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Fourier series: from undergraduate differential
equations onward

We’ll work in the complex version of Lp[−π, π]: the space of all
measurable f : [−π, π]→ C such that

∫ π
−π |f (t)|

p dt < ∞.



Fourier series: from undergraduate differential
equations onward

We’ll work in the complex version of Lp[−π, π]: the space of all
measurable f : [−π, π]→ C such that

∫ π
−π |f (t)|

p dt < ∞.



Fourier series: convergence
Question (Fourier)
Does the Fourier series of a continuous function converge pointwise
to the function?

Theorem (Dirichlet)
If f is continuously differentiable, then its Fourier series converges to
f everywhere.

Theorem (du Bois-Reymond 1876)
There is a continuous function whose Fourier series diverges at a
point.

Conjecture (Lusin 1913)
If f is a function in L2, then its Fourier series converges to f almost
everywhere.

Theorem (Carleson 1966, Hunt 1968)
Suppose 1 < p < ∞. If f is a function in Lp[−π, π], then its Fourier
series converges to f almost everywhere.



Definitions

For all n ∈ Z and f ∈ L1[−π, π],

cn(f ) =
1

2π

∫ π

−π
f (t)eint dt,

and for all f ∈ L1[−π, π] and N ∈N,

SN(f ) =
N

∑
n=−N

cn(f )eint.

SN(f ) is the (N + 1)st partial sum of f ’s Fourier series. We say
f ∈ L1[−π, π] is analytic if cn(f ) = 0 whenever n < 0.

A trigonometric polynomial is a function in the linear span of
{eint | n ∈ Z}, and the degree of such a polynomial p is the
smallest d ∈N such that Sd(p) = p.
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Main theorems

Suppose p > 1 is a computable real.

Theorem 1
If t0 ∈ [−π, π] is Schnorr random and f is a computable vector in
Lp[−π, π], then the Fourier series for f converges at t0.

Theorem 2
If t0 ∈ [−π, π] is not Schnorr random, then there is a computable
function f : [−π, π]→ C whose Fourier series diverges at t0.

Note: There are incomputable functions that are computable as
vectors, so Theorem 2 is stronger than Theorem 1’s converse.



A computable analysis primer (I)

I A point z ∈ C is computable if there is an algorithm that,
given k ∈N, computes a rational point q such that
|q− z| < 2−k.

I A trigonometric polynomial τ is rational if each of its
coefficients is a rational point.



A computable analysis primer (II)

Let p ≥ 1 be a computable real and f ∈ Lp[−π, π].

I f is a computable vector of Lp[−π, π] if there is an algorithm
that, given k ∈N, computes a rational polynomial τ such
that ||f − τ||p < 2−k.

I f : C→ C is computable if there is an algorithm P such that

I whenever P is given an open rational rectangle as input, it
either does not halt or returns an open rational rectangle,

I when P halts on an open rational rectangle R, the rectangle
it outputs contains f (z) for every z ∈ R∩ dom(f ), and

I when U is a neighborhood of z ∈ dom(f ) and V is a
neighborhood of f (z), there is an open rational rectangle R
such that z ∈ R ⊆ U and P(R) is a rational rectangle in V.



Some facts

Proposition
Suppose p ≥ 1 is a computable real and f ∈ Lp[−π, π].

1. If f is a computable vector, then ||f ||p and 〈cn(f )〉n∈Z are
computable.

2. If p = 2, then f is computable if both ||f ||p and 〈cn(f )〉n∈Z are
computable.

Corollary
There is an incomputable vector f ∈ L2[−π, π] such that 〈cn(f )〉n∈Z

is computable.

Proof.
Let 〈rn〉n∈N be a computable sequence of positive rational
numbers such that ∑∞

n=0 r2
n is incomputable (Specker). If

f = ∑∞
n=0 rneint, then ||f ||22 = ∑∞

n=0 r2
n and f is incomputable.



Theorem 1

Theorem 1
Suppose p > 1 is a computable real. If t0 ∈ [−π, π] is Schnorr
random and f is a computable vector in Lp[−π, π], then the Fourier
series for f converges at t0.

Definition
Suppose 〈fn〉n∈N is a sequence of functions on [−π, π]. A
function η : N×N→N is a modulus of almost-everywhere
convergence for 〈fn〉n∈N if, for all k and m,

µ({t ∈ [−π, π] | ∃M, N ≥ η(k, m)|fN(t)− fM(t)| ≥ 2−k}) < 2−m.
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Two lemmas

Lemma
Suppose p is a computable real such that p > 1, and suppose f is a
computable vector in Lp[−π, π]. Then 〈SN(f )〉n∈N has a computable
modulus of almost-everywhere convergence.

Lemma
Assume 〈fn〉n∈N is a uniformly computable sequence of functions on
[−π, π] for which there is a computable modulus of
almost-everywhere convergence. Then the sequence 〈fn〉n∈N

converges at every Schnorr random real.



First lemma
We must construct our η : N×N→N. Let k and m be given.

I Compute a rational trigonometric polynomial τk.m so
||f − τk,m||p ≤ 2−(m+k+3)C−1 where

|| sup
N
|SN(f )| ||1 ≤ C||f ||p

(Fefferman’s inequality).
I Set η(k, m) to be the degree of τk,m.

For g ∈ Lp[−π, π], let

Êk(g) = {t ∈ [−π, π] | sup
N
|SN(g)(t)| > 2−k}.

