Borel Isomorphism and Computability

Takayuki Kihara

Department of Mathematics, University of California, Berkeley, USA

Computability, Randomness and Applications

CIRM Seminar, Marseille, France, June 21, 2016

Borel Isomorphism and Computability

Takayuki Kihara

Department of Mathematics, University of California, Berkeley, USA

Computability, Randomness and Applications

CIRM Seminar, Marseille, France, June 21, 2016

Borel Isomorphism Theorem (Kuratowski 1934)

An uncountable Polish space is unique up to Borel isomorphism.

Borel Isomorphism Theorem (Kuratowski 1934)

An uncountable Polish space is unique up to Borel isomorphism.

Definition (Kuratowski 1934, Jayne 1974)

We say that X is α -th level Borel isomorphic to Y if there exists a bijection f between X and Y preserving the Borel hierarchy above $\sum_{i=1}^{0}$, that is,

$$A \text{ is } \sum_{n=1+\alpha}^{\infty} \text{ in } X \iff f[A] \text{ is } \sum_{n=1+\alpha}^{\infty} \text{ in } Y.$$

Borel Isomorphism Theorem (Kuratowski 1934)

An uncountable Polish space is unique up to Borel isomorphism.

Definition (Kuratowski 1934, Jayne 1974)

We say that X is α -th level Borel isomorphic to Y if there exists a bijection f between X and Y preserving the Borel hierarchy above $\sum_{i=1}^{0}$, that is,

$$A \text{ is } \sum_{n=1+\alpha}^{\infty} \text{ in } X \iff f[A] \text{ is } \sum_{n=1+\alpha}^{\infty} \text{ in } Y.$$

- homeomorphism = **0**-th level Borel isomorphism.
- If $\alpha \leq \beta$, then every α -th level Borel isomorphism is β -th level Borel isomorphism.

Known Facts

Let X and Y be uncountable Polish spaces.

① (Kuratowski 1934) An uncountable Polish space is unique up to ω-th level Borel isomorphism.

Known Facts

Let **X** and **Y** be uncountable Polish spaces.

- (Kuratowski 1934) An uncountable Polish space is unique up to ω -th level Borel isomorphism.
- ② (Jayne 1970s) If X is first-level Borel isomorphic to Y (that is, X and Y have the same Borel hierarchy above F_{σ}) then X and Y have the same topological dimension.

Known Facts

Let **X** and **Y** be uncountable Polish spaces.

- (Kuratowski 1934) An uncountable Polish space is unique up to ω -th level Borel isomorphism.
- ② (Jayne 1970s) If X is first-level Borel isomorphic to Y (that is, X and Y have the same Borel hierarchy above F_{σ}) then X and Y have the same topological dimension.
- (Jayne-Rogers 1970s) If X can be written as a countable union of finite dimensional subspaces (e.g., $X = \omega^{\omega}$, \mathbb{R}^n for $n \in \omega$, $\prod_n \mathbb{R}^n$),
 - X is second-level Borel isomorphic to \mathbb{R} .
 - X is *not* finite-level Borel isomorphic to $[0,1]^{\mathbb{N}}$.

- There are continuum many Polish spaces up to first level Borel isomorphism
- There are at least two Polish spaces
 up to n-th level Borel isomorphism for any n < ω
- There is only one Polish space up to α -th level Borel isomorphism for any $\alpha \geq \omega$

- There are continuum many Polish spaces up to first level Borel isomorphism
- There are at least two Polish spaces up to n-th level Borel isomorphism for any n < ω
- There is only one Polish space up to α -th level Borel isomorphism for any $\alpha \ge \omega$

Second Level Borel Isomorphism Problem

Is there a third Polish space up to second-level Borel isomorphism?

- There are continuum many Polish spaces up to first level Borel isomorphism
- There are at least two Polish spaces up to n-th level Borel isomorphism for any n < ω
- There is only one Polish space up to α -th level Borel isomorphism for any $\alpha \ge \omega$

Second Level Borel Isomorphism Problem

Is there a third Polish space up to second-level Borel isomorphism?

Such a third Polish space must be infinite dimensional. Therefore, the *second-level Borel isomorphism problem* is inescapably tied to *infinite dimensional* topology.

There are continuum many compact metric spaces up to n-th level Borel isomorphism for any $n < \omega$.

