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Plan of the talk

I General framework.

I Two probabilistic models,

the Bernoulli model and the Poisson model.

I Description of the tools,

the Poisson transform, the Poisson sequence.

I Two paths from the Poisson model to the Bernoulli model

I Both use the Mellin transform

I The first path : Depoissonization path with the Poisson transform.

I Uses The Mellin inverse transform and the saddle point.

I Need : Depoissonization sufficient conditions, well studied.

I The second path :Newton–Rice path with the Poisson sequence.

I Uses Newton interpolation and the Rice integral

I Need : Tameness conditions, less studied, that seem more restrictive.

I Study of sufficient conditions for tameness,

I using the inverse Laplace transform
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General framework.

Begin with (elementary) data

Consider algorithms which use as inputs finite sequences of data

If X is the set of data, then the set of inputs is X ? =
⋃
n≥0 Xn

Context (elementary) data input Study

source a symbol from an alphabet a (finite) word entropy

text an (infinite) word a sequence of words dictionary

geometry a point a sequence of points convex hull

Probabilistic studies.

I The set X is endowed with probability P
I The set XN is endowed with probability P[N ]

In cases (2) and (3), very often, the data are independently drawn with P
Not in case (1) where the successive symbols may be strongly dependent.
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Two probabilistic models.

The space of inputs is the set X ? of the finite sequences of elements of X .

There are two main probabilistic models on the set X ?.

I The Bernoulli model Bn, where the cardinality N is fixed equal to n

(then n→∞); The Bernoulli model is more natural in algorithmics.

I The Poisson model Pz of parameter z, where the cardinality N is a

random variable that follows a Poisson law of parameter z,

Pr[N = n] = e−z
zn

n!
,

(then z →∞). The Poisson model has nice probabilistic properties,

notably independence properties =⇒ easier to deal with.

=⇒ A first study in the Poisson model,

followed with a return to the Bernoulli model
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Costs of interest.

A variable (or a cost) R : X ? → N
describes the behaviour of the algorithm on the input, for instance

I R(x) is the path length of a tree [trie or digital search tree (dst)]

built on the sequence x := (x1, . . . , xn) of words xi

I R(x) is the number of vertices of the convex hull built on the

sequence x = (x1, . . . , xn) of points xi

I R(w) is a function of the probability pw of the finite prefix w, with

the word w viewed as a sequence w := (w1 . . . , wn) of symbols wi.

Our final aim is the analysis of R in the model Bn,

I We begin with the analysis in the (easier) Poisson model Pz,

I We then wish to return in the (more realistic) Bernoulli model.



Costs of interest.

A variable (or a cost) R : X ? → N
describes the behaviour of the algorithm on the input, for instance

I R(x) is the path length of a tree [trie or digital search tree (dst)]

built on the sequence x := (x1, . . . , xn) of words xi

I R(x) is the number of vertices of the convex hull built on the

sequence x = (x1, . . . , xn) of points xi

I R(w) is a function of the probability pw of the finite prefix w, with

the word w viewed as a sequence w := (w1 . . . , wn) of symbols wi.

Our final aim is the analysis of R in the model Bn,

I We begin with the analysis in the (easier) Poisson model Pz,

I We then wish to return in the (more realistic) Bernoulli model.



Costs of interest.

A variable (or a cost) R : X ? → N
describes the behaviour of the algorithm on the input, for instance

I R(x) is the path length of a tree [trie or digital search tree (dst)]

built on the sequence x := (x1, . . . , xn) of words xi

I R(x) is the number of vertices of the convex hull built on the

sequence x = (x1, . . . , xn) of points xi

I R(w) is a function of the probability pw of the finite prefix w, with

the word w viewed as a sequence w := (w1 . . . , wn) of symbols wi.

Our final aim is the analysis of R in the model Bn,

I We begin with the analysis in the (easier) Poisson model Pz,

I We then wish to return in the (more realistic) Bernoulli model.



Average-case analysis of a cost R defined on X ?

I Final aim : Study the sequence n 7→ r(n),

r(n) := E[n][R] := the expectation in the Bernoulli model Bn

I Consider the expectation Ez[R] in the Poisson model Pz

Ez[R] =
∑
n≥0

Ez[R | N = n] Pz[N = n]

=
∑
n≥0

E[n][R] Pz[N = n] = e−z
∑
n≥0

r(n)
zn

n!

Ez[R] is the Poisson transform of the sequence n 7→ r(n).

