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Review: array noncomputable degrees

In 1990, Downey, Jockusch and Stob introduced the array noncomputable
(a.n.c.) sets and degrees [DJS90].

Definition

A strong array is a sequence of finite sets F = {Fn}n≥0 such that there
exists a computable function f such that Fn = Df (n). A very strong array
(v.s.a.) is strong array {Fn}n≥0 with the Fn’s being pairwise disjoint and
growing in size.

Definition

Let F = {Fn}n≥0 be a v.s.a. A c.e. set A is called F-array noncomputable
(F-a.n.c.) if for all c.e. sets B,

∃∞n (A ∩ Fn = B ∩ Fn).

A is called array noncomputable (a.n.c.) if it is F-a.n.c. for some v.s.a. F .
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Review: array noncomputable degrees (2)

Definition

A c.e. degree a is array noncomputable (a.n.c.) if it contains some c.e.
a.n.c. set A.

Some simple observations on array noncomputable sets and degrees.

For every v.s.a. F = {Fn}n≥0, there is an F-a.n.c. c.e. set A (take
A =

⋃
n∈ω Wn ∩ Fn).

For every c.e. set A, there is a v.s.a. F such that A is not F-a.n.c.
(for A noncomputable, take a computable infinite subset D of A and
a v.s.a. F = {Fn}n≥0 such that ∀n D ∩ Fn 6= ∅.Then it holds that
∅ ∩ Fn 6= A ∩ Fn for all n.)

Downey, Jockusch and Stob showed that the c.e. a.n.c. degrees are
exactly the c.e. degrees that allow a certain kind of permitting, called
multiple permitting.
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Review: array noncomputable degrees (3)

In simple A-permitting arguments where A is a (possibly given) c.e.
set, enumeration of an element x into some c.e. set B (under
construction) is conditional on a simultaneous enumeration of an
element y into A such that y ≤ x . Note that this implies B ≤T A.

In multiple permitting arguments, at least one witness x is supposed
to be permitted not only once, but f (x) many times for some
computable function f .

An important example of a multiple permitting argument shown by
Downey, Jokusch and Stob is that the choice of the v.s.a. F in an a.n.c.
degree is independent up to equivalence.

Theorem (Downey,Jockusch, Stob)

Let F and E be very strong arrays and let A be c.e. and F-a.n.c. Then
there exists a E-a.n.c. c.e. set B ∈ deg(A).
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Array-noncomputable and not totally ω-c.e. degrees

Theorem (Downey, Jockusch, Stob)

The following are equivalent for a c.e. degree a.

a is a.n.c.

For every computable order h there exists a function g ≤T a such
that for all computable approximations {gs}s≥0 of g , there exists x
such that

|{s : gs+1(x) 6= gs(x)}| > h(x)

Definition

A degree a is not totally ω-c.e. if there exists a function g ≤T a which is
not ω-c.e., i.e., for all computable orders h and all computable
approximations {gs}s≥0 of g , there exists x such that

|{s : gs+1(x) 6= gs(x)}| > h(x)
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Statement of the Theorem

Theorem (Ambos-Spies, Losert, Monath)

For a c.e. degree a, the following are equivalent.

1 a is not totally ω-c.e.

2 There is a left-c.e. real A ∈ a such that A is not cl-reducible to any
left-c.e. complex real.

(A left-c.e. real is complex if there exists a computable order h such that
C (A�n) ≥ h(n).) This theorem proves a question by Greenberg which is
related to the following characterization of a.n.c. degrees in [BDG10].

Theorem (Barmpalias, Downey, Greenberg)

For a c.e. degree a, the following are equivalent.

a is a.n.c.

There is a left-c.e. real A ∈ a which is not cl-reducible to any
1-random left-c.e. real.
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Reformulation of the Theorem

In the remainder of the talk, we describe the main steps how to prove the
implication 1 ⇒ 2 . The proof is based on the following observations.

Proposition

For a left-c.e. real A, the following are equivalent.

A is complex.

A is wtt-hard, i.e., every c.e. set is wtt-reducible to A.

The proposition follows from the following facts.

By a theorem of Kanovich [DH10, Theorem 8.16.7], a c.e. set is
complex if and only if it is wtt-complete.

Every left-c.e. real is wtt-equivalent to a c.e. set.

Complex sets are closed upwards under wtt-reductions.
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Reformulation of the Theorem (2)

In order to further reformulate the Theorem, let us define the notion of a
maximal pair of left-c.e. reals.

Definition

A maximal pair of left-c.e. reals (maximal pair for short) is a pair (A,B) of
left-c.e. reals (A,B) such that there is no left-c.e. real C with A ≤cl C and
B ≤cl C .

Proposition

For a left-c.e. real A, the following are equivalent.

(i) A is not cl-reducible to any wtt-hard left-c.e. real.

