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Randomness - aléatoire - Zufall - azar - rasgelelik - satunnaisuuden - slumpmässighet

In 1909 Émile Borel gave a definition of the most elementary form of
randomness for a real number, thinking in the sequence of digits that
determine its expansion.

He called such reals normal numbers.
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Normal numbers

A base is an integer greater than or equal to 2.

For a real number x in the unit interval, the expansion of x in base b is a
sequence a1a2a3 . . . of integers from {0, 1, . . . , b− 1} such that

x = 0.a1a2a3 . . .

where x =
∑
k≥1

ak/b
k, and x does not end with a tail of b− 1.
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Normal numbers

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of x in
base b with limiting frequency 1/bk.

Equivalently: a real number x is normal to base b if, for every positive
integer k, x is simply normal to base bk.

A real number x is absolutely normal if x is normal to every base.
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Existence

Theorem (Borel 1909)

The set of absolutely normal numbers in the unit interval has Lebesgue
measure 1.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to any base.
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Examples?

Problem (Borel 1909)

Give one example.

Are the usual mathematical constants, such as π, e, or
√
2, absolutely

normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.

Émile Borel 1871-1956 .
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Normal to all bases
Bulletin de la Société Mathématique de France (1917) 45:127–132; 132–144
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Normal to all bases
Turing, A. M. A Note on Normal Numbers. Collected Works of Alan M. Turing, Pure

Mathematics, 117-119. Notes of editor J.L. Britton, 263-265. North Holland, 1992.

Corrected and completed in Becher, Figueira and Picchi, 2007.
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Letter exchange between Turing and Hardy (AMT/D/5)

                        June 1
Dear Turing,

I have just came across your letter (March 28) which I seem to 
have put aside for reflection and forgotten.

I have a vague recollection that Borel says in one of his books 
that Lebesgue had shown him a construction. 
Try Leçons sur la théorie de la croissance (including the 
appendices), or the productivity book (written under his 
direction by a lot of people, but including one volume on 
arithmetical prosy, by himself).

Also I seem to remember vaguely that when Champernowne 
was doing his stuff I had a hunt, but could not find nothing 
satisfactory anywhere. 

Now, of course, when I do write, I do so from London, where I 
have no books to refer to. But if I put it off till my return, I may 
forget again.  

Sorry to be so unsatisfactory. But my 'feeling' is that Lebesgue 
made a proof which never got published.

Yours sincerely,
                                               G.H. Hardy

Verónica Becher Independence of normal numbers 9 / 1



Normal to all bases (or a prescribed set of bases)

1917 Not computable. Lebesgue; Sierpiński.

1937 Computable. Turing.

1961 Normal to a given set of bases, not normal to bases in complement. W.Schmidt

1971 Lowest known discrepancy. M. Levin.

. . .

2002 Recursive formulation of Sierpinski’s. Exponential complexity. Becher and Figueira

2007 Turing’s algorithm has exponential complexity. Becher, Figuiera and Picchi

2013 Polynomial complexity. Mayordomo and Lutz (martingales);Figueira and Nies (martingales)

Becher, Heiber and Slaman (nearly quadratic complexity)

2014 Normal to a given set of bases, not simply normal to bases in complement.
Becher and Slaman

2016 Simply normal to different bases Becher, Bugeaud Slaman

2015 Computable Liouville number. Exponential complexity.

Becher, Heiber and Slaman (generalizes to prescribed irrationality exponents).

2016 Levin’s for low discrepancy has exponential complexity. Alvarez and Becher

2016 Discrepancy for numbers obtained by algorithms above. Scheerer;

Madritsch, Scheerer and Tichy.
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Normal to all bases

Output of algorithm Becher, Heiber and Slaman, 2013 programmed by Martin Epszteyn.

0.4031290542003809132371428380827059102765116777624189775110896366...
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Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 . . . is normal to base 10.

1935 squares Besicovitch

1946 primes. Copeland and Ërdos,

2000 de Bruijn words Ugalde; Alvarez, Becher, Ferrari and Yuhjtman 2016.

Theorem (Bailey and Borwein 2012)

Stoneham number α2,3 =
∑
k≥1

1

3k 23k
is normal to base 2 but not simply

normal to base 6.

Verónica Becher Independence of normal numbers 12 / 1



Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 . . . is normal to base 10.