I With (properties of) the Poisson transform P (z) of n 7→ r(n)

return to (the asymptotics of) the sequence n 7→ r(n)
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The Poisson transform and the Poisson sequence

With a sequence f : n 7→ f(n), we associate

P (z) = e−z
∑
k≥0

f(k)
zk

k!
=
∑
k≥0

(−1)n
zk

k!
p(k)

I The series P (z) := P [f ](z) is the Poisson transform of n 7→ f(n).

I The sequence k 7→ p(k) is the Poisson sequence of n 7→ f(n).

I It is denoted by π[f ].

I Its Poisson transform is P (−z)e−z.

I Under this form, it is clear that the map π is involutive.

I Important binomial relation between f(n) and p(n)

p(n) =
n∑

k=k0

(−1)k
(
n

k

)
f(k), and f(n) =

n∑
k=k0

(−1)k
(
n

k

)
p(k).
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An instance of application: Toll functions and tries (I).

A source S on a finite alphabet Σ

X ? := {sequences of (infinite) words produced by S}

The trie T (x) built on x ∈ X ? is a tree :

I If |x| = 0, T (x) = ∅

I If |x| = 1,x = (x), T (x) is a leaf

labeled by x.

I If |x| ≥ 2, then T (x) is formed with

– an internal node o

– and a sequence of tries T (x〈σ〉) for σ ∈ Σ

a

a

a a

a

a

b

bb

b b

c

c c

c

c

abc

b c b b b

cba bbc cab

I x〈σ〉 is the subsequence of x formed with words which begin with σ

I x〈σ〉 is formed with words of x〈σ〉 stripped of their initial symbol σ.

I If x〈σ〉 6= ∅, the edge o→ T (x〈σ〉) is labelled with σ.
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An instance of application: Toll functions and tries (II).

A sequence n 7→ f(n) with val(f) = 2 plays the role of a toll function.

With the toll f , associate the cost R defined on X ?

R(x) :=
∑

w∈Σ?

f(|x〈w〉|),

I x〈w〉 is the subsequence of x

formed with words which begin with the prefix w

I f(|x〈w〉|) is the toll “payed”

by the subtrie T (x〈w〉) of root labelled by w

a

a

a a

a

a

b

bb

b b

c

c c

c

c

abc

b c b b b

cba bbc cab

f(k) = 1 =⇒ R(x) is the number of internal nodes of T (x)

f(k) = k =⇒ R(x) is the external path length of T (x)

Another instance (less classical) : f(k) = k log k =⇒ .....

R(x) is the number of symbol comparisons performed by QuickSort on x.

What is the mean value of the cost R(x) when x ∈ Xn ?
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An instance of application: Toll functions and tries (III).

Remind: R(x) :=
∑

w∈Σ?

f(|x〈w〉|) =
∑

w∈Σ?

f(Nw(x))

where Nw is the number of words which begin with w.

What is given? – the source with the probabilities pw.

– the toll sequence n 7→ f(n), its transform P (z) and its sequence π[f ]

P (z) = Ez[f(N))] = e−z
∑
n≥2

f(n)
zn

n!
=
∑
n≥2

(−1)np(n)
zn

n!
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Part II – Description of the two paths. Generic tools.

Two paths from the Poisson model to the Bernoulli model

I Both use the Mellin transform



Description of the two possible paths.

Begin with a sequence k 7→ f(k),

consider its Poisson transform P (z) and its Poisson sequence π[f ] :n 7→ p(n),

P (z) = e−z
∑
k≥0

f(k)
zk

k!
=
∑
n≥0

(−1)n
zn

n!
p(n)

Assume some “knowledge”

on the Poisson transform P (z) or the Poisson sequence π[f ].

There are two paths for returning to the initial sequence

I Depoissonisation method (DP)

I Deal with P (z), find its asymptotics (z →∞)

I Compare the asymptotics of the sequence f(n) (n→∞)

to the asymptotics of P (n)

I Rice method (Ri)

I Deal with the sequence π[f ] : n 7→ p(n),

I and its analytic lifting π[f ] which is proven to exist

I Return to the sequence n 7→ f(n) via the binomial formula

which is tranfered into an integral, the Rice integral.
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A first technical condition: Valuation-Degree Condition

Definition. For a non zero real sequence n 7→ f(n), define

val(f) := min{k | f(k) 6= 0},

deg(f) := inf{c | f(k) = O(kc)} = lim sup

{
log f(k)

log k
| k ≥ k0

}
.