(ii) For any infinite, computable set D ⊆ ω, there is a c.e. set B ⊆ D
such that (A,B) is a maximal pair of left-c.e. reals.
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The Theorem reformulated

Hence, what we actually show is the following.

Theorem

Let a be a c.e. and not totally ω-c.e. degree. Then there exists a left-c.e.
real A ∈ a such that for every infinite computable set D, there exists a c.e.
subset B of D such that (A,B) is a maximal pair in the left-c.e. reals.

In the following, we always refer to this theorem.
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Some facts about maximal pairs

The existence of maximal pairs: Yu and Ding [YD04].

Maximal pairs where one half is c.e.: Fan [Fan07].

Every noncomputable left-c.e. real (even every ∆0
2 set!) is half of a

maximal pair: Fan and Yu [FY11].

We use a refined version of Fan’s construction for the Theorem. As a first
simple observation, it is easy to see that in Fan’s construction, one can
construct the c.e. half such that it is a subset of a given infinite,
computable set D. Hence, we get the statement

∀D inf., comp. ∃A left-c.e. ∃B ⊆ D c.e. ((A,B) is a maximal pair).
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More on maximal pairs

However, what we need to prove is that for every c.e. not totally ω-c.e.
degree a,

∃A ∈ a left-c.e. ∀D inf., comp. ∃B ⊆ D c.e. ((A,B) is a maximal pair).

The proof of the above statement is split in two parts.

First, the existence of a left-c.e. real with a strong similarity property
in any c.e. not totally ω-c.e. degree (which is related to the definition
of F-a.n.c. sets).

Second, a maximal pair property which is satisfied for every left-c.e.
real that has the above strong similarity property.
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Very strong arrays of intervals

Definition

A sequence F = {Fn}n≥0 is called a very strong array of intervals (v.s.a.i.)
if F is a v.s.a. and for every n ≥ 0, Fn is an interval and
maxFn < minFn+1.

Let F = {Fn}n≥0 be a v.s.a.i. Then two sets A and B are called
F-similar, denoted as A ∼F B, if

∃∞n (A ∩ Fn = B ∩ Fn).

In this notation, a c.e. set A is F-a.n.c. for a v.s.a. if it is F-similar to
every c.e. set.
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Array non-computability for left-c.e. reals

Let us consider the observations on a.n.c. sets from before.

For every v.s.a. F = {Fn}n≥0, there is an F-a.n.c. c.e. set A.

For every c.e. set A, there is a v.s.a. F such that A is not F-a.n.c.

Are there an analogs in the setting of left-c.e. reals? At first sight, this
seems impossible.

Theorem (Ambos-Spies, Fang, Losert, Merkle, Monath)

For every v.s.a.i. F and every left-c.e. real A, there exists a left-c.e. real B
such that A 6∼F B.

The important observation now is that we do not need A to be similar to
all left-c.e. reals (on some v.a.s.i. F), but to only those left-c.e. reals
whose approximation is compatible with the Fn’s in the following sense.
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Array non-computability for left-c.e. reals (2)

Definition

Let F be a v.s.a.i. A real A is called F-compatibly left-c.e. (F-left-c.e.) if
there exists a computable approximation {As}s≥0 of A such that, for any
s ≥ 0 and n ≥ 0, it holds that As ∩ Fn ≤lex As+1 ∩ Fn and
As(x) ≤ As+1(x) for any x 6∈

⋃
n≥0 Fn.

Definition

Let F be a v.s.a.i. A real A is F-array noncomputable w.r.t. to F-left-c.e.
reals (F-a.n.c. w.r.t. to F-left-c.e. reals) if it is F-similar to any
F-left-c.e. real B.

As a first observation, we showed the following.

Theorem (Ambos-Spies, Losert, Monath)

Let a be a c.e. a.n.c. degree. Then for every v.s.a.i. F , there exists an
F-left-c.e. real A ∈ a which is F-a.n.c. w.r.t. to F-left-c.e. reals.
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First Main Lemma

Definition

A left-c.e. real A has the universal similarity property, if it is F-a.n.c w.r.t.
to F-left-c.e. reals for all v.s.a.i. F .

Lemma (First Main Lemma)

Let a be a c.e. Turing degree which is not totally ω-c.e. Then there exists
a left-c.e. real A ∈ a which has the universal similarity property.

Note that the converse also holds.

Martin Monath (Institut für Informatik) Totally ω-c.e. vs. complex 24.07.2016 16 / 24



First Main Lemma

Definition

A left-c.e. real A has the universal similarity property, if it is F-a.n.c w.r.t.
to F-left-c.e. reals for all v.s.a.i. F .

Lemma (First Main Lemma)

Let a be a c.e. Turing degree which is not totally ω-c.e. Then there exists
a left-c.e. real A ∈ a which has the universal similarity property.

