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Fourier series: from undergraduate differential
equations onward
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We’ll work in the complex version of L [—7t, 7t]: the space of all
measurable f : [—7, 1] — C such that [™_|f(t)[Pdt < oco.



Fourier series: convergence

Question (Fourier)

Does the Fourier series of a continuous function converge pointwise
to the function?

Theorem (Dirichlet)

If f is continuously differentiable, then its Fourier series converges to
f everywhere.

Theorem (du Bois-Reymond 1876)

There is a continuous function whose Fourier series diverges at a
point.

Conjecture (Lusin 1913)

Iff is a function in L?, then its Fourier series converges to f almost
everywhere.

Theorem (Carleson 1966, Hunt 1968)

Suppose 1 < p < oo. If f is a function in LP[—r, 7|, then its Fourier
series converges to f almost everywhere.



Definitions

Foralln € Zandf € L'[-m, 7,

) = 5 [ FE

and for all f € L'[—7, 1] and N € N,

N

Sn(f) =), cn(f)e™.

n=—N
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Sn(f) is the (N + 1) partial sum of f’s Fourier series. We say
f € LY[—m, rt] is analytic if ¢, (f) = 0 whenever n < 0.

A trigonometric polynomial is a function in the linear span of
{e™ | n € Z}, and the degree of such a polynomial p is the
smallest d € IN such that S;(p) = p.



Main theorems

Suppose p > 1is a computable real.

Theorem 1
Ifty € [—m, it] is Schnorr random and f is a computable vector in
LP[—rt, 1t|, then the Fourier series for f converges at t.

Theorem 2
Ifty € [—m, t] is not Schnorr random, then there is a computable
function f : [—7t, 1] — C whose Fourier series diverges at ty.

Note: There are incomputable functions that are computable as
vectors, so Theorem 2 is stronger than Theorem 1’s converse.



A computable analysis primer (I)

» A point z € C is computable if there is an algorithm that,
given k € IN, computes a rational point q such that
lg —z| <27%

> A trigonometric polynomial 7 is rational if each of its
coefficients is a rational point.



A computable analysis primer (II)
Let p > 1 be a computable real and f € LF[—m, 7.

» f is a computable vector of LP[—rt, rt] if there is an algorithm
that, given k € IN, computes a rational polynomial 7 such
that ||f — ||, <27

» f: C — C is computable if there is an algorithm P such that

» whenever P is given an open rational rectangle as input, it
either does not halt or returns an open rational rectangle,

» when P halts on an open rational rectangle R, the rectangle
it outputs contains f(z) for every z € RN dom(f), and

» when U is a neighborhood of z € dom(f) and V is a
neighborhood of f(z), there is an open rational rectangle R
such thatz € R C U and P(R) is a rational rectangle in V.



Some facts

Proposition
Suppose p > 1 is a computable real and f € LF[—m, 7).

1. Iff is a computable vector, then ||f||, and (c,(f))uncz are
computable.

2. If p = 2, then f is computable if both ||f ||, and (c,(f))nez are
computable.

Corollary

There is an incomputable vector f € L?[—7, 7t] such that {c,(f))nez
is computable.

Proof.

Let (r4)nen be a computable sequence of positive rational
numbers such that y°° ;72 is incomputable (Specker). If

f =Y orme™, then ||f||3 = L0272 and f is incomputable. [



Theorem 1

Theorem 1

Suppose p > 1 is a computable real. If ty € [—m, 7t] is Schnorr
random and f is a computable vector in LP[—7t, 11|, then the Fourier
series for f converges at .



Theorem 1

Theorem 1

Suppose p > 1 is a computable real. If ty € [—m, 7t] is Schnorr
random and f is a computable vector in LP[—7t, 11|, then the Fourier
series for f converges at .

Definition

Suppose (fu)nen is a sequence of functions on [—7, 7). A
function 77 : N x IN — IN is a modulus of almost-everywhere
convergence for (f,)nen if, for all k and m,

u({t € [ ] | IMN > ik, m)|fan(t) —fu(t)] > 275}) <27



Two lemmas

Lemma

Suppose p is a computable real such that p > 1, and suppose f is a
computable vector in LP[—7t, 7t|. Then (Sn(f))nenN has a computable
modulus of almost-everywhere convergence.

Lemma

Assume (f,)nenN is a uniformly computable sequence of functions on
[— 71, 7T] for which there is a computable modulus of
almost-everywhere convergence. Then the sequence (fy)neN
converges at every Schnorr random real.



First lemma
We must construct our 7 : IN x N — IN. Let k and m be given.

