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Borel Isomorphism Theorem (Kuratowski 1934)
An uncountable Polish space is unique up to Borel isomorphism.

Definition (Kuratowski 1934, Jayne 1974)

We say that X is α-th level Borel isomorphic to Y if
there exists a bijection f between X and Y preserving the Borel
hierarchy above Σ

∼
0
1+α

, that is,

A is Σ
∼

0
1+α

in X ⇐⇒ f[A] is Σ
∼

0
1+α

in Y .

homeomorphism = 0-th level Borel isomorphism.

If α ≤ β, then every α-th level Borel isomorphism is β-th level Borel
isomorphism.
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How many Polish spaces are there up to α-th level Borel isomorphism?

Known Facts
Let X and Y be uncountable Polish spaces.

1 (Kuratowski 1934) An uncountable Polish space is unique
up to ω-th level Borel isomorphism.

2 (Jayne 1970s) If X is first-level Borel isomorphic to Y
(that is, X and Y have the same Borel hierarchy above Fσ)
then X and Y have the same topological dimension.

3 (Jayne-Rogers 1970s) If X can be written as a countable union of
finite dimensional subspaces (e.g., X = ωω,Rn for n ∈ ω,

⨿
n R

n),

X is second-level Borel isomorphic to R.
X is not finite-level Borel isomorphic to [0, 1]N.
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How many Polish spaces are there up to α-th level Borel isomorphism?

There are continuum many Polish spaces
up to first level Borel isomorphism

There are at least two Polish spaces
up to n-th level Borel isomorphism for any n < ω

There is only one Polish space
up to α-th level Borel isomorphism for any α ≥ ω

Second Level Borel Isomorphism Problem

Is there a third Polish space up to second-level Borel isomorphism?

Such a third Polish space must be infinite dimensional.
Therefore, the second-level Borel isomorphism problem is inescapably
tied to infinite dimensional topology.
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Main Theorem (K. and Pauly)

There are continuum many compact metric spaces
up to n-th level Borel isomorphism for any n < ω.

Some Corollary to Banach Space Theory

(Bade, Dashiell, Jayne, and others in 1970s)
B∗
ξ
(X): the space of bounded real valued Baire ξ functions on X

endowed with supremum norm and pointwise ring operation.

(Jayne 1974) There is an analog of the Gel’fand-Kolmogorov Theorem in
the Baire hierarchy, that is, TFAE for realcompact spaces X and Y :

Baire isomorphic at level (η, ξ).
B∗
ξ
(X) and B∗η(Y) are linearly isometric (ring isomorphic, etc.)

Thus, our main theorem also implies the existence of 2ℵ0 many mutually
non-linearly-isometric (non-ring-isomorphic, etc.) Banach algebras of the
form B∗n(X) for a compact mertic space X .

Our result also gives a negative solution to Motto Ros’ problem asking
whether for any Polish space X , the Banach space B∗

2
(X) of Baire-two

functions is linearly isometric to Rn for some n ∈ ω ∪ {ω}.
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Techniques: How can we control n-th level Borel functions?

Idea
1 There are a number of descriptive set-theoretic attempts to generalize the

Jayne-Rogers Theorem (e.g., by Pawlikowski-Sabok (2012), Motto Ros
(2013), et al.)

2 K. (2015) used the Shore-Slaman Join Theorem for Turing degrees to show
some variant of the Jayne-Rogers Theorem for finite dimensional Polish
spaces.

3 To prove its infinite-dimensional version, Gregoriades-K.-Ng showed the
Shore-Slaman Join Theorem for continuous degrees by introducing the
weighted version of Kumabe-Slaman forcing.

4 The above results show that finite-level Borel isomorphisms are exactly
σ-continuous isomorphisms of finite Borel rank.

(Here, a function is σ-continuous if it is written as the union of countably many partial
continuous functions. This notion was introduced by Lusin in 1920s.)

