.e. complex real.

(A left-c.e. real is complex if there exists a computable order h such that $C(A \upharpoonright n) \ge h(n)$.) This theorem proves a question by Greenberg which is related to the following characterization of a.n.c. degrees in [BDG10].

Theorem (Barmpalias, Downey, Greenberg)

For a c.e. degree **a**, the following are equivalent.

- a is a.n.c.
- There is a left-c.e. real A ∈ a which is not cl-reducible to any 1-random left-c.e. real.

Martin Monath (Institut für Informatik)

In the remainder of the talk, we describe the main steps how to prove the implication $(1) \Rightarrow (2)$. The proof is based on the following observations.

Proposition

For a left-c.e. real A, the following are equivalent.

- A is complex.
- A is wtt-hard, i.e., every c.e. set is wtt-reducible to A.

In the remainder of the talk, we describe the main steps how to prove the implication $(1) \Rightarrow (2)$. The proof is based on the following observations.

Proposition

For a left-c.e. real A, the following are equivalent.

- A is complex.
- A is wtt-hard, i.e., every c.e. set is wtt-reducible to A.

The proposition follows from the following facts.

In the remainder of the talk, we describe the main steps how to prove the implication $(1) \Rightarrow (2)$. The proof is based on the following observations.

Proposition

For a left-c.e. real A, the following are equivalent.

- A is complex.
- A is wtt-hard, i.e., every c.e. set is wtt-reducible to A.

The proposition follows from the following facts.

- By a theorem of Kanovich [DH10, Theorem 8.16.7], a c.e. set is complex if and only if it is *wtt*-complete.
- Every left-c.e. real is *wtt*-equivalent to a c.e. set.
- Complex sets are closed upwards under *wtt*-reductions.

Reformulation of the Theorem (2)

In order to further reformulate the Theorem, let us define the notion of a maximal pair of left-c.e. reals.

Definition

A maximal pair of left-c.e. reals (maximal pair for short) is a pair (A, B) of left-c.e. reals (A, B) such that there is no left-c.e. real C with $A \leq_{cl} C$ and $B \leq_{cl} C$.

In order to further reformulate the Theorem, let us define the notion of a maximal pair of left-c.e. reals.

Definition

A maximal pair of left-c.e. reals (maximal pair for short) is a pair (A, B) of left-c.e. reals (A, B) such that there is no left-c.e. real C with $A \leq_{cl} C$ and $B \leq_{cl} C$.

Proposition

For a left-c.e. real A, the following are equivalent.

- (i) A is not cl-reducible to any wtt-hard left-c.e. real.
- (ii) For any infinite, computable set D ⊆ ω, there is a c.e. set B ⊆ D such that (A, B) is a maximal pair of left-c.e. reals.

Martin Monath (Institut für Informatik)

Hence, what we actually show is the following.

Theorem

Let **a** be a c.e. and not totally ω -c.e. degree. Then there exists a left-c.e. real $A \in \mathbf{a}$ such that for every infinite computable set D, there exists a c.e. subset B of D such that (A, B) is a maximal pair in the left-c.e. reals.

In the following, we always refer to this theorem.

• The existence of maximal pairs: Yu and Ding [YD04].

- The existence of maximal pairs: Yu and Ding [YD04].
- Maximal pairs where one half is c.e.: Fan [Fan07].

- The existence of maximal pairs: Yu and Ding [YD04].
- Maximal pairs where one half is c.e.: Fan [Fan07].
- Every noncomputable left-c.e. real (even every Δ⁰₂ set!) is half of a maximal pair: Fan and Yu [FY11].

- The existence of maximal pairs: Yu and Ding [YD04].
- Maximal pairs where one half is c.e.: Fan [Fan07].
- Every noncomputable left-c.e. real (even every Δ⁰₂ set!) is half of a maximal pair: Fan and Yu [FY11].

