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Random left-c.e. reals

Definition
Let tαsusPω be a computable nondecreasing sequence of rationals
converging to α. We say that α is a left-c.e. real and tαsusPω is a
left-c.e. approximation of α.

(Also called “c.e.”, “left computable”, and “lower semicomputable”.)

We define right-c.e. reals and approximations similarly. It is clear that
a real is computable if and only if it is both left-c.e. and right-c.e.

The (Martin-Löf) random left-c.e. reals are an interesting class. The
key steps in understanding them were made by Chaitin (1975),
Solovay (1975), Calude, Hertling, Khoussainov, and Wang (2001), and
Kučera and Slaman (2001). Together, they showed that TFAE:
(1) α is a random left-c.e. real,
(2) α is the halting probability of a universal prefix-free machine,
(3) Any left-c.e. approximation to α converges at least as slowly as

any left-c.e. approximation to any other left-c.e. real.
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Random left-c.e. reals

The last of these conditions will be made precise in the next lemma.
It is stronger than saying that α is “Solovay complete”, but since we
do not need Solovay reducibility below, we will not elaborate.

Lemma (Kučera and Slaman, 2001)
Let α and β be a left-c.e. reals with left-c.e. approximations tαsusPω
and tβsusPω. If β is random, then there is a c P ω such that

p@sq α´ αs ď c pβ ´ βsq .

Rearranging, we have α´ αs
β ´ βs

ă c. If α is also random, then we have

0 ă inf
sPω

α´ αs
β ´ βs

ď sup
sPω

α´ αs
β ´ βs

ă 8.

All random left-c.e. reals are essentially equally hard to approximate.
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Barmpalias and Lewis-Pye’s results
Recently, Barmpalias and Lewis-Pye showed that we can exactly
quantify the different rates of convergence of random left-c.e. reals.

Definition (Barmpalias and Lewis-Pye)
If α and β are random left-c.e. reals with left-c.e. approximations
tαsusPω and tβsusPω, let

Bα

Bβ
“ lim
sÑ8

α´ αs
β ´ βs

.

Theorem (Barmpalias and Lewis-Pye)
(1) Bα{Bβ exists and is independent of the choice of approximations.
(2) Bα{Bβ “ 1 if and only if α´ β is not random.
(3) Bα{Bβ ą 1 if and only if α´ β is a random left-c.e. real.
(4) Bα{Bβ ă 1 if and only if α´ β is a random right-c.e. real.
(5) Bα{Bβ “ suptc P Q : α´ c β is left-c.e.u

“ inftc P Q : α´ c β is right-c.e.u.
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The d.c.e. reals

The most natural context for Barmpalias and Lewis-Pye’s results is
probably the field of d.c.e. reals.

Definition
If β and γ are left-c.e. reals, then α “ β ´ γ is a d.c.e. real.

(Also called “weakly computable”, “left-d.c.e.”, and “difference left-c.e.”.)

Let tβsusPω and tγsusPω be left-c.e. approximations of β and γ,
respectively. If we set αs “ βs ´ γs, then not only do we have
limsÑ8 αs “ α, but the variation of the approximation is finite, i.e.,

ÿ

sPω

|αs`1 ´ αs| “
ÿ

sPω

|pβs`1 ´ βsq ´ pγs`1 ´ γsq|

ď
ÿ

sPω

|βs`1 ´ βs| `
ÿ

sPω

|γs`1 ´ γs| “ β ` γ ă 8.

We call tαsusPω a d.c.e. approximation of α. Such approximations
characterize the d.c.e. reals.
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The d.c.e. reals

Proposition (Ambos-Spies, Weihrauch, and Zheng 2000)
A real α is d.c.e. if and only if it is the limit of a computable sequence
of rationals tαsusPω that has finite variation.

Proof. We proved one direction above. Now assume that α is the
limit of a sequence tαsusPω with finite variation. Let

β “ α0 `
ÿ

tαs`1 ´ αs : αs`1 ´ αs ě 0u, and

γ “
ÿ

tαs ´ αs`1 : αs`1 ´ αs ă 0u.

Since tαsusPω has finite variation, both β and γ are finite. It should
be clear that they are left-c.e. reals and that α “ β ´ γ.

The d.c.e. reals are clearly closed under addition and subtraction and
it is not too hard to see that they form a field (Ambos-Spies,
Weihrauch, and Zheng 2000). Ng (2006) and Raichev (2005)
independently proved that they actually form a real closed field.
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Generalizing to the d.c.e. reals
Fix a random left-c.e. real Ω with left-c.e. approximation tΩsusPω. We
use this as the benchmark to measure rates of convergence.