1935 squares Besicovitch

1946 primes. Copeland and Ërdos,
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Normal words

In this work we worry just about a single base, so, instead of real
numbers we consider infinite words.
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Finite transducer

A finite transducer is a finite automaton T = 〈Q,A,B, δ, q0〉 that has an
input and an output tape, where

Q is a finite set of states, q0 is the initial
A and B are input and output alphabets (finite)

The transition δ determines finitely many transitions p
a|v−−→ q,

for p, q ∈ Q, a ∈ A and v ∈ A∗.

Q

Input tape a1 a2 a3 a4 a5 a6 a7 a8

Output tape b1 b2 b3 b4 b5 b6 b7
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Example of a finite transducer

q0 q10|0
1|1

0|0
1|ε

If the input is 010011000111 · · · , the output is 01001000100 · · · .

Blocks of 1s become a single 1.
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Compression ratio

Let T = 〈Q,A,B, δ, q0〉 be a finite transducer. For input x = a1a2 . . . a
run in T is a sequence of transitions starting at q0,

q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ · · ·

Definition
The compression ratio of x = a1a2 . . . in T is

ρT (x) = lim inf
n→∞

|v1v2 · · · vn|
n

log |B|
log |A|

.

The compression ratio of x = a1a2a3 · · · is

ρ(x) = inf {ρT (x) : T is deterministic and one-to-one}
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The random words for finite automata

Theorem
normality ⇔ no finite-state martingale success

(Schnorr and Stimm 1971)

incompressibility ⇔ no finite-state martingale success (dimension 1)
(Dai, Lathrop, Lutz and Mayordomo 2004)

(Bourke, Hitchcock and Vinodchandran 2005)

normality ⇔ incompressibility (direct) (Becher and Heiber 2013)

normality ⇔ incompressibility non-deterministic or one counter
(Becher, Carton and Heiber 2015)

normality ⇔ incompressibility two-way transducers
(Carton and Heiber 2015)

Problem
Can deterministic push-down one-to-one transducers compress some
normal word?
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(Becher, Carton and Heiber 2015)

normality ⇔ incompressibility two-way transducers
(Carton and Heiber 2015)

Problem
Can deterministic push-down one-to-one transducers compress some
normal word?
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The definition of independence
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Two input transducers

Q

Input tapes

Output tape

a1 a2 a3 a4 a5 a6 a7

a′1 a
′
2 a
′
3 a
′
4 a
′
5 a
′
6 a
′
7

b1 b2 b3 b4 b5 b6 b7

The content of the first input tape is the input.

The content of the second input tape is used as an oracle.

Transducer T is one-to-one if for each oracle y fixed, the function
x 7→ T (x, y) is one-to-one.
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Two input tranducer

A finite finite transducer with two inputs is a finite automata
T = 〈Q,A,B, δ, q0〉, such that the transition function is
δ : Q×A×A→ Q× {0, 1} × {0, 1} ×B∗.
If δ(p, a, a′) = (q, d, d′, v) then

p is the current state and q is the new state,

a and a′ are the two symbols read on the input tapes,

d and d′ are the moves of the two heads on the input tapes,

v is the word written on the output tape.

Let x = a1a2a3 · · · and x′ = a′1a
′
2a
′
3 · · · be two infinite words. We write

〈p,m,m′〉
am,a

′
m′ |v−−−−−−→ 〈q, n, n′〉

if δ(p, am, a
′
m′) = (q, d, d′, v) and n = m+ d and n′ = m′ + d′.
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Conditional compression ratio

A run of T with x and x′ is a sequence of transitions, with m0 = m′0 = 1,

〈p0,m0,m
′
0〉

am0
,a′

m′
0
|v1

−−−−−−−→ 〈p1,m1,m
′
1〉

am1
,a′

m′
1
|v2

−−−−−−−→ 〈p2,m2,m
′
2〉 · · ·

Definition
The conditional compression ratio by T of x given y is

ρT (x/x
′) = lim inf

n→∞

|v1v2 · · · vn|
mn

.

Note that ρT (x/x
′) does not depend on m′n.

ρ(x/y) = inf {ρT (x/y) : T is deterministic and one-to-one}

Recall T is one-to-one if for each y fixed, x 7→ T (x, y) is one-to-one.
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The definition of independence

Definition
The two words x and y are independent if they satisfy

ρ(x) = ρ(x/y) > 0 and ρ(y) = ρ(y/x) > 0.