We use a refined version of Fan's construction for the Theorem. As a first simple observation, it is easy to see that in Fan's construction, one can construct the c.e. half such that it is a subset of a given infinite, computable set D. Hence, we get the statement

- The existence of maximal pairs: Yu and Ding [YD04].
- Maximal pairs where one half is c.e.: Fan [Fan07].
- Every noncomputable left-c.e. real (even every Δ⁰₂ set!) is half of a maximal pair: Fan and Yu [FY11].

We use a refined version of Fan's construction for the Theorem. As a first simple observation, it is easy to see that in Fan's construction, one can construct the c.e. half such that it is a subset of a given infinite, computable set D. Hence, we get the statement

 $\forall D \text{ inf., comp. } \exists A \text{ left-c.e. } \exists B \subseteq D \text{ c.e. } ((A, B) \text{ is a maximal pair}).$

More on maximal pairs

However, what we need to prove is that for every c.e. not totally $\omega\text{-c.e.}$ degree $\mathbf{a},$

However, what we need to prove is that for every c.e. not totally ω -c.e. degree **a**,

 $\exists A \in \mathbf{a}$ left-c.e. $\forall D$ inf., comp. $\exists B \subseteq D$ c.e. ((A, B) is a maximal pair).

However, what we need to prove is that for every c.e. not totally ω -c.e. degree **a**,

 $\exists A \in \mathbf{a} \text{ left-c.e. } \forall D \text{ inf., comp. } \exists B \subseteq D \text{ c.e. } ((A, B) \text{ is a maximal pair}).$

The proof of the above statement is split in two parts.

• First, the existence of a left-c.e. real with a strong similarity property in any c.e. not totally ω -c.e. degree (which is related to the definition of \mathcal{F} -a.n.c. sets).

However, what we need to prove is that for every c.e. not totally ω -c.e. degree **a**,

 $\exists A \in \mathbf{a} \text{ left-c.e. } \forall D \text{ inf., comp. } \exists B \subseteq D \text{ c.e. } ((A, B) \text{ is a maximal pair}).$

The proof of the above statement is split in two parts.

- First, the existence of a left-c.e. real with a strong similarity property in any c.e. not totally ω -c.e. degree (which is related to the definition of \mathcal{F} -a.n.c. sets).
- Second, a maximal pair property which is satisfied for every left-c.e. real that has the above strong similarity property.

Martin Monath (Institut für Informatik)

Definition

A sequence $\mathcal{F} = \{F_n\}_{n \ge 0}$ is called a very strong array of intervals (v.s.a.i.) if \mathcal{F} is a v.s.a. and for every $n \ge 0$, F_n is an interval and max $F_n < \min F_{n+1}$.

Let $\mathcal{F} = \{F_n\}_{n \ge 0}$ be a v.s.a.i. Then two sets A and B are called \mathcal{F} -similar, denoted as $A \sim_{\mathcal{F}} B$, if

 $\exists^{\infty} n \ (A \cap F_n = B \cap F_n).$

In this notation, a c.e. set A is \mathcal{F} -a.n.c. for a v.s.a. if it is \mathcal{F} -similar to every c.e. set.

Let us consider the observations on a.n.c. sets from before.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A.
- For every c.e. set A, there is a v.s.a. \mathcal{F} such that A is not \mathcal{F} -a.n.c.

Let us consider the observations on a.n.c. sets from before.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A.
- For every c.e. set A, there is a v.s.a. \mathcal{F} such that A is not \mathcal{F} -a.n.c.

Are there an analogs in the setting of left-c.e. reals? At first sight, this seems impossible.

Let us consider the observations on a.n.c. sets from before.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A.
- For every c.e. set A, there is a v.s.a. \mathcal{F} such that A is not \mathcal{F} -a.n.c.

Are there an analogs in the setting of left-c.e. reals? At first sight, this seems impossible.

Theorem (Ambos-Spies, Fang, Losert, Merkle, Monath)

For every v.s.a.i. \mathcal{F} and every left-c.e. real A, there exists a left-c.e. real B such that $A \not\sim_{\mathcal{F}} B$.