Definition
If α is a d.c.e. real with approximation tαsusPω, let

Bα “
Bα

BΩ “ lim
sÑ8

α´ αs
Ω´ Ωs

.

Theorem
Let α be a d.c.e. real.
(1) Bα converges and does not depend on the d.c.e. approx. of α.
(2) Bα “ 0 if and only if α is not random.
(3) Bα ą 0 if and only if α is a random left-c.e. real.
(4) Bα ă 0 if and only if α is a random right-c.e. real.
(5) Bα “ suptc P Q : α´ cΩ is left-c.e.u

“ inftc P Q : α´ cΩ is right-c.e.u.
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Comparison with Solovay degrees
The Solovay degrees are complementary to B .

The Solovay degrees
of left-c.e. reals

non-
random
left-c.e.

reals

‚ random
left-c.e. reals

The range of B
on the d.c.e. reals

´ 0 `

random
right-c.e. reals

random
left-c.e. reals

‚

nonrandom
d.c.e. reals

§ There is significant overlap, however, in what the two approaches
tell us about the random left-c.e. reals.

§ Rettinger and Zheng (2005) proved that all random d.c.e. reals
are either left-c.e. or right-c.e.

§ They also extended Solovay reducibility to the d.c.e. reals (with a
slight modification). The top degree still contains all randoms.
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B is a derivation

B acts somewhat like differentiation.

This should not be surprising:
§ Bα is defined as the limit of a difference quotient,
§ Bα is meant to capture the rate of convergence of tαsusPω to α,

In fact, B is a derivation on the field of d.c.e. reals:

Proposition
§ Bpα` βq “ Bα` Bβ,
§ Bpαβq “ α Bβ ` β Bα (Leibniz law).

(Both are easy; the first was noted by Barmpalias and Lewis-Pye.)

However, B maps outside of the d.c.e. reals, so it does not make them
a differential field.
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B is a derivation

Proposition. The range of B contains the ∆0
2 reals.

Open Question. What is the range of B on the d.c.e. reals?

Proposition. Let f : RÑ R be a computable function. If f is
differentiable at a d.c.e. real α, then

§ fpαq is a d.c.e. real, and
§ Bfpαq “ f 1pαq Bα.

This allows us to apply basic identities from calculus, so for example,

Bαn “ nαn´1 Bα,

Beα “ eα Bα.

Since BΩ “ 1, we have BeΩ “ eΩ.
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Part II

Sketchy proofs



The main technical result

Lemma (Barmpalias and Lewis-Pye)
Let α and β be a left-c.e. reals with left-c.e. approximations tαsusPω
and tβsusPω. If β is random, then

lim
sÑ8

α´ αs
β ´ βs

converges.

Proof Idea. Assume, for a contradiction, that the limit diverges. By
Kučera–Slaman, lim supsÑ8pα´ αsq{pβ ´ βsq ă 8. On the other
hand, all of the terms in the sequence are non-negative, so there must
be c, d P Q such that

lim inf
sÑ8

α´ αs
β ´ βs

ă c ă d ă lim sup
sÑ8

α´ αs
β ´ βs

.

In particular, there are infinitely many s such that αs ´ dβs ă α´ dβ
and infinitely many t such that αt ´ cβt ą α´ cβ.
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The main technical result

In particular, there are infinitely many s such that αs ´ dβs ă α´ dβ
and infinitely many t such that αt ´ cβt ą α´ cβ.

Fix such stages s ă t. So

αt ´ cβt ą α´ cβ “ α´ dβ ` pd´ cqβ ą αs ´ dβs ` pd´ cqβ.

Rearranging, we have

β ă
αt ´ αs ` dβs ´ cβt

d´ c
.

Note that this upper bound converges to β as s, tÑ8.

The idea of the proof is to use such upper bounds to cover β with a
Solovay test. The difficulty is that we cannot effectively determine
which stages s and t satisfy our requirements, so we guess and update
our guesses dynamically.
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D.c.e. reals revisited

Observation (Rettinger and Zheng, 2005)
Let tαsusPω be a d.c.e. approximation of α.

Consider the Solovay test
trαs, αs`1s : αs ă αs`1u; note that it has finite weight because
tαsusPω has finite variation. If pD8sq αs ă α and pD8sq αs ą α, then
α would be covered by the test, hence it would be nonrandom.

So we have three possibilities:
(1) αs ă α for almost every s,
(2) αs ą α for almost every s,
(3) α is nonrandom.