I Lots of manipulations.
I Fefferman’s inequality:

|| sup
N
|SN(f − τk,m)| ||1 ≤ 2−(m+k+3)

I Chebyshev’s inequality:

µ(Êk+2(f − τk,m)) ≤ 2−(m+k+3)2k+2 < 2−m



Second lemma

Lemma
Assume 〈fn〉n∈N is a uniformly computable sequence of functions on
[−π, π] for which there is a computable modulus of
almost-everywhere convergence. Then the sequence 〈fn〉n∈N

converges at every Schnorr random real.

Definition (Miyabe)
A Schnorr integral test is a lower semicomputable function
T : [−π, π]→ [0, ∞] so that

∫ π
−π T dµ is a computable real. A

point x ∈ [−π, π] is Schnorr random if and only if T(x) < ∞ for
every Schnorr integral test T.



Define a Schnorr integral test:

I Let η be a computable modulus of almost-everywhere
convergence for 〈fn〉n∈N. Let Nk = η(k, k).

I For each k ∈N and each t ∈ [−π, π], define

gk(t) = min{1, max{|fM(t)− fN(t)| | Nk < M, N ≤ Nk+1}}.

I 〈gk〉k∈N is computable. Set T = ∑∞
k=0 gk.

Show that T is a Schnorr integral test:

I T is clearly lower semicomputable.
I T is computable: Lots of manipulation.



Claim
T(t0) = ∞ whenever 〈fn(t0)〉n∈N diverges.
Suppose 〈fn(t0)〉n∈N diverges.

I There is a k0 such that lim supM,N |fM(t0)− fN(t0)| ≥ 2−k0 .
So: show that for all k1,

∞

∑
k=k1

gk(t0) ≥ 2−k0 .

I By the choice of k0, there are M and N such that
Nk1 ≤ M < N and

2−k0 ≤ |fM(t0)− fN(t0)|.

I Form a telescoping sum and apply the Triangle Inequality:

|fM(t0)− fN(t0)| ≤
∞

∑
k=k1

gk(t0).



Theorem 2

Theorem 2
If t0 ∈ [−π, π] is not Schnorr random, then there is a computable
function f : [−π, π]→ C whose Fourier series diverges at t0.

The proof follows a construction of Kahane and Katznelson.



Three lemmas

Lemma
Suppose G is a computably compact subset of the unit circle so that
λ(G) is computable and smaller than 2π. Then there is a computable
function ψ from D∪G into the horizontal strip R× (−π

2 , π
2 ) that is

analytic on D and has the property that
Re(ψ(ζ)) ≥ − 3

4 ln(λ(G)(2π)−1) for all ζ ∈ G. Furthermore, we
may choose ψ so that ψ(0) = 0.

Lemma
Suppose G is a computably compact subset of [−π, π] so that λ(G) is
computable and smaller than 2π. Then there is a computable and
analytic trigonometric polynomial R so that
Re(R(t)) ≥ − 1

2 ln(λ(G)/(2π)) for all t ∈ G and so that
|Im(R(t))| < π for all t ∈ [−π, π]. Furthermore, we may choose R
so that R(0) = 0.



Lemma
Suppose G is a computably compact subset of [−π, π] so that λ(G) is
computable and smaller than 2π. Then there is a computable
trigonometric polynomial p so that

sup
N
|SN(p)(t)| ≥ −

1
4π

ln
(

λ(G)

2π

)
for all t ∈ G and so that ‖p‖∞ < 1.

The proofs of these lemmas are all (1) analytic and (2) uniform.



Now, given those lemmas. . .

Suppose t0 isn’t Schnorr random. Then there is a Schnorr test
〈Vn〉n∈N such that t0 ∈ ∩Vn.

Compute an array of closed rational intervals 〈In,j〉n,j∈N such
that

I V2n =
⋃

j In,j and
I µ(In,j ∩ In,j′) = 0 when j 6= j′.

Compute for each n a sequence mn,0 < mn,1 < . . . such that

µ

V2n −
⋃

j≤mn,k

In,j

 < 2−(2
n+k+1)

for all n and k.



Define

Gn,0 =
⋃

j≤mn,1

In,j ∩ [−π, π]

Gn,k =
⋃

mn,k<j≤mn,k+1

In,j ∩ [−π, π]

Then µ(Gn,k) < 2−(2
n+k).

Given n and k, use the third lemma to get a trigonometric
polynomial p such that ||p||∞ < 1 and

sup
N
|SN(p)(t)| > −

1
4π

ln
(

µ(Gn,k)

2π

)
for all t ∈ Gn,k. Set pn,k = 2−(n+k+1)p. Then

sup
N
|SN(pn,k)(t)| >

1
8π

.



Compute an array 〈rn,k〉 that produces “nice” Fourier
coefficients. Set

f = ∑
n,k

ern,kpn,k.

Since ||pn,k||∞ < 2−(n+k+1), f is computable.



Finally: Show that f ’s Fourier series diverges at t0 by showing
that

sup
M,N
|SM(f )(t0)− SN(f )(t0)| >

1
8π

.

Fix N0 and choose n such that 〈n, 0〉 ≥ N0 and k such that
t0 ∈ Gn,k.

The array was constructed so that there are M and N′ so that
ern,kpn,k = SN′(f )− SM(f ) and M ≥ 〈n, k〉 ≥ 〈n, 0〉, and by our
construction of pn,k, there is an N such that M ≤ N ≤ N′ and
supM,N |SM(f )(t0)− SN(f )(t0)| > 1

8π .
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