Let us consider the observations on a.n.c. sets from before.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A.
- For every c.e. set A, there is a v.s.a. \mathcal{F} such that A is not \mathcal{F} -a.n.c.

Are there an analogs in the setting of left-c.e. reals? At first sight, this seems impossible.

Theorem (Ambos-Spies, Fang, Losert, Merkle, Monath)

For every v.s.a.i. \mathcal{F} and every left-c.e. real A, there exists a left-c.e. real B such that $A \not\sim_{\mathcal{F}} B$.

The important observation now is that we do not need A to be similar to *all* left-c.e. reals (on some v.a.s.i. \mathcal{F}), but to only those left-c.e. reals whose approximation is compatible with the F_n 's in the following sense.

Let us consider the observations on a.n.c. sets from before.

- For every v.s.a. $\mathcal{F} = \{F_n\}_{n \ge 0}$, there is an \mathcal{F} -a.n.c. c.e. set A.
- For every c.e. set A, there is a v.s.a. \mathcal{F} such that A is not \mathcal{F} -a.n.c.

Are there an analogs in the setting of left-c.e. reals? At first sight, this seems impossible.

Theorem (Ambos-Spies, Fang, Losert, Merkle, Monath)

For every v.s.a.i. \mathcal{F} and every left-c.e. real A, there exists a left-c.e. real B such that $A \not\sim_{\mathcal{F}} B$.

The important observation now is that we do not need A to be similar to *all* left-c.e. reals (on some v.a.s.i. \mathcal{F}), but to only those left-c.e. reals whose approximation is compatible with the F_n 's in the following sense.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is called \mathcal{F} -compatibly left-c.e. (\mathcal{F} -left-c.e.) if there exists a computable approximation $\{A_s\}_{s\geq 0}$ of A such that, for any $s \geq 0$ and $n \geq 0$, it holds that $A_s \cap F_n \leq_{lex} A_{s+1} \cap F_n$ and $A_s(x) \leq A_{s+1}(x)$ for any $x \notin \bigcup_{n\geq 0} F_n$.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is called \mathcal{F} -compatibly left-c.e. (\mathcal{F} -left-c.e.) if there exists a computable approximation $\{A_s\}_{s\geq 0}$ of A such that, for any $s \geq 0$ and $n \geq 0$, it holds that $A_s \cap F_n \leq_{lex} A_{s+1} \cap F_n$ and $A_s(x) \leq A_{s+1}(x)$ for any $x \notin \bigcup_{n\geq 0} F_n$.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is \mathcal{F} -array noncomputable w.r.t. to \mathcal{F} -left-c.e. reals (\mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals) if it is \mathcal{F} -similar to any \mathcal{F} -left-c.e. real B.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is called \mathcal{F} -compatibly left-c.e. (\mathcal{F} -left-c.e.) if there exists a computable approximation $\{A_s\}_{s\geq 0}$ of A such that, for any $s \geq 0$ and $n \geq 0$, it holds that $A_s \cap F_n \leq_{lex} A_{s+1} \cap F_n$ and $A_s(x) \leq A_{s+1}(x)$ for any $x \notin \bigcup_{n\geq 0} F_n$.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is \mathcal{F} -array noncomputable w.r.t. to \mathcal{F} -left-c.e. reals (\mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals) if it is \mathcal{F} -similar to any \mathcal{F} -left-c.e. real B.

As a first observation, we showed the following.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is called \mathcal{F} -compatibly left-c.e. (\mathcal{F} -left-c.e.) if there exists a computable approximation $\{A_s\}_{s\geq 0}$ of A such that, for any $s \geq 0$ and $n \geq 0$, it holds that $A_s \cap F_n \leq_{lex} A_{s+1} \cap F_n$ and $A_s(x) \leq A_{s+1}(x)$ for any $x \notin \bigcup_{n\geq 0} F_n$.

Definition

Let \mathcal{F} be a v.s.a.i. A real A is \mathcal{F} -array noncomputable w.r.t. to \mathcal{F} -left-c.e. reals (\mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals) if it is \mathcal{F} -similar to any \mathcal{F} -left-c.e. real B.