It means that y does not help to compress x and x does not help to
compress y.

Theorem (Becher and Carton 2016)

The set {(x, y) : x and y are independent} has Lebesgue measure 1.

Lemma
For each normal y, the set {x : ρ(x/y) < 1} has Lebesgue measure 0.
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Splitter

We write ε for the empty word.

Definition
A splitter is a deterministic transducer T = 〈Q,A, δ, q0〉 with one input
tape and two output tapes, The transition function is
δ : Q×A→ Q×A ∪ {ε} ×A ∪ {ε}. Hence, transitions have the form

p
a|a,ε−−−→ q or p

a|ε,a−−−→ q

For each state p, all outgoing transitions have the same type.

The splitter can be turned into a shuffler by exchanging input and
output. We consider deterministic shufflers as follows.
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Shuffler

A shuffler is a deterministic two input finite transducer which shuffles two
input words into a new word. Whether the next digit is taken from the
first or the second input word only depends the current state.

Definition
A shuffler is a finite transducer T = 〈Q,A, δ, q0〉 with two input tapes
and one output tape. The transition function is
δ : Q×A ∪ {ε} ×A ∪ {ε} → Q×A. A shuffler reads a symbol from
either the first or the second input tape depending on the current state
and copies it to the output tape, so transitions have the form

p
a,ε|a−−−→ q or p

ε,a|a−−−→ q.

For each state q, all incoming transitions have the same type.
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Example of a Shuffler

q0 q1

0, ε|0
1, ε|1

ε, 0|0
ε, 1|1

x = 0011010001 · · ·
y = 0100011000 · · ·

x ∨ y = 00011010001101000010 · · ·

Input words

Output word
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Example of a Shuffler

q0 q1

0, ε|0
1, ε|1

ε, 0|0
ε, 1|1

Digits from x

Digits from y

x = 0011010001 · · ·
y = 0100011000 · · ·

x ∨ y = 00011010001101000010 · · ·

Input words

Output word
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Example of another shuffler

q0 q10, ε|0
1, ε|1

ε, 1|1
ε, 0|0

x = 001 1 01 0001 · · ·
y = 01 0001 1 0001 · · ·

z = 001011000101100010001 · · ·

Input words

Output word

It alternates (possibly empty) blocks of 0s followed by a 1, from each
sequence.
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Shuffling independent words

Theorem (Becher and Carton 2016)

Shuffling two normal independent words yields a normal word.

Verónica Becher Independence of normal numbers 27 / 1



A peculiar normal word

Theorem (Becher, Carton and Heiber 2016)

There is a binary normal word x = a1a2a3 · · · such that a2n = an,
for every n > 1.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Since x is normal and x = even(x),

Corollary

There is a normal word x such that odd(x) and even(x) are not
independent.
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Toeplitz transformation: x 7→ T (x)

K. Jacobs and M. Keane. 0-1 sequences of Toeplitz type, 1969.

Let x = a1a2a3 · · · , then T (x) = b1b2b3 · · · where

bn = am if n = 2k(2m− 1) for some k > 0.

x : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
k = 0

a1 a2 a3 a4 a5 a6 a7 a8 a9
k = 1

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5
k = 2

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a5a1 a2
k = 3

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a1 a2a1

Verónica Becher Independence of normal numbers 29 / 1



Toeplitz transformation: x 7→ T (x)

K. Jacobs and M. Keane. 0-1 sequences of Toeplitz type, 1969.

Let x = a1a2a3 · · · , then T (x) = b1b2b3 · · · where

bn = am if n = 2k(2m− 1) for some k > 0.

x : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

k = 0
a1 a2 a3 a4 a5 a6 a7 a8 a9

k = 1
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5

k = 2
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a5a1 a2

k = 3
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a1 a2a1

Verónica Becher Independence of normal numbers 29 / 1



Toeplitz transformation: x 7→ T (x)

K. Jacobs and M. Keane. 0-1 sequences of Toeplitz type, 1969.

Let x = a1a2a3 · · · , then T (x) = b1b2b3 · · · where

bn = am if n = 2k(2m− 1) for some k > 0.

x : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
k = 0

a1 a2 a3 a4 a5 a6 a7 a8 a9

k = 1
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5

k = 2
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a5a1 a2

k = 3
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a1 a2a1

Verónica Becher Independence of normal numbers 29 / 1



Toeplitz transformation: x 7→ T (x)