There are continuum many compact metric spaces up to n-th level Borel isomorphism for any $n < \omega$.

Some Corollary to Banach Space Theory

- (Bade, Dashiell, Jayne, and others in 1970s)
 B*(X): the space of bounded real valued Baire \(\xi \) functions on \(X \) endowed with supremum norm and pointwise ring operation.
- (Jayne 1974) There is an analog of the Gel'fand-Kolmogorov Theorem in the Baire hierarchy, that is, TFAE for realcompact spaces **X** and **Y**:
 - Baire isomorphic at level (η, ξ) .
 - $B_{\varepsilon}^{*}(X)$ and $B_{\eta}^{*}(Y)$ are linearly isometric (ring isomorphic, etc.)

There are continuum many compact metric spaces up to n-th level Borel isomorphism for any $n < \omega$.

Some Corollary to Banach Space Theory

- (Bade, Dashiell, Jayne, and others in 1970s)
 B*(X): the space of bounded real valued Baire \(\xi \) functions on \(X \) endowed with supremum norm and pointwise ring operation.
- (Jayne 1974) There is an analog of the Gel'fand-Kolmogorov Theorem in the Baire hierarchy, that is, TFAE for realcompact spaces **X** and **Y**:
 - Baire isomorphic at level (η, ξ) .
 - $B_{\varepsilon}^{*}(X)$ and $B_{\eta}^{*}(Y)$ are linearly isometric (ring isomorphic, etc.)
- Thus, our main theorem also implies the existence of 2^{\aleph_0} many mutually non-linearly-isometric (non-ring-isomorphic, etc.) Banach algebras of the form $B_n^*(X)$ for a compact mertic space X.
- Our result also gives a negative solution to Motto Ros' problem asking whether for any Polish space X, the Banach space $B_2^*(X)$ of Baire-two functions is linearly isometric to \mathbb{R}^n for some $n \in \omega \cup \{\omega\}$.

- There are a number of descriptive set-theoretic attempts to generalize the Jayne-Rogers Theorem (e.g., by Pawlikowski-Sabok (2012), Motto Ros (2013), et al.)
- K. (2015) used the Shore-Slaman Join Theorem for Turing degrees to show some variant of the Jayne-Rogers Theorem for finite dimensional Polish spaces.
- To prove its infinite-dimensional version, Gregoriades-K.-Ng showed the Shore-Slaman Join Theorem for continuous degrees by introducing the weighted version of Kumabe-Slaman forcing.

- There are a number of descriptive set-theoretic attempts to generalize the Jayne-Rogers Theorem (e.g., by Pawlikowski-Sabok (2012), Motto Ros (2013), et al.)
- K. (2015) used the Shore-Slaman Join Theorem for Turing degrees to show some variant of the Jayne-Rogers Theorem for finite dimensional Polish spaces.
- To prove its infinite-dimensional version, Gregoriades-K.-Ng showed the Shore-Slaman Join Theorem for continuous degrees by introducing the weighted version of Kumabe-Slaman forcing.
- $oldsymbol{\bullet}$ The above results show that finite-level Borel isomorphisms are exactly σ -continuous isomorphisms of finite Borel rank.
 - (Here, a function is *σ*-continuous if it is written as the union of countably many partial continuous functions. This notion was introduced by Lusin in 1920s.)

- There are a number of descriptive set-theoretic attempts to generalize the Jayne-Rogers Theorem (e.g., by Pawlikowski-Sabok (2012), Motto Ros (2013), et al.)
- K. (2015) used the Shore-Slaman Join Theorem for Turing degrees to show some variant of the Jayne-Rogers Theorem for finite dimensional Polish spaces.
- To prove its infinite-dimensional version, Gregoriades-K.-Ng showed the Shore-Slaman Join Theorem for continuous degrees by introducing the weighted version of Kumabe-Slaman forcing.
- **4** The above results show that finite-level Borel isomorphisms are exactly σ -continuous isomorphisms of finite Borel rank.
 - (Here, a function is *σ*-continuous if it is written as the union of countably many partial continuous functions. This notion was introduced by Lusin in 1920s.)
- **5** K.-Pauly clarified that the degree structure (relative to an oracle) on a Polish space is invariant under σ -continuous isomorphisms.