As a first observation, we showed the following.

Theorem (Ambos-Spies, Losert, Monath)

Let **a** be a c.e. a.n.c. degree. Then for every v.s.a.i. \mathcal{F} , there exists an \mathcal{F} -left-c.e. real $A \in \mathbf{a}$ which is \mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals.

Martin Monath (Institut für Informatik)

Totally ω -c.e. vs. complex

First Main Lemma

Definition

A left-c.e. real A has the universal similarity property, if it is \mathcal{F} -a.n.c w.r.t. to \mathcal{F} -left-c.e. reals for all v.s.a.i. \mathcal{F} .

Definition

A left-c.e. real A has the universal similarity property, if it is \mathcal{F} -a.n.c w.r.t. to \mathcal{F} -left-c.e. reals for all v.s.a.i. \mathcal{F} .

Lemma (First Main Lemma)

Let **a** be a c.e. Turing degree which is not totally ω -c.e. Then there exists a left-c.e. real $A \in \mathbf{a}$ which has the universal similarity property.

Note that the converse also holds.

Martin Monath (Institut für Informatik)

So far, we showed the existence of left-c.e. reals in c.e. not totally ω -c.e. degrees that have the universal similarity property. For the maximal pair property, we need the following observations.

So far, we showed the existence of left-c.e. reals in c.e. not totally ω -c.e. degrees that have the universal similarity property. For the maximal pair property, we need the following observations.

 In Fan's construction (as well as in Yu/Ding's construction) of a maximal pair, every requirement can be satisfied locally on a sufficiently large interval.

So far, we showed the existence of left-c.e. reals in c.e. not totally ω -c.e. degrees that have the universal similarity property. For the maximal pair property, we need the following observations.

- In Fan's construction (as well as in Yu/Ding's construction) of a maximal pair, every requirement can be satisfied locally on a sufficiently large interval.
- Moreover, the length of the interval needed to satisfy a requirement is computably bounded.

So far, we showed the existence of left-c.e. reals in c.e. not totally ω -c.e. degrees that have the universal similarity property. For the maximal pair property, we need the following observations.

- In Fan's construction (as well as in Yu/Ding's construction) of a maximal pair, every requirement can be satisfied locally on a sufficiently large interval.
- Moreover, the length of the interval needed to satisfy a requirement is computably bounded.
- This length-function only depends on the infinite, computable set *D*.

So far, we showed the existence of left-c.e. reals in c.e. not totally ω -c.e. degrees that have the universal similarity property. For the maximal pair property, we need the following observations.

- In Fan's construction (as well as in Yu/Ding's construction) of a maximal pair, every requirement can be satisfied locally on a sufficiently large interval.
- Moreover, the length of the interval needed to satisfy a requirement is computably bounded.
- This length-function only depends on the infinite, computable set *D*.

Lemma (Second Main Lemma)

Let D be an infinite computable set. There is a v.s.a.i. \mathcal{F} ($\mathcal{F} = \mathcal{F}_D$) such that for any left-c.e. real A which is \mathcal{F} -a.n.c. w.r.t. \mathcal{F} -left-c.e. reals, there exists a c.e. set $B \subseteq D$ such that (A, B) is a maximal pair in the left-c.e. reals.

Proof.

Martin Monath (Institut für Informatik)

Proof.

Let **a** be a c.e. not totally ω -c.e. degree.

Proof.

Let **a** be a c.e. not totally ω -c.e. degree.

 By the First Main Lemma, fix a left-c.e. real A ∈ a which has the universal similarity property, i.e., A is *F*-a.n.c. w.r.t. *F*-left-c.e. reals for all v.s.a.i. *F*.

Proof.

Let **a** be a c.e. not totally ω -c.e. degree.

- By the First Main Lemma, fix a left-c.e. real A ∈ a which has the universal similarity property, i.e., A is *F*-a.n.c. w.r.t. *F*-left-c.e. reals for all v.s.a.i. *F*.
- Let *D* be computable and infinite. By the Second Main Lemma, fix a v.s.a.i. *F* and a c.e. subset *B* of *D* such that every real *A'* which is *F*-a.n.c. w.r.t. *F*-left-c.e. reals forms a maximal pair together with *B*.