Note that the converse also holds.

Martin Monath (Institut für Informatik) Totally ω-c.e. vs. complex 24.07.2016 16 / 24



First Main Lemma

Definition

A left-c.e. real A has the universal similarity property, if it is F-a.n.c w.r.t.
to F-left-c.e. reals for all v.s.a.i. F .

Lemma (First Main Lemma)

Let a be a c.e. Turing degree which is not totally ω-c.e. Then there exists
a left-c.e. real A ∈ a which has the universal similarity property.

Note that the converse also holds.

Martin Monath (Institut für Informatik) Totally ω-c.e. vs. complex 24.07.2016 16 / 24



Fan’s maximal pair construction – revisited

So far, we showed the existence of left-c.e. reals in c.e. not totally ω-c.e.
degrees that have the universal similarity property. For the maximal pair
property, we need the following observations.

In Fan’s construction (as well as in Yu/Ding’s construction) of a
maximal pair, every requirement can be satisfied locally on a
sufficiently large interval.

Moreover, the length of the interval needed to satisfy a requirement is
computably bounded.

This length-function only depends on the infinite, computable set D.

Lemma (Second Main Lemma)

Let D be an infinite computable set. There is a v.s.a.i. F (F = FD) such
that for any left-c.e. real A which is F-a.n.c. w.r.t. F-left-c.e. reals, there
exists a c.e. set B ⊆ D such that (A,B) is a maximal pair in the left-c.e.
reals.
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Proof of the Theorem, given First and Second Main
Lemma

Proof.

Let a be a c.e. not totally ω-c.e. degree.

By the First Main Lemma, fix a left-c.e. real A ∈ a which has the
universal similarity property, i.e., A is F-a.n.c. w.r.t. F-left-c.e. reals
for all v.s.a.i. F .

Let D be computable and infinite. By the Second Main Lemma, fix a
v.s.a.i. F and a c.e. subset B of D such that every real A′ which is
F-a.n.c. w.r.t. F-left-c.e. reals forms a maximal pair together with B.

Since A is F-a.n.c. w.r.t. F-left-c.e. reals, this completes the proof.
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Conclusion

Pattern in previous constructions characterizing a.n.c. degrees: look
at the construction and try to combine it with multiple permitting.

Shortcoming: for each case that is combinable with multiple
permitting, we build new sets.

Our alternative: show that the requirements can be met locally on
intervals of computable length.

If the length-function does not depend on the requirements: argue that
for some F , all F-a.n.c. set (w.r.t. F-left-c.e. reals) meet the
requirements.
If the length-function does depend on the requirements: argue that any
left-c.e. real with the universal similarity property meets all the
requirements.

In this way, we get a simplified, uniform and modular approach.
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Examples

Theorem (Barmpalias, Downey, Greenberg [BDG10])

Let a be a c.e. and not totally ω-c.e. degree. Then there is a c.e. set
A ∈ a that is not wtt-reducible to any hypersimple set.

Theorem (extending Brodhead, Downey, Ng [BDN12])

Let a be a c.e. and not totally ω-c.e. degree. There is a left-c.e. real A ∈ a
which is CB-random.

(A real A is CB-random if it passes all Martin-Löf Tests where the sizes of
its components are computably bounded).

Alternative proofs: show that, for any left-c.e. real A with the universal
similarity property, A is wtt-reducible to any h-simple set and is
CB-random, respectively.
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Alternative proof of BDG-Theorem

Theorem (Barmpalias, Downey, Greenberg [BDG10])

If a is a c.e. and a.n.c. degree, then there exists a left-c.e. real A ∈ a
which is not cl-reducible to any 1-random left-c.e. real.

By using the observation

Theorem (Ambos-Spies, Losert, Monath)

Let a be a c.e. a.n.c. degree. Then for every v.s.a.i. F , there exists a
F-left-c.e. real A which is F-a.n.c. w.r.t. to F-left-c.e. reals.

and the Second Main Lemma (for D = ω) we can give an alternative proof
of the above BDG-theorem.
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Alternative proof of BDG-Theorem (2)

Proof (BDG-Theorem).

Let a be c.e. and a.n.c.

By the Second Main Lemma (applied to D = ω), fix a v.s.a.i. F and
a c.e. set B such that every left-c.e. real A′ which is F-a.n.c. w.r.t. to
F-left-c.e. reals forms a maximal pair together with B.

Since a is a.n.c., it contains an F-left-c.e. real A which is F-a.n.c.
w.r.t. to F-left-c.e. reals.

Since any c.e. set is cl-reducible to any 1-random left-c.e. real, A
cannot be cl-reducible to any 1-random left-c.e. real, since (A,B) is a
maximal pair.
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Thank you for your attention!
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