Decomposition Theorem (Gregoriades-K.-Ng)

 \mathcal{A} : analytic subset of a Polish space; \mathcal{Y} : separable metrizable.

Suppose that $f: \mathcal{A} \to \mathcal{Y}$ satisfies that $S \in \sum_{-1+\eta}^{0} \Longrightarrow f^{-1}[S] \in \sum_{-1+\xi}^{0}$.

Then there is a $\prod_{n=1+\epsilon}^{0}$ -cover $(\mathcal{A}_n)_{n\in\omega}$ of \mathcal{A} such that

 $(\forall n)(\exists \theta \text{ with } \theta + \eta \leq \xi)$ the restriction $f \upharpoonright \mathcal{A}_n$ is of Baire class θ .

Corollary (Pawlikowski-Sabok 2012; Motto Ros 2013)

 $\emph{\textbf{X}}$: an analytic subset of a Polish space; $\emph{\textbf{Y}}$: separable metrizable.

The following are equivalent for a function $f: X \to Y$:

- **1** If is an n-th level Borel function for some $n < \omega$.
- 2 f is $\prod_{n=0}^{\infty}$ -piecewise continuous for some $n < \omega$.

Sketch of Proof when X and Y are countable-dimensional

$$f^{-1}\sum_{n=1}^{\infty}\subseteq\sum_{n=1}^{\infty}$$
 \Longrightarrow piecewise Baire $n-m$.

- ① Suppose: $A \in \sum_{m=1}^{0} (Y) \Rightarrow f^{-1}[A] \in \sum_{m=1}^{0} (X)$.
- 2 By the Louveau Separation Theorem, $f^{-1}[\cdot]: \sum_{m}^{0}(Y) \to \Delta_{m+1}^{0}(X)$ is Borel.
- Then we have the following inequality for Turing degrees:

$$(\forall w \geq_T z) (f(x) \oplus w)^{(m)} \leq_T (x \oplus w^{(\xi)})^{(n)}.$$

By using the Friedberg Jump Inversion Theorem:

$$(\forall a,b)(\exists c \geq_T a) \ [(b \oplus a^{(\xi)}) \equiv_T c^{(\xi)}$$

and the Shore-Slaman Join Theorem:

$$(\forall x)(\forall y) \ (y \nleq_T x^{(n)} \to (\exists g) \ [g \geq_T x \& g^{(n+1)} \leq_T g \oplus y],$$
 we obtain the following inequality for Turing degrees:

$$f(x) \leq_T (x \oplus z^{(\xi)})^{(n-m)}.$$

• Hence, f is decomposable into countably many Baire n-m functions $(x \mapsto \Phi_e^{(x \oplus z^{(c)})^{(n-m)}})_{e \in \mathbb{N}}$, where Φ_e^p is the e-th Turing machine computation with oracle p

$$f^{-1}\sum_{\substack{n=1\\ n+1}}^{\infty}\subseteq\sum_{n=1}^{\infty}$$
 \implies piecewise Baire $n-m$.

We also need the Shore-Slaman Join Theorem for continuous degrees. Recall that the Shore-Slaman Join Theorem is:

$$\mathcal{D}_{\mathcal{T}} \models (\forall x)(\forall y \nleq x^{(n)})(\exists g \geq x) \ g^{(n+1)} = y \oplus g = y \oplus x^{(n+1)}.$$

Unfortunately, this is false in the continuous degrees. However, we can still have the following weaker version:

Theorem (Gregoriades-K.-Ng)

The continuous degrees satisfy the following sentence:

$$(\forall x)(\forall y \nleq x^{(n)})(\exists g \geq x) \ y \oplus g = y \oplus x^{(n+1)}.$$

Proof: By a "weighted" version of Kumabe-Slaman forcing.

- There are a number of descriptive set-theoretic attempts to generalize the Jayne-Rogers Theorem (e.g., by Pawlikowski-Sabok (2012), Motto Ros (2013), et al.)
- K. (2015) used the Shore-Slaman Join Theorem for Turing degrees to show some variant of the Jayne-Rogers Theorem for finite dimensional Polish spaces.
- To prove its infinite-dimensional version, Gregoriades-K.-Ng showed the Shore-Slaman Join Theorem for continuous degrees by introducing the weighted version of Kumabe-Slaman forcing.
- **4** The above results show that finite-level Borel isomorphisms are exactly σ -continuous isomorphisms of finite Borel rank.
 - (Here, a function is *σ*-continuous if it is written as the union of countably many partial continuous functions. This notion was introduced by Lusin in 1920s.)
- **5** K.-Pauly clarified that the degree structure (relative to an oracle) on a Polish space is invariant under σ -continuous isomorphisms.