Proof.

Let **a** be a c.e. not totally ω -c.e. degree.

- By the First Main Lemma, fix a left-c.e. real A ∈ a which has the universal similarity property, i.e., A is *F*-a.n.c. w.r.t. *F*-left-c.e. reals for all v.s.a.i. *F*.
- Let *D* be computable and infinite. By the Second Main Lemma, fix a v.s.a.i. *F* and a c.e. subset *B* of *D* such that every real *A'* which is *F*-a.n.c. w.r.t. *F*-left-c.e. reals forms a maximal pair together with *B*.
- Since A is \mathcal{F} -a.n.c. w.r.t. \mathcal{F} -left-c.e. reals, this completes the proof.

Conclusion

• Pattern in previous constructions characterizing a.n.c. degrees: look at the construction and try to combine it with multiple permitting.

- Pattern in previous constructions characterizing a.n.c. degrees: look at the construction and try to combine it with multiple permitting.
- Shortcoming: for each case that is combinable with multiple permitting, we build new sets.

- Pattern in previous constructions characterizing a.n.c. degrees: look at the construction and try to combine it with multiple permitting.
- Shortcoming: for each case that is combinable with multiple permitting, we build new sets.
- Our alternative: show that the requirements can be met locally on intervals of computable length.

- Pattern in previous constructions characterizing a.n.c. degrees: look at the construction and try to combine it with multiple permitting.
- Shortcoming: for each case that is combinable with multiple permitting, we build new sets.
- Our alternative: show that the requirements can be met locally on intervals of computable length.
 - If the length-function does not depend on the requirements: argue that for some \mathcal{F} , all \mathcal{F} -a.n.c. set (w.r.t. \mathcal{F} -left-c.e. reals) meet the requirements.

- Pattern in previous constructions characterizing a.n.c. degrees: look at the construction and try to combine it with multiple permitting.
- Shortcoming: for each case that is combinable with multiple permitting, we build new sets.
- Our alternative: show that the requirements can be met locally on intervals of computable length.
 - If the length-function does not depend on the requirements: argue that for some \mathcal{F} , all \mathcal{F} -a.n.c. set (w.r.t. \mathcal{F} -left-c.e. reals) meet the requirements.
 - If the length-function does depend on the requirements: argue that any left-c.e. real with the universal similarity property meets all the requirements.

- Pattern in previous constructions characterizing a.n.c. degrees: look at the construction and try to combine it with multiple permitting.
- Shortcoming: for each case that is combinable with multiple permitting, we build new sets.
- Our alternative: show that the requirements can be met locally on intervals of computable length.
 - If the length-function does not depend on the requirements: argue that for some \mathcal{F} , all \mathcal{F} -a.n.c. set (w.r.t. \mathcal{F} -left-c.e. reals) meet the requirements.
 - If the length-function does depend on the requirements: argue that any left-c.e. real with the universal similarity property meets all the requirements.

In this way, we get a simplified, uniform and modular approach.

Examples

Let **a** be a c.e. and not totally ω -c.e. degree. Then there is a c.e. set $A \in \mathbf{a}$ that is not wtt-reducible to any hypersimple set.

Theorem (extending Brodhead, Downey, Ng [BDN12])

Let **a** be a c.e. and not totally ω -c.e. degree. There is a left-c.e. real $A \in \mathbf{a}$ which is CB-random.

(A real A is CB-random if it passes all Martin-Löf Tests where the sizes of its components are computably bounded).

Let **a** be a c.e. and not totally ω -c.e. degree. Then there is a c.e. set $A \in \mathbf{a}$ that is not wtt-reducible to any hypersimple set.

Theorem (extending Brodhead, Downey, Ng [BDN12])

Let **a** be a c.e. and not totally ω -c.e. degree. There is a left-c.e. real $A \in \mathbf{a}$ which is CB-random.