5 K.-Pauly clarified that the degree structure (relative to an oracle) on a Polish
space is invariant under σ-continuous isomorphisms.
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Decomposition Theorem (Gregoriades-K.-Ng)
A: analytic subset of a Polish space; Y : separable metrizable.

Suppose that f : A → Y satisfies that S ∈ Σ
∼

0
1+η

=⇒ f−1[S] ∈ Σ
∼

0
1+ξ

.

Then there is a Π
∼

0
1+ξ

-cover (An)n∈ω ofA such that

(∀n)(∃θ with θ + η ≤ ξ) the restriction f ↾ An is of Baire class θ.

Corollary (Pawlikowski-Sabok 2012; Motto Ros 2013)

X : an analytic subset of a Polish space; Y : separable metrizable.
The following are equivalent for a function f : X → Y :

1 f is an n-th level Borel function for some n < ω.
2 f is Π

∼
0
n-piecewise continuous for some n < ω.
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Sketch of Proof when X and Y are countable-dimensional

f−1Σ
∼

0
m+1

⊆ Σ
∼

0
n+1

=⇒ piecewise Baire n − m.

1 Suppose: A ∈ Σ
∼

0
m+1

(Y) ⇒ f−1[A] ∈ Σ
∼

0
n+1

(X).

2 By the Louveau Separation Theorem,
f−1[·] : Σ

∼
0
m(Y) → ∆

∼
0
n+1

(X) is Borel.

3 Then we have the following inequality for Turing degrees:
(∀w ≥T z) (f(x) ⊕ w)(m) ≤T (x ⊕ w(ξ))(n).

4 By using the Friedberg Jump Inversion Theorem:
(∀a, b)(∃c ≥T a) [(b ⊕ a(ξ)) ≡T c(ξ)

and the Shore-Slaman Join Theorem:
(∀x)(∀y) (y ≰T x(n) → (∃g) [g ≥T x & g(n+1) ≤T g ⊕ y],

we obtain the following inequality for Turing degrees:
f(x) ≤T (x ⊕ z(ξ))(n−m).

5 Hence, f is decomposable into countably many Baire n − m
functions (x 7→ Φ

(x⊕z(ξ))(n−m)

e )e∈N, where Φp
e is the e-th Turing

machine computation with oracle p □
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f−1Σ
∼

0
m+1

⊆ Σ
∼

0
n+1

=⇒ piecewise Baire n − m.

We also need the Shore-Slaman Join Theorem for continuous
degrees. Recall that the Shore-Slaman Join Theorem is:

DT |= (∀x)(∀y ≰ x(n))(∃g ≥ x) g(n+1) = y ⊕ g = y ⊕ x(n+1).

Unfortunately, this is false in the continuous degrees.
However, we can still have the following weaker version:

Theorem (Gregoriades-K.-Ng)

The continuous degrees satisfy the following sentence:

(∀x)(∀y ≰ x(n))(∃g ≥ x) y ⊕ g = y ⊕ x(n+1).

Proof: By a “weighted” version of Kumabe-Slaman forcing. □
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Second Level Borel Isomorphism Problem
Is there a Polish space which is second-level Borel isomorphic
neither to R nor to [0, 1]N?

Observation
1 (K.-Pauly) The degree structure (relative to an oracle) on a

Polish space is invariant under finite-level Borel isomorphism.

The degree structure on R is the Turing degrees.
The degree structure on [0, 1]N is the continuous degrees
(J. Miller 2004).

2 Thus, to solve the second (finite) level Borel isomorphism problem, it

suffices to find a Polish space whose degree structure is strictly
intermediate between the Turing degrees and the continuous
degrees (relative to any oracle).
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Definition
1 Γ : 2N → [0, 1]N is ω-left-CEA operator if

the output Γ(x) is a sequence (y0, y1, y2, . . . ) such that
yn+1 is left-c.e. in (x, y0, y1, . . . , yn) uniformly in x and n.