Second Level Borel Isomorphism Problem

Is there a Polish space which is second-level Borel isomorphic neither to $\mathbb R$ nor to $[0,1]^{\mathbb N}$?

Observation

(K.-Pauly) The degree structure (relative to an oracle) on a Polish space is invariant under finite-level Borel isomorphism.

Second Level Borel Isomorphism Problem

Is there a Polish space which is second-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$?

Observation

- (K.-Pauly) The degree structure (relative to an oracle) on a Polish space is invariant under finite-level Borel isomorphism.
 - The degree structure on \mathbb{R} is the *Turing degrees*.
 - The degree structure on [0, 1]^N is the continuous degrees
 (J. Miller 2004).

Second Level Borel Isomorphism Problem

Is there a Polish space which is second-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$?

Observation

- (K.-Pauly) The degree structure (relative to an oracle) on a Polish space is invariant under finite-level Borel isomorphism.
 - The degree structure on \mathbb{R} is the *Turing degrees*.
 - The degree structure on [0, 1]^N is the continuous degrees
 (J. Miller 2004).
- Thus, to solve the second (finite) level Borel isomorphism problem, it suffices to find a Polish space whose degree structure is strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle).

Definition

• $\Gamma: 2^{\mathbb{N}} \to [0,1]^{\mathbb{N}}$ is ω -left-CEA operator if the output $\Gamma(x)$ is a sequence $(y_0, y_1, y_2, ...)$ such that y_{n+1} is left-c.e. in $(x, y_0, y_1, ..., y_n)$ uniformly in x and n.

Definition

- $\Gamma: 2^{\mathbb{N}} \to [0,1]^{\mathbb{N}}$ is ω -left-CEA operator if the output $\Gamma(x)$ is a sequence (y_0, y_1, y_2, \dots) such that y_{n+1} is left-c.e. in $(x, y_0, y_1, \dots, y_n)$ uniformly in x and n.
- ② (Formal Definition) Γ is ω -left-CEA if there is a left-c.e. operator γ such that for all n.

$$x_n := \Gamma(y)(n) = \gamma(y, n, x_0, x_1, \dots, x_{n-1}).$$

Definition

- $\Gamma: 2^{\mathbb{N}} \to [0,1]^{\mathbb{N}}$ is ω -left-CEA operator if the output $\Gamma(x)$ is a sequence (y_0, y_1, y_2, \dots) such that y_{n+1} is left-c.e. in $(x, y_0, y_1, \dots, y_n)$ uniformly in x and n.
- ② (Formal Definition) Γ is ω -left-CEA if there is a left-c.e. operator γ such that for all n,

$$x_n := \Gamma(y)(n) = \gamma(y, n, x_0, x_1, \dots, x_{n-1}).$$

3 An ω-left-CEA operator Γ : $\mathbb{N} \times 2^{\mathbb{N}} \to [0,1]^{\mathbb{N}}$ is *universal* if $(\forall \Psi \omega$ -left-CEA)(∃e) $\Psi = \lambda y$. $\Gamma(e,y)$.

Let ω **CEA** denote the graph of a universal ω -left-CEA operator.

Theorem (K.-Pauly)

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Let ω **CEA** denote the graph of a universal ω -left-CEA operator.

Theorem (K.-Pauly)

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Remark

Furthermore, *ω***CEA** is second-level Borel isomorphic to the following spaces:

- Rubin-Schori-Walsh (1979)'s strongly infinite dimensional totally disconnected Polish space.
- Roman Pol (1981)'s compactum: a compact metric space which is weakly infinite dimensional, but not countable dimensional (a solution to Alexandrov's problem in infinite dimensional topology).

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Idea of Proof

• Why is the degree structure of the space ωCEA strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle)?