Say we are in case (1). Fix s˚ P ω such that p@s ě s˚q αs ă α. Then
α˚s “ maxs˚ďtďs αt

is a left-c.e. approximation of α, so α is a left-c.e. real.

Similarly, in case (2), α is a right-c.e. real.
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D.c.e. reals revisited

Proposition (Rettinger and Zheng, 2005)
Random d.c.e. reals are either left-c.e. reals or right-c.e. reals.

The observation has a sort of converse:

Lemma
Let α be a nonrandom d.c.e. real. There is a d.c.e. approximation
tαsusPω of α such that pD8sq αs ă α and pD8sq αs ą α.

Proof Sketch. Let tα˚s usPω be a d.c.e. approximation of α. Let
trcn, dnsunPω be a Solovay test that covers α, viewed as a sequence of
rational intervals.

We define a new approximation of α as follows. At stage s, check if
α˚s is contained in an unused interval rcn, dns for n ď s. If so, mark
that interval used and let α4s “ α4s`3 “ α˚s , α4s`1 “ cn, and
α4s`2 “ dn. Otherwise, let α4s “ ¨ ¨ ¨ “ α4s`3 “ α˚s .
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Bα is well-defined
Until we have proved independence from the approximation:

Notation. If α is a d.c.e. real with approximation tαsusPω, let

Btαsu “ lim
sÑ8

α´ αs
Ω´ Ωs

.

Lemma. If tαsusPω and tβsusPω are d.c.e. approximations, then
§ Btαs ` βsu “ Btαsu ` Btβsu,
§ If c is rational, then Btcαsu “ c Btαsu.

Lemma
Let α be a d.c.e. real with d.c.e. approximation tαsusPω.
(1) Btαsu converges.

Proof. Let β and γ be left-c.e. reals with left-c.e. approximations
tβsusPω and tγsusPω such that αs “ βs ´ γs for all s. Then α “ β ´ γ
and Btαsu “ Btβsu ´ Btγsu. Both Btβsu and Btγsu converge by the
main technical lemma, so Btαsu also converges.
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Bα is well-defined

(2) If Btαsu ą 0, then α is a left-c.e. real.
(3) If Btαsu ă 0, then α is a right-c.e. real.

Proof. For (2), if Btαsu ą 0, then there is an s˚ P ω such that
p@s ě s˚q αs ă α. Hence, α is a left-c.e. real. Part (3) is similar.

(4) If α “ 0, then Btαsu “ 0.

Proof. Assume that α “ 0 but Btαsu ‰ 0. Pick an integer c such
that BtΩs ` cαsu “ BtΩsu ` c Btαsu “ 1` c Btαsu ă 0. But
tΩs ` cαsusPω is a d.c.e. approximation of Ω` c ¨ 0 “ Ω, so by
part (3), Ω is a right-c.e. real. This implies that Ω is computable,
which is a contradiction.

(5) If tα˚s usPω is another d.c.e. approx. of α, then Btαsu “ Btα˚s u.

Proof. Note that Btαsu ´ Btα˚s u “ Btαs ´ α˚s u “ 0, because
tαs ´ α

˚
s usPω is a d.c.e. approximation of 0.
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Basic properties of B

Lemma
Let α be a d.c.e. real with d.c.e. approximation tαsusPω.
(1) Btαsu converges.
(2) If Btαsu ą 0, then α is a left-c.e. real.
(3) If Btαsu ă 0, then α is a right-c.e. real.
(4) If α “ 0, then Btαsu “ 0.
(5) If tα˚s usPω is another d.c.e. approx. of α, then Btαsu “ Btα˚s u.

We are ready to recover the work of Barmpalias and Lewis-Pye
generalized to the d.c.e. reals.

Theorem
Let α be a d.c.e. real.
(1) Bα converges and does not depend on the d.c.e. approx. of α.

Proof. Immediate from the lemma.
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Basic properties of B

(2) Bα “ 0 if and only if α is not random.
(3) Bα ą 0 if and only if α is a random left-c.e. real.
(4) Bα ă 0 if and only if α is a random right-c.e. real.

Proof. Now assume that α is not random. Let tαsusPω be an
approximation such that pD8sq αs ă α and pD8sq αs ą α. This
implies that Bα “ 0.

On the other hand, if α is random, then it must be either a left-c.e.
real or a right-c.e. real. Assume that α is a random left-c.e. real. By
Kučera–Slaman, there is a c P ω such that

p@sq Ω´ Ωs ď c pα´ αsq .