The sequence n 7→ f(n) satisfies the Valuation-Degree Condition (VD),

if and only if d := deg(f) < k0 := val(f) .

If n 7→ f(n) is of polynomial growth, then deg (f) is finite.

In this case, the VD-Condition is not restrictive: Replace f by f+

f+(n) = 0 for n ≤ d, f+(n) = f(n) for n > d .

We always assume the VD-Condition to hold,

with a difference d− k0 as smallest as wished.
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A second technical tool: the canonical sequence.

When val(f) = k0, P (z) is written as

P (z) = zk0Q(z), Q(z) = e−z
∑
k≥0

g(k)
zk

k!
=
∑
n≥0

(−1)n
zn

n!
q(n) .

The sequence k 7→ g(k) is the canonical sequence associated with k 7→ f(k)

g(k) =
f(k + k0)

(k + 1) . . . (k + k0)
for k ≥ 0 .

It satisfies the VD-Condition, with val(g) = 0 and deg g = d− k0 < 0.

Sufficient to consider sequences with val(g) = 0 and deg g = d− k0 < 0.

There are relations to return to the initial sequence f(n)

I between the Poisson sequences k 7→ q(k) and k 7→ p(k)

p(k + k0) = (k + k0) . . . (k + 1)q(k) for k ≥ 0 .

I between the Poisson transforms P (z) = zk0Q(z)

Ex: f(k) = k log k with k0 = 2 =⇒ g(k) =
f(k + 2)

(k + 1)(k + 2)
=

1

k + 1
log(k+2)
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A tool which is used in each of the two paths: The Mellin transform (I).

The Mellin transform H∗ : s 7→ H∗(s) of x 7→ H(x) is

H∗(s) :=

∫ ∞
0

H(x)xs−1dx.

If H(x) = O(x−α) as x→ 0 and H(x) = O(x−β) as x→∞,

then the Mellin transform H∗ exists in the strip 〈α, β〉 := {s | <s ∈]α, β[}.

When H is defined inside cones C(a, θ) := {z | | arg(z − a)| < θ},
an important lemma, often called “Exponential Smallness Lemma”.

Lemma. [Flajolet-Gourdon-Dumas (1998)] If, inside the cone C(0, θ)
with θ > 0 one has H(z) = O(|z|−α) as z → 0 and H(z) = O(|z|−β) as

|z| → ∞, then the following estimate is uniform in 〈α, β〉

H∗(s) = O(e−θ|t|), (s = σ + it)
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The Mellin transform (II): a powerful tool for the two paths

We use the Mellin transform P ∗(s) of the Poisson transform P (z) of f(n)

for which we have some “knowlege”

The ”knowledge” on P (z) is tranfered into some “knowledge” on P ∗(s).

An instance of this type of transfer

Q(z) =
∑

w∈Σ?

P (zpw) =⇒ Q∗(s) =

[ ∑
w∈Σ?

p−sw

]
P ∗(s)

For the Newton-Rice path, use directly P ∗(s) and more precisely P ∗(s)/Γ(s)

For the DP path, use also the properties of the inverse Mellin transform:

P (z) =
1

2iπ

∫
↑
P ∗(s)z−sds

Poles of P ∗(s) on the right of the fundamental strip

=⇒ Asymptotic behaviour of P (z) for z →∞.
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Part III – the Depoissonization path (DP)

It deals with the Poisson transform P (z). It

I compares f(n) and P (n) with the Poisson–Charlier expansion

I uses the Mellin inverse transform for the asymptotics of P (n)

I needs depoissonization sufficient conditions JS,

for using and the saddle-point method

and truncating the Poisson-Charlier expansion

I obtains the asymptotics of f(n).

I better understands the JS conditions:

they are true in any practical situation !

Main contributors

I Jacquet and Szpankowski [1998], two papers...

I Hwang-Fuchs-Zacharovas [2010]

I Jacquet [2014]
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Depoissonization path (I). The Charlier-Poisson expansion

introduced in the AofA domain by Hwang-Fuchs-Zacharovas [2010]

P (z) =
∑
j≥0

P (j)(n)

j!
(z − n)j =⇒ f(n) := n![zn] (ezP (z)) =

∑
j≥0

P (j)(n)

j!
τj(n)

with τj(n) := n![zn]
(

(z − n)jez
)

=

j∑
`=0

(
j

`

)
(−1)j−`nj−`

n!