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Idea of Proof

- Why is the degree structure of the space ωCEA strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle)?
- 2 Given a point x, focus on the Turing lower cone of x:

 $\{y \in \mathbf{2}^{\omega} : y \text{ is Turing reducible to any (Cauchy-)name of } x\}.$

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Idea of Proof

- Why is the degree structure of the space ω CEA strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle)?
- 2 Given a point x, focus on the Turing lower cone of x:

 $\{y \in 2^{\omega} : y \text{ is Turing reducible to any (Cauchy-)name of } x\}.$

The Turing lower cone of a point in Cantor space is a principal Turing ideal.

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Idea of Proof

- Why is the degree structure of the space ω CEA strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle)?
- 2 Given a point x, focus on the Turing lower cone of x:

 $\{y \in 2^{\omega} : y \text{ is Turing reducible to any (Cauchy-)name of } x\}.$

3 The Turing lower cone of a point in Cantor space is a principal Turing ideal.

(J. Miller 2004) For every countable Scott ideal *I* there is a point in Hilbert cube whose Turing lower cone is exactly *I*.

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Idea of Proof

- Why is the degree structure of the space ωCEA strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle)?
- 2 Given a point **x**, focus on the Turing lower cone of **x**:

 $\{y \in 2^{\omega} : y \text{ is Turing reducible to any (Cauchy-)name of } x\}.$

- 3 The Turing lower cone of a point in Cantor space is a principal Turing ideal.
 - The space ωCEA is large enough to have a point whose Turing lower cone is a non-principal Turing ideal.
- (J. Miller 2004) For every countable Scott ideal *I* there is a point in Hilbert cube whose Turing lower cone is exactly *I*.

The space ωCEA (as a subspace of Hilbert cube) is a Polish space which is finite-level Borel isomorphic neither to \mathbb{R} nor to $[0,1]^{\mathbb{N}}$.

Idea of Proof

- Why is the degree structure of the space ωCEA strictly intermediate between the Turing degrees and the continuous degrees (relative to any oracle)?
- 2 Given a point **x**, focus on the Turing lower cone of **x**:

 $\{y \in 2^{\omega} : y \text{ is Turing reducible to any (Cauchy-)name of } x\}$.

- 3 The Turing lower cone of a point in Cantor space is a principal Turing ideal.
 - The space ωCEA is large enough to have a point whose Turing lower cone is a non-principal Turing ideal.
- (J. Miller 2004) For every countable Scott ideal *I* there is a point in Hilbert cube whose Turing lower cone is exactly *I*.
 - The Turing lower cone of a point in ωCEA cannot be closed under the ω-th Turing jump.

There are continuum many compact metric spaces up to n-th level Borel isomorphism for any $n < \omega$.

- An oracle Π_2^0 singleton is a function whose graph is G_δ in Hilbert cube.
- K.-Pauly introduced the notion of almost arithmetical (aa) reducibility between oracle Π₂⁰ singletons.
- Introduce a method of constructing a Polish space S(G) from a countable set G of oracle Π_2^0 singletons such that
 - if the degree structure on S(G) is included in that of S(H) (relative to an oracle), then G is aa-included in H.
- The finite level Borel isomorphism problem is reduced to the problem on aa-degrees for oracle Π_2^0 singletons. The latter problem is easy!
- Although the spaces $\mathcal{S}(\mathcal{G})$ are not compact, one can easily see that the Lelek-compactification in infinite dimensional topology preserves the finite-level Borel structure of the space.

There are continuum many compact metric spaces up to n-th level Borel isomorphism for any $n < \omega$.

Remark

This result solves Motto Ros' problem on the linear-isometric classification of the Banach spaces consisting of bounded real-valued finite class Baire functions on Polish spaces.

There are continuum many compact metric spaces up to n-th level Borel isomorphism for any $n < \omega$.

Remark

This result solves Motto Ros' problem on the linear-isometric classification of the Banach spaces consisting of bounded real-valued finite class Baire functions on Polish spaces.

T. Kihara, Decomposing Borel functions using the Shore-Slaman join theorem, *Fundamenta Mathematicae* **230** (2015), pp. 1–13.

T. Kihara and A. Pauly, Point degree spectra of represented spaces, submitted.

V. Gregoriades, T. Kihara and K. M. Ng, Turing degrees in Polish spaces and decomposability of Borel functions, *submitted*.