This implies that Bα ą 1{c ą 0. Similarly, if α is a random right-c.e.
real, then Bα ă 0. This proves (2) and the “if” directions of (3)
and (4). The “only if” directions also follow: for example, if Bα ą 0,
then α is random by (2) and left-c.e. by the lemma.
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Basic properties of B

Theorem
Let α be a d.c.e. real.
(1) Bα converges and does not depend on the d.c.e. approx. of α.
(2) Bα “ 0 if and only if α is not random.
(3) Bα ą 0 if and only if α is a random left-c.e. real.
(4) Bα ă 0 if and only if α is a random right-c.e. real.
(5) Bα “ suptc P Q : α´ cΩ is left-c.e.u

“ inftc P Q : α´ cΩ is right-c.e.u.

Proof. (5) follows from (3) and (4) and the fact that
Bpα´ cΩq “ Bα´ c.

Note. We lose nothing by working with Ω as a fixed benchmark; it is
easy to see that if β is a random d.c.e. real, then

Bα

Bβ
“
Bα{BΩ
Bβ{BΩ .
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Part III

The field of nonrandom d.c.e. reals



The nonrandom d.c.e. reals

If B is a derivation on a field, then its kernel—in this case the
nonrandom d.c.e. reals—is also a field, called the field of constants.

If the underlying field is real closed, then so is the field of constants.

Corollary
The nonrandom d.c.e. reals are a real closed field.

Proof.
Let α and β be nonrandom d.c.e. reals. Then Bpα`βq “ Bα`Bβ “ 0,
so α` β is not random. It is similarly easy to see that α´ β, αβ and
α{β are not random. So the nonrandom d.c.e. reals form a field.

Now let ppxq be a polynomial whose coefficients are nonrandom d.c.e.
reals. Assume that α is a real root of ppxq. As mentioned, the d.c.e.
reals form a real closed field (Ng 2006; Raichev 2005), so α must be a
d.c.e. real. We need to show that α is nonrandom.
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The nonrandom d.c.e. reals

We need to show that α is nonrandom.

We may assume that α has multiplicity one as a root of ppxq;
otherwise, we could replace ppxq with the greatest common divisor of
ppxq and p1pxq, which also has coefficients in the field of nonrandom
d.c.e. reals. This ensures that p1pαq ‰ 0.

Claim: Bppαq “ p1pαq Bα.
This follows by an easy induction on the derivation properties.
(The nonrandom d.c.e. constants behave like constants should.)

Therefore, we have

Bα “
Bppαq

p1pαq
“

B0
p1pαq

“ 0,

so α is nonrandom.
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The nonrandom d.c.e. reals

We have proved:

Corollary
The nonrandom d.c.e. reals are a real closed field.

§ They were not even known to be closed under addition.
§ This should be considered nontrivial; it is easy to prove the
convergence of Bα{Bβ from this fact.

Proof Sketch. If c, d P Q are such that

lim inf
sÑ8

α´ αs
β ´ βs

ă c ă d ă lim sup
sÑ8

α´ αs
β ´ βs

,

then α´ cβ is not random because αs ´ cβs is infinitely often above
and infinitely often below it. Similarly, α´ dβ is nonrandom.
Therefore, their difference pd´ cqβ is nonrandom. But this implies
that β is nonrandom, which is a contradiction.
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Variation randomness

In contrast, the nonrandom left-c.e. reals were long known to be closed
under addition (Demuth 1975; Downey, Hirschfeldt, and Nies 2002).

Why are nonrandom d.c.e. reals (apparently) more difficult
to deal with than nonrandom left-c.e. reals?

Definition
Call a d.c.e. real α variation nonrandom if it has a d.c.e.
approximation tαsusPω such that the variation

ř

nPω |αs`1 ´αs| is not
random. Otherwise, call α variation random.

Proposition
TFAE for a d.c.e. real α:

§ α is variation nonrandom,
§ There are nonrandom left-c.e. reals β and γ such that α “ β ´ γ.
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approximation tαsusPω such that the variation

ř

nPω |αs`1 ´αs| is not
random. Otherwise, call α variation random.

Proposition
TFAE for a d.c.e. real α:

§ α is variation nonrandom,
§ There are nonrandom left-c.e. reals β and γ such that α “ β ´ γ.
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Variation randomness

Theorem
There is a nonrandom variation random d.c.e. real.

§ This can be proved using a fairly simple finite injury argument.

Corollary
There is a nonrandom d.c.e. real that cannot be expressed as the
difference of nonrandom left-c.e. reals.

Despite being nonrandom, this real carries some kind of
intrinsic randomness.

In fact: The real closure of the nonrandom left-c.e. reals is the field
of variation nonrandom reals. (Hence it is strictly smaller than the
field of nonrandom d.c.e. reals.)
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