(n− `)!

n 7→ τj(n) are polynomials closely related to the Charlier polynomials.

They are called the Charlier-Poisson polynomials. One has deg τj = bj/2c
The first few Poisson-Charlier polynomials are

τ0(n) = 1, τ1(n) = 0, τ2(n) = −n, τ3(n) = 2n,

τ4(n) = 3n(n− 2), τ5(n) = 4n(5n− 6), τ6(n) = −5n(3n2 − 26n+ 24) .

P (z) entire =⇒ the expansion of f(n) in terms of P (j)(n) is always valid

f(n) =
∑
j≥0

P (j)(n)

j!
τj(n)

But we wish truncate ... Are the first terms dominant for n→∞?

We need depoissonnization conditions on the Poisson transform P (z)....
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Depoissonization path (II). JS Conditions for depoissonisation

The infinite expansion of f(n) in terms of P (j)(n) is always valid

f(n) =
∑
j≥0

P (j)(n)

j!
τj(n)

What happens when we drop terms with j ≥ 2` ? We expect an error of

order P (2`)(n)n` which in typical cases is of order P (n)n−`...

There are sufficient conditions on cones provided by Haymann (1956), and

introduced in the AofA domain by Jacquet and Szpankowski (1998)

[JS admissibility] An entire function P (z) is JS-admissible with

parameters (α, β) if there exist θ ∈]0, π/2[, δ < 1 for which (for z →∞)

(I) For arg z ≤ θ, one has |P (z)| = O
(
|z|α logβ(1 + |z|)

)
.

(O) For θ ≤ arg z ≤ π, one has |P (z)ez| = O
(
eδ|z|)

)
.
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Depoissonization Path (III) : the main result.

Theorem. (Jacquet-Szpankowski[1998] Hwang-Fuchs-Zacharovas[2010])

If the Poisson transform P (z) of f(n) is JS(α, β) admissible, then

f(n) =
∑

0≤j<2k

P (j)(n)
τj(n)

j!
+O(nα−k logβ n)

Begin with the Cauchy formula: f(n) =
n!

2iπ

∫
|z|=n

P (z)ez

zn+1
dz

and apply the saddle-point method.

(O) =⇒ the integral over {|z| = n, ε ≤ | arg z| ≤ π} is negligible.

(I) =⇒ smooth estimates for all derivatives P (k)(z)

P (k)(z) = O

(∫
|w−z|=ε|z|

|w|α logβ(1 + |w|)
|w − z|k+1

|dw|

)
= O

(
|z|α−k logβ(1 + |z|)

)
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Depoissonization Path (IV) : A simpler condition.

Theorem. (Jacquet and Szpankowski [1998], Jacquet [2014])

Let P (z) be the Poisson transform of f(n) assumed to be entire.

I The two conditions are equivalent

(i) P (z) is JS-admissible

(ii) The sequence n 7→ f(n) admits an analytical lifting ϕ(z) which is of

polynomial growth in a cone C(0, θ).

I There exists an analytical lifting ϕ(z) in the cone C(−1, θ) with θ < π

The Theorem was proven in several steps.

I First (ii)→ (i) was proven in JS [1998] with the Laplace transform.

I Then the existence of an analytic lifting was proven in Ja [2014],

and used for proving (i)→ (ii).

I Jacquet proves that the analytic lifting exists in the cone C(0, θ).

He does not remark that it exists in fact in the cone C(−1, θ)...

It will be important for us in the following...
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Depoissonization Path (IV) : A simpler condition.

Theorem. (Jacquet and Szpankowski [1998], Jacquet [2014])

Let P (z) be the Poisson transform of f(n) assumed to be entire.

I The two conditions are equivalent

(i) P (z) is JS-admissible

(ii) The sequence n 7→ f(n) admits an analytical lifting ϕ(z) which is of

polynomial growth in a cone C(0, θ).

I There exists an analytical lifting ϕ(z) in the cone C(−1, θ) with θ < π

The analytical lifting ϕ(z) is obtained with an extension of the Cauchy formula

f(n) =
n!

2iπ

∫
|z|=n

P (z)ez

zn+1
dz

as: ϕ(z − 1) =
zΓ(z)

2π
z−z

∫ +π

−π
eiθP (zeiθ) exp[z(eiθ − iθ)] dθ

The integral part is an analytical function of x on the whole complex plane

The function zΓ(z)z−z is analytical in C(0, θ) with θ < π.