(A real A is CB-random if it passes all Martin-Löf Tests where the sizes of its components are computably bounded).

Alternative proofs: show that, for any left-c.e. real A with the universal similarity property, A is *wtt*-reducible to any h-simple set and is CB-random, respectively.

Alternative proof of BDG-Theorem

Martin Monath (Institut für Informatik)

If **a** is a c.e. and a.n.c. degree, then there exists a left-c.e. real $A \in a$ which is not cl-reducible to any 1-random left-c.e. real.

If **a** is a c.e. and a.n.c. degree, then there exists a left-c.e. real $A \in a$ which is not cl-reducible to any 1-random left-c.e. real.

By using the observation

Theorem (Ambos-Spies, Losert, Monath)

Let **a** be a c.e. a.n.c. degree. Then for every v.s.a.i. \mathcal{F} , there exists a \mathcal{F} -left-c.e. real A which is \mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals.

and the Second Main Lemma (for $D = \omega$) we can give an alternative proof of the above BDG-theorem.

Alternative proof of BDG-Theorem (2)

Proof (BDG-Theorem).

Let **a** be c.e. and a.n.c.

Let **a** be c.e. and a.n.c.

• By the Second Main Lemma (applied to $D = \omega$), fix a v.s.a.i. \mathcal{F} and a c.e. set B such that every left-c.e. real A' which is \mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals forms a maximal pair together with B.

Let **a** be c.e. and a.n.c.

- By the Second Main Lemma (applied to D = ω), fix a v.s.a.i. F and a c.e. set B such that every left-c.e. real A' which is F-a.n.c. w.r.t. to F-left-c.e. reals forms a maximal pair together with B.
- Since **a** is a.n.c., it contains an *F*-left-c.e. real *A* which is *F*-a.n.c. w.r.t. to *F*-left-c.e. reals.

Let **a** be c.e. and a.n.c.

- By the Second Main Lemma (applied to $D = \omega$), fix a v.s.a.i. \mathcal{F} and a c.e. set B such that every left-c.e. real A' which is \mathcal{F} -a.n.c. w.r.t. to \mathcal{F} -left-c.e. reals forms a maximal pair together with B.
- Since **a** is a.n.c., it contains an *F*-left-c.e. real *A* which is *F*-a.n.c. w.r.t. to *F*-left-c.e. reals.
- Since any c.e. set is cl-reducible to any 1-random left-c.e. real, A cannot be cl-reducible to any 1-random left-c.e. real, since (A, B) is a maximal pair.

- George Barmpalias, Rod Downey, and Noam Greenberg, Working with strong reducibilities above totally ω-c.e. and array computable degrees, Trans. Amer. Math. Soc. 362 (2010), no. 2, 777–813.
- Paul Brodhead, Rod Downey, and Keng Meng Ng, Bounded randomness, Computation, physics and beyond, Lecture Notes in Comput. Sci., vol. 7160, Springer, Heidelberg, 2012, pp. 59–70.
- Rodney G. Downey and Denis R. Hirschfeldt, *Algorithmic randomness and complexity*, Theory and Applications of Computability, Springer, New York, 2010.
- Rod Downey, Carl Jockusch, and Michael Stob, *Array nonrecursive sets and multiple permitting arguments*, Recursion theory week (Oberwolfach, 1989), Lecture Notes in Math., vol. 1432, Springer, Berlin, 1990.
- Yun Fan, *There is an sw-cuppable strongly c.e. real*, Theory and applications of models of computation, Lecture Notes in Comput. Sci., vol. 4484, Springer, Berlin, 2007.
- Yun Fan and Liang Yu, *Maximal pairs of c.e. reals in the computably Lipschitz degrees*, Ann. Pure Appl. Logic **162** (2011), no. 5, 357–366.
- Liang Yu and Decheng Ding, *There is no SW-complete c.e. real*, J. Symbolic Logic **69** (2004), no. 4, 1163–1170.

Thank you for your attention!