K. Jacobs and M. Keane. 0-1 sequences of Toeplitz type, 1969.

Let x = a1a2a3 · · · , then T (x) = b1b2b3 · · · where

bn = am if n = 2k(2m− 1) for some k > 0.

x : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
k = 0

a1 a2 a3 a4 a5 a6 a7 a8 a9
k = 1

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5

k = 2
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a5a1 a2

k = 3
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a1 a2a1

Verónica Becher Independence of normal numbers 29 / 1



Toeplitz transformation: x 7→ T (x)

K. Jacobs and M. Keane. 0-1 sequences of Toeplitz type, 1969.

Let x = a1a2a3 · · · , then T (x) = b1b2b3 · · · where

bn = am if n = 2k(2m− 1) for some k > 0.

x : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
k = 0

a1 a2 a3 a4 a5 a6 a7 a8 a9
k = 1

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5
k = 2

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a5a1 a2

k = 3
a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a1 a2a1

Verónica Becher Independence of normal numbers 29 / 1



Toeplitz transformation: x 7→ T (x)

K. Jacobs and M. Keane. 0-1 sequences of Toeplitz type, 1969.

Let x = a1a2a3 · · · , then T (x) = b1b2b3 · · · where

bn = am if n = 2k(2m− 1) for some k > 0.

x : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
k = 0

a1 a2 a3 a4 a5 a6 a7 a8 a9
k = 1

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5
k = 2

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a5a1 a2
k = 3

a1 a2 a3 a4 a5 a6 a7 a8 a9a1 a2 a3 a4 a5a1 a2a1

Verónica Becher Independence of normal numbers 29 / 1



Many peculiar normal words

Theorem (Becher, Carton and Heiber 2016)

Let p be any positive integer. There is a binary normal word x = a1a2 . . .
such that, for every n, an = apn.
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Conjecture

Let T (x) be such that for all k, for all m, (T (x))2k(2m−1) = xm.

For x the Champernowne’s word 01 00011011 000001 · · · . experiments
suggest that T (x) is normal.

Conjecture

The set {x : T (x) is normal } has Lebesgue measure 1.
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Selecting

Let L be a set of finite words. If x = a1a2a3 · · · , then x � L is the word
ai1ai2ai3 · · · where i1 < i2 < i3 · · · and {i1, i2, i3, . . .} is the set
{i : a1 · · · ai−1 ∈ L}.

q0 q10|ε
1|ε

0|0
1|1

Input x = 00110100011100 · · ·
Output z = 100110 · · ·
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ai1ai2ai3 · · · where i1 < i2 < i3 · · · and {i1, i2, i3, . . .} is the set
{i : a1 · · · ai−1 ∈ L}.

q0 q10|ε
1|ε

0|0
1|1

Input x = 00110100011100 · · ·
Output z = 100110 · · ·

Selected digits

Non selected digits
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Selection preserves normality

Theorem (Agafonoff 1968)

If x is normal and L is rational (accepted by a finite automaton) then
x � L is normal.

Selections based on linear languages (recognized by one-turn pushdown
automata) or deterministic one-counter languages do not preserve
normality, Merkle and Reimann 2003.
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Selecting with a two input finite transducer

Agafonoff’s theorem says that selection by finite automata preserves
normality.

Theorem (Becher and Carton 2016)

Selection by a finite automata on a normal word using an independent
word as an oracle preserves normality.
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Open problems

Construct two independent normal words.
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Open problems

Is there a normal word on a binary alphabet x = a1a2 . . . satisfying, for
every n ≥ 1, a2n = xn and a3n = an?

We guess yes.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
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Open problems

Develop the theory of independence as uniform distribution modulo 1.

Theorem (D. Wall)

A real x is normal to base b if and only if the sequence (bnx)n≥0 is u.d.
modulo 1.
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Open problems

Develop the notion of independence of normality for shift spaces.

Definition
A sequence is normal in a shift of finite type if every block of A has a
limiting asymptotic frequency equal to its Parry measure.

Theorem (Alvarez and Carton 2016)

Let X be a subshift of finite type. A sequence x ∈ X is normal if and
only if it is incompressible by a finite transducer.
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Concluding remark

Little is known about the interplay between combinatorial, computational
and Diophantine properties of the expansions of real numbers.
These investigations on normal numbers aim to make progress in this
direction.

The End
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