Part IV – The Newton-Rice path (Ri)

It deals with the Poisson sequence π[f ]. It

I proves the existence of an analytical lifting for π[f ]

with the (direct) Mellin transform and Newton interpolation.

I transforms the binomial relation into a Rice integral expression

I needs tameness sufficient conditions on π[f ] for shifting on the left.

I obtains the asymptotics of f(n).

I What are exactly the conditions for tameness? Not well studied !

Are they are true in any practical situation ?

Main contributors

I Flajolet and Sedgewick [1995]

I Many other

I A first attempt here for the last item...
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The Mellin-Newton-Rice path (I). Mellin–Newton

If n 7→ f(n) has val(f) = 0, deg(f) = c < 0,

the sequence π[f ] has an analytic lifting on <s > c of polynomial growth,

π[f ](s) =
∑
k≥0

(−1)kf(k)
s(s− 1) . . . (s− k + 1)

k!
.

which is also an analytic extension of P ∗(−s)/Γ(−s).

In the strip 〈0,−c〉, the Mellin transform P ∗(s) of P (z) exists and satisfies

P ∗(s)

Γ(s)
=

1

Γ(s)

∑
k≥0

f(k)

k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥0

f(k)

k!

Γ(k + s)

Γ(s)

Exchange of integration and summation is justified

I each Γ(s+ k) is well defined for k ≥ 0 as soon as <s > 0.

I P ∗(s)/Γ(s) is convergent for <s+ c < 0 due to the estimate

1

k!

Γ(s+ k)

Γ(s)
=
s(s+ 1) . . . (s+ k − 1)

k!
=
ks−1

Γ(s)

[
1 +O

(
1

k

)]
(k →∞),
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The equality holds on the strip 〈c, 0〉

$(s) :=
P ∗(−s)
Γ(−s)

=
∑
k≥0

(−1)kf(k)
s(s− 1) . . . (s− k + 1)

k!
.

The right series is a Newton interpolation series...

which converges in right halfplanes and thus on <s > c.

This provides an analytic extension of $(s) on <s > c. Moreover,

$(n) =

n∑
k=0

(−1)kf(k)
n(n− 1) . . . (n− k + 1)

k!
=

n∑
k=0

(−1)k
(
n

k

)
f(k) = p(n)

This proves the analytic extension of n 7→ p(n) on <s > c

which is also an analytic extension of P ∗(−s)/Γ(−s),
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The Mellin-Newton-Rice path (II). Rice (algebraic)

The binomial relation between f(n) and p(n) is transfered into a Rice integral.

For any a ∈]c, 0[ and n ≥ 0, one has:

f(n) =

n∑
k=0

(−1)k
(
n

k

)
p(k) =⇒ f(n) =

1

2iπ

∫ a+i∞

a−i∞
Ln(s) · π[f ](s) ds

with the Rice kernel Ln(s) =
(−1)n+1 n!

s(s− 1)(s− 2) . . . (s− n)
.

The proof is an easy application of the Residue Theorem.

This integral representation is valid for a ∈ [c, 0].

We now shift to the left ... and we need tameness conditions on π[f ],

and thus sufficient conditions on the sequence n 7→ f(n).
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The Mellin-Newton-Rice path (III). Rice – Tameness and shifting to the left?

Definition. A function $ analytic and of polynomial growth on <s > c is

tame if there exists a region R between a curve C ⊂ {<s < c} and the line

<s = c for which $ is meromorphic and of polynomial growth on R.

Proposition. Consider n 7→ f(n) with val(f) = 0 and deg f = c < 0.

If the lifting π[f ] is R-tame, then

f(n) = −

 ∑
k|sk∈R

Res [Ln(s) · π[f ](s); s = sk] +
1

2iπ

∫
C
Ln(s) · π[f ](s) ds

 ,
The sum is over the poles sk of π[f ] inside R.

Very easy to apply ... but we need sufficient conditions for tameness of

π[f ](s) =
P ∗(−s)
Γ(−s) =

∑
k≥0

(−1)kf(k)
s(s− 1) . . . (s− k + 1)

k!
.

Closely related to the Mellin transform P ∗(s).

Meromorphy is easy to ensure, the poles are easy to find...

And polynomial growth? True for P ∗(−s) – But with the factor 1/Γ(−s)??
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The Mellin-Newton-Rice path (IV). Sufficient conditions for tameness of π[f ] ?