» Compute a rational trigonometric polynomial 7, so
If = T |p < 2703 C=1 where

IISIAAIPISN(f)Illl < Cllfllp

(Fefferman’s inequality).
» Set 17(k, m) to be the degree of T .
For ¢ € [P[—m, 7|, let

Eg)={te[-mn]| Sl&pISN(g)(t)! > 27k,

» Lots of manipulations.
» Fefferman’s inequality:

[1sup SN (f — Tim) |11 < 2703
N

» Chebyshev’s inequality:
<Ek+2(f Tkm) < 9~ (m+k+3) k+2 < m



Second lemma

Lemma

Assume () nen is a uniformly computable sequence of functions on
[—7t, 7T] for which there is a computable modulus of
almost-everywhere convergence. Then the sequence (f,)neN
converges at every Schnorr random real.

Definition (Miyabe)

A Schnorr integral test is a lower semicomputable function
T:[—m, ] — [0,00] so that [ Tdu is a computable real. A
point x € [—7t, 7] is Schnorr random if and only if T(x) < oo for
every Schnorr integral test T.



Define a Schnorr integral test:

» Let 77 be a computable modulus of almost-everywhere
convergence for (f,)nen. Let Ny = 11(k, k).

» For each k € N and each t € [—1, 7], define
ge(t) = min{1, max{[fu(t) — fu(D)] | Ni < M,N < Ny},

> (9k)ken is computable. Set T = Y 12 k-
Show that T is a Schnorr integral test:

» T is clearly lower semicomputable.

» T is computable: Lots of manipulation.



Claim
T(ty) = oo whenever (f,(ty))neN diverges.

Suppose (f,(to))nen diverges.

> There is a ko such that limsup,,  [fm(fo) — fn(fo)| > 277
So: show that for all kq,

Y- gil(to) > 275,
k=k;

» By the choice of ko, there are M and N such that
Ny, <M < Nand

2750 < |fir(to) — fn(to) |-

» Form a telescoping sum and apply the Triangle Inequality:

fm(to) — fn(to)] < i k(to)-

k=k;



Theorem 2

Theorem 2
Ifty € [—m, t] is not Schnorr random, then there is a computable
function f : [—7t, 1] — C whose Fourier series diverges at to.

The proof follows a construction of Kahane and Katznelson.



Three lemmas

Lemma

Suppose G is a computably compact subset of the unit circle so that
A(G) is computable and smaller than 27t. Then there is a computable
function ¥ from ID U G into the horizontal strip R x (—7, 7 ) that is
analytic on ID and has the property that

Re(y(7)) > —3In(A(G)(27) 1) for all { € G. Furthermore, we
may choose P so that p(0) = 0.

Lemma

Suppose G is a computably compact subset of [—7t, 7] so that A(G) is
computable and smaller than 27t. Then there is a computable and
analytic trigonometric polynomial R so that

Re(R(t)) > —3In(A(G)/(2m)) for all t € G and so that

|Im(R(t))| < 7t for all t € [—7t, 7t]. Furthermore, we may choose R
so that R(0) = 0.



Lemma

Suppose G is a computably compact subset of [— 7, 7] so that A(G) is
computable and smaller than 27t. Then there is a computable
trigonometric polynomial p so that

sup s (p) (1)) = - in (7))

forallt € Gand so that ||p|le < 1.

The proofs of these lemmas are all (1) analytic and (2) uniform.



Now, given those lemmas. . .

Suppose tg isn’t Schnorr random. Then there is a Schnorr test
(Vi)nen such that fp € NV,

Compute an array of closed rational intervals (I, ;) jen such
that

> V2n = U] Il’l,j and
> u(lyjNI,p) =0whenj# .

Compute for each 1 a sequence m,, o < m,1 < ...such that

Von — U In] < 27(2n+k+])

]<mnk

for all n and k.



Define

Guo = U In,j N [—7'[, 7'[]

j<myua

Gn,k = U In,]' N [—7‘[, 7'[]

my i <jSmn,k+1
Then p(G, ) < 2-@.

Given n and k, use the third lemma to get a trigonometric
polynomial p such that ||p|| < 1 and

1 .u(Gn k)
_71 ZATRAT
sup S (¢)(1)| >~ in
forall t € G, . Set ppx = 2~ " p. Then

1
sup ISN(Pui) ()] > o



Compute an array (7, ) that produces “nice” Fourier

coefficients. Set
f = Zern,kpn/k'
nk

Since | |pyxl|eo < 27K, f is computable.



Finally: Show that f’s Fourier series diverges at ty by showing
that

sup IS (1) (1) — Sx (/) ()| > g

Fix Ny and choose 7 such that (n,0) > Ny and k such that
to € G-

The array was constructed so that there are M and N’ so that
er Puk = Sn'(f) — Sm(f) and M > (n,k) > (n,0), and by our
construction of p, , there is an N such that M < N < N’ and

supy [Sm(f) (to) — Sn(f) (to)| > &=
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