2 (Formal Definition) Γ is ω-left-CEA if there is a left-c.e. operator γ such that
for all n,

xn := Γ(y)(n) = γ(y, n, x0, x1, . . . , xn−1).

3 An ω-left-CEA operator Γ : N × 2N → [0, 1]N is universal if
(∀Ψ ω-left-CEA)(∃e) Ψ = λy.Γ(e, y).
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Let ωCEA denote the graph of a universal ω-left-CEA operator.

Theorem (K.-Pauly)

The space ωCEA (as a subspace of Hilbert cube) is a Polish space
which is finite-level Borel isomorphic neither to R nor to [0, 1]N.

Remark
Furthermore, ωCEA is second-level Borel isomorphic to the following spaces:

Rubin-Schori-Walsh (1979)’s strongly infinite dimensional totally
disconnected Polish space.

Roman Pol (1981)’s compactum: a compact metric space which is
weakly infinite dimensional, but not countable dimensional
(a solution to Alexandrov’s problem in infinite dimensional topology).
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Theorem (K.-Pauly)

The space ωCEA (as a subspace of Hilbert cube) is a Polish space
which is finite-level Borel isomorphic neither to R nor to [0, 1]N.

Idea of Proof
1 Why is the degree structure of the space ωCEA strictly intermediate

between the Turing degrees and the continuous degrees (relative to any
oracle)?

2 Given a point x, focus on the Turing lower cone of x:

{y ∈ 2ω : y is Turing reducible to any (Cauchy-)name of x}.

3 The Turing lower cone of a point in Cantor space is a principal Turing ideal.

The space ωCEA is large enough to have a point whose Turing lower
cone is a non-principal Turing ideal.

4 (J. Miller 2004) For every countable Scott ideal I there is a point in Hilbert
cube whose Turing lower cone is exactly I .

The Turing lower cone of a point in ωCEA cannot be closed under the
ω-th Turing jump.
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{y ∈ 2ω : y is Turing reducible to any (Cauchy-)name of x}.

3 The Turing lower cone of a point in Cantor space is a principal Turing ideal.

The space ωCEA is large enough to have a point whose Turing lower
cone is a non-principal Turing ideal.

4 (J. Miller 2004) For every countable Scott ideal I there is a point in Hilbert
cube whose Turing lower cone is exactly I .

The Turing lower cone of a point in ωCEA cannot be closed under the
ω-th Turing jump.
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Main Theorem (K. and Pauly)

There are continuum many compact metric spaces
up to n-th level Borel isomorphism for any n < ω.

Idea

An oracle Π
∼

0
2

singleton is a function whose graph is Gδ in Hilbert cube.

K.-Pauly introduced the notion of almost arithmetical (aa) reducibility
between oracle Π

∼
0
2

singletons.

Introduce a method of constructing a Polish space S(G) from a countable
set G of oracle Π0

2
singletons such that

if the degree structure on S(G) is included in that of S(H) (relative
to an oracle), then G is aa-included inH .

The finite level Borel isomorphism problem is reduced to the problem on
aa-degrees for oracle Π

∼
0
2

singletons. The latter problem is easy!

Although the spaces S(G) are not compact, one can easily see that the
Lelek-compactification in infinite dimensional topology preserves the
finite-level Borel structure of the space.
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Main Theorem (K. and Pauly)

There are continuum many compact metric spaces
up to n-th level Borel isomorphism for any n < ω.

Remark
This result solves Motto Ros’ problem on the linear-isometric classification of the
Banach spaces consisting of bounded real-valued finite class Baire functions on
Polish spaces.

T. Kihara, Decomposing Borel functions using the Shore-Slaman join
theorem, Fundamenta Mathematicae 230 (2015), pp. 1–13.

T. Kihara and A. Pauly, Point degree spectra of represented spaces,
submitted.

V. Gregoriades, T. Kihara and K. M. Ng, Turing degrees in Polish spaces and
decomposability of Borel functions, submitted.
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