π[f ](s) =
P ∗(−s)
Γ(−s) =

∑
k≥0

(−1)kf(k)
s(s− 1) . . . (s− k + 1)

k!
.

Sometimes..(or often?), the factor Γ(s) clearly appears in P ∗(s)

and/or the Newton interpolation is explicit.

This is the case for sequences f(k) related to basic parameters on tries.

But what about other sequences, for instance f(k) = k log k

I where the depoissonization path can be used.

I Is the Rice path useful in this case?

I Is it true that the Rice path is useful only for very specific cases?

There are other “easy” sequences, geometric sequences f(k) = ak (a < 1),

P (z) = exp[−z(1− a)], P ∗(s) = Γ(s)(1− a)−s, π[f ](s) = (1− a)s

There are sequences f(k) which resemble geometric sequences...

when the function f is a Laplace transform of some function f̂ . Then

f(k) =

∫ ∞
0

e−kuf̂(u)du, π[f ](s) =

∫ ∞
0

f̂(u) (1− e−u)sdu
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Part V – Tameness of the π[f ] function

The study deals with the lifting f of the sequence f

and its inverse Laplace transform f̂ . It

I obtains a nice integral expression for the π[f ] lifting

I then focuses on particular sequences f(n), the basic ones,

and their canonical sequences g, where ĝ is explicit

I proves the tameness condition to hold on π[g] in this basic case.

I (in progress) extends the previous study to “generic” sequences f
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Expression for the π[f ] lifting

Proposition. Consider a sequence f 7→ f(n) which is extended into a

function f : [0,+∞]→ R. Assume the following

f is the Laplace transform of a function f̂ : [0,+∞]→ R+ integrable on

[0,+∞] and continuous on ]0,+∞[.

Denote by σ the infimum of the reals τ for which
∫∞

0
uτ f̂(u)du <∞

Then, the π[f ] function admits an integral form on the halfplane <s > σ

π[f ](s) =

∫ ∞
0

f̂(u) (1− e−u)sdu =

∫ ∞
0

us f̂(u)

(
1− e−u

u

)s
du

A nice alternative integral expression of π[f ]

I It is important to characterise such functions f

and compare σ to c = deg(f)

I We do not know yet such a precise charecterisation...

I We limit ourselves to a class of particular functions...
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A particular class of interest : Basic functions.

Consider a triple (k0, d, b) with an integer b ≥ 0, an integer k0 ≥ 1 which

satisfies k0 ≥ 2 for b > 0 and a real d < k0.

A sequence k 7→ f(k) is called basic with the triple (k0, d, b) if it satisfies

f(k) = kd logb k S

(
1

k

)
for k ≥ k0, f(k) = 0 for k < k0

S is analytic at 0 with a convergence radius r = 1/(k0− 1), and S(0) = 1.

The VD condition d < k0 holds with val(f) = k0 and deg(f) = d.

The canonical sequence g : k 7→ g(k) is extended into g :]− 1,+∞]→ R

g(x) = (x+ k0)d−k0 logb(x+ k0) T

(
1

x+ k0

)
T is analytic at 0 with a convergence radius r = 1/(k0−1), and T (0) = 1..

Ex: f(k) = k log k with k0 = 2 =⇒ g(x) =
log(x+ 2)

x+ 1
=

log(x+ 2)

x+ 2

(
1− 1

x+ 2

)−1
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Expression of π[g] for canonical sequences associated with basic functions f .

Proposition. Consider the canonical sequence g(n) associated with a

basic sequence of the form f(k) = kd logb k S(1/k). Let c = d− k0 < 0.

The following holds for the function g which extends g(n) into ]− 1,+∞[

I Its inverse Laplace transform ĝ is a linear combination of functions

e−k0u u−c−1 (log` u) V`(u) for ` ∈ [0..b]

where V` satisfy V`(0) 6= 0 and |V`(u)| ≤ e(u/2)(2k0−1).

I On <s > c, its π[g] function is a linear combination of functions∫ ∞
0

e−k0u u−c−1+s (log` u) V`(u)

(
1− e−u

u

)s
du for ` ∈ [0..b]

where the functions V` are as previously.

Proof. gt = (1 + x0)−(t+c) =⇒ ĝt(u) =
uc+t−1

Γ(c+ t)

We deal with the log factors via the derivative wrt to t at t = 0
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Tameness of π[g] for canonical sequences associated with basic functions f .

Proposition. Consider the canonical sequence n 7→ g(n) associated with a

basic sequence f(k) = kd logb k S(1/k). Let c = d− k0 < 0.

The following holds for the function π[g] on the half-plane <s > c− 1

I it is meromorphic, with an only pole at s = c of multiplicity b+ 1,

I it is of polynomial growth in any half-plane <s ≥ σ0 > c− 1.

Proof. Consider the derivatives of the Γ function and the linear form Is

Γ(`)(s) =

∫ ∞
0

e−uus−1 log` u du Is[h] :=

∫ ∞
0

h(u)us
(

1− e−u

u

)s
du

On any halfplane <s+ c ≥ σ0 > −1, the difference, for any fixed `,

Is[uc−1 log` u]− Γ(`)(s+ c) =

∫ ∞
0

e−uuc+s−1 log` u

[(
1− e−u

u

)s
− 1

]
du

defines a normally convergent integral.
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Tameness of π[g] for canonical sequences associated with a generic functions f .

We have shown tameness of π[f ] for basic sequences,

We solve our problem for f(k) = k log k

where we prove that the Newton-Rice path may be used.

We expect a general result which validates the Newton–Rice path for

generic sequences in the same general framework as Depoissonization.

Remind : If the sequence f satisfies the JS condition, then

I the sequence f admits an analytical lifting f(z) in any cone

C(−1, θ) which is of polynomial growth in a cone C(0, θ0)

I the canonical sequence g admits an analytical lifting g(z) in any

cone C(−1, θ) which is of polynomial growth in a cone C(0, θ0). We

can choose the polynomial growth c < −1.

We thus need a result for general canonical sequences g which

I describes the properties of their inverse Laplace transform ĝ

I makes possible the extension of our previous study
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Tameness of π[g] for canonical sequences associated with a generic functions f .

We thus need a result as follows (but yet not completely proven)

Proposition (?). Consider a function g as follows

I it is analytic in the cone C(−1, θ) with any θ < π.

I For c < −1, g(z) is O(z + 1)c log`(z + 1) in a cone C(0, θ), θ > π/2

Then its inverse Laplace transform ĝ(u) exists, is analytic on the real line

[0,+∞] and satisfies for some a ∈]0, 1[ the estimate O
(
e−auuc−1 log` u

)
It would validate our approach for the Newton-Rice path.

Proposition/Conjecture. Consider a sequence n 7→ f(n) which satisfies

the JS condition, namely, it admits an analytical lifting f(z) in any cone

C(−1, θ) which is of polynomial growth in a cone C(0, θ0).

If moreover, the angle θ0 satisfies θ0 > π/2, then

I the method of the inverse Laplace transform may be used,

I the Newton-Rice path may be used
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Conclusion : Comparison between the two paths.



High-level and formal view

Tools used in Depoissonization.

first derive asymptotics of P (z) for large |z| by the inverse Mellin integral

P (z) =
1

2iπ

∫
↑
P ∗(s)z−sds =

1

2iπ

∫
↑
P ∗(−s)zsds , (1)

and use the Cauchy integral formula

f(n) =
n!

2iπ

∫
|z|=r

P (z) ez
1

zn+1
dz .

Compare with the Newton-Rice approach.

As P (z)ez is entire, replace the contour {|z| = r} by a Hankel contour

f(n) =
n!

2iπ

∫
H
P (z) ez

1

zn+1
dz (2)

Now formally substitute (1) into (2), interchange the order of integration

and use the equality
1

Γ(n+ 1− s) =
1

2iπ

∫
H
ez

zs

zn+1
dz ,

we obtain the representation

f(n) =
n!

2iπ

∫
↑
P ∗(−s) 1

Γ(n+ 1− s)ds =
1

2iπ

∫
↑
π[f ](s)

(−1)n+1 n!

s(s− 1) . . . (s− n)
ds .
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∫
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Now formally substitute (1) into (2), interchange the order of integration

and use the equality
1
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we obtain the representation

f(n) =
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∫
↑
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1

2iπ

∫
↑
π[f ](s)

(−1)n+1 n!

s(s− 1) . . . (s− n)
ds .



Comparison of analytic tools. Conclusion

– A priori not the same tools in the two paths

– It is interesting to compare these two paths (not generally done...)

– The method of the inverse Laplace transform seems powerful

(when it may be used) for the two paths

– It remains to completely validate this approach....


