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Plan of the talk

General framework.
» Two probabilistic models,
the Bernoulli model and the Poisson model.
> Description of the tools,
the Poisson transform, the Poisson sequence.
Two paths from the Poisson model to the Bernoulli model
> Both use the Mellin transform
The first path : Depoissonization path with the Poisson transform.

> Uses The Mellin inverse transform and the saddle point.
> Need : Depoissonization sufficient conditions, well studied.

The second path :Newton—Rice path with the Poisson sequence.

> Uses Newton interpolation and the Rice integral

> Need : Tameness conditions, less studied, that seem more restrictive.
Study of sufficient conditions for tameness,

> using the inverse Laplace transform
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General framework.

Begin with (elementary) data
Consider algorithms which use as inputs finite sequences of data
If X is the set of data, then the set of inputs is X* =, -, X"

Context | (elementary) data input Study
source a symbol from an alphabet | a (finite) word entropy
text an (infinite) word a sequence of words | dictionary
geometry | a point a sequence of points | convex hull

Probabilistic studies.
» The set X is endowed with probability P
» The set XV is endowed with probability P

In cases (2) and (3), very often, the data are independently drawn with P
Not in case (1) where the successive symbols may be strongly dependent.
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Two probabilistic models.

The space of inputs is the set X'* of the finite sequences of elements of X
There are two main probabilistic models on the set X'™*.

» The Bernoulli model B,,, where the cardinality N is fixed equal to n

(then n — o0); The Bernoulli model is more natural in algorithmics.

» The Poisson model P, of parameter z, where the cardinality NV is a
random variable that follows a Poisson law of parameter z,

n
z <

Pr[N=n]=e¢" g

(then z — o0). The Poisson model has nice probabilistic properties,

notably independence properties = easier to deal with.

= A first study in the Poisson model,

followed with a return to the Bernoulli model
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Costs of interest.

A variable (or a cost) R: XA* - N
describes the behaviour of the algorithm on the input, for instance

> R(x) is the path length of a tree [trie or digital search tree (dst)]
built on the sequence x := (z1,...,x,) of words z;

» R(x) is the number of vertices of the convex hull built on the

sequence « = (z1,...,2,) of points x;

» R(w) is a function of the probability p,, of the finite prefix w, with
the word w viewed as a sequence w := (wy ..., w,) of symbols w;.

Our final aim is the analysis of R in the model 5,
» We begin with the analysis in the (easier) Poisson model P,

» We then wish to return in the (more realistic) Bernoulli model.
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Average-case analysis of a cost R defined on ™

» Final aim : Study the sequence n — r(n),
r(n) := Ep,)[R] := the expectation in the Bernoulli model B,,

» Consider the expectation E[R] in the Poisson model P,

E.[R] =Y E.[R|N =n] P.[N =n]

n>0
. 2"
=Y BRI P.[N=n]=¢7)_ r(n)—
n>0 n>0 ’

E.[R] is the Poisson transform of the sequence n +— r(n). )

» With (properties of) the Poisson transform P(z) of n + r(n)
return to (the asymptotics of ) the sequence n — r(n)
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> The series P(z) := P[f](z) is the Poisson transform of n — f(n).
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The Poisson transform and the Poisson sequence

With a sequence f : n+— f(n), we associate

(2)=e¢> f(k) Z—Z(Wﬁwm
£>0 R k>0 C
> The series P(z) := P[f](z) is the Poisson transform of n — f(n).
> The sequence k — p(k) is the Poisson sequence of n — f(n).
> It is denoted by [f].

> Its Poisson transform is P(—z)e™~*.

» Under this form, it is clear that the map 7 is involutive.

» Important binomial relation between f(n) and p(n)

pmziew@ﬁw,Mfw=i&w@ﬁm

k=ko
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A source S on a finite alphabet X
X* := {sequences of (infinite) words produced by S}

The trie T'(x) built on & € X* is a tree :
> If || =0, T(z) =0
> If || =1, = (z), T(x) is a leaf
labeled by z.
> If [z| > 2, then T'(x) is formed with

— an internal node o
— and a sequence of tries T'(z,,) for o € ¥

v

> x,) is the subsequence of x formed with words which begin with o
>z, is formed with words of x,) stripped of their initial symbol o.

> If x(,) # 0, the edge 0 — T'(z,,) is labelled with o.
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An instance of application: Toll functions and tries (II).

A sequence n +— f(n) with val(f) = 2 plays the role of a toll function.

With the toll f, associate the cost R defined on X*

R(z):= Y f(@w)l),

weX*

> ) is the subsequence of x

formed with words which begin with the prefix w

> f(|z(w)|) is the toll “payed”
by the subtrie T'(z,,,) of root labelled by w

f(k) =1 = R(x) is the number of internal nodes of T'(x)
f(k) = k = R(x) is the external path length of T'(x)

Another instance (less classical) : f(k) = kloghk = .....
R(x) is the number of symbol comparisons performed by QuickSort on .

What is the mean value of the cost R(x) when x € X™ ?
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where N,, is the number of words which begin with w.

What is given? — the source with the probabilities p,,.
— the toll sequence n +— f(n), its transform P(z) and its sequence 7[f]

n

PE) =B[N = e 3 fn) 2 = S (-1"nin) S

n>2 : n>2

N follows P, = N, follows P.p,, = E.[f(Nw)] = P(2pw).

What about 7(n) := E,[R], its Poisson transform, its Poisson sequence?

Q(z) =E:[R] = ) E:[f(Nw)l = Q(2) = Y P(zpu)

wex* weD*

Q) = Y E = Y (1)) E = a(n) = [ > pw]

n>2 ' n>2 weD*



An instance of application: Toll functions and tries (II1).

Remind: Z [z @) = Z F(N

weX* weX*

where N,, is the number of words which begin with w.

What is given? — the source with the probabilities p,,.
— the toll sequence n +— f(n), its transform P(z) and its sequence 7[f]

n

PE) =B[N = e 3 fn) 2 = S (-1"nin) S

n>2 : n>2

N follows P, = N, follows P.p,, = E.[f(Nw)] = P(2pw).

What about 7(n) := E,[R], its Poisson transform, its Poisson sequence?

Q(z) =E:[R] = ) E:[f(Nw)l = Q(2) = Y P(zpu)

weED* weED*
Q) = e~ S rm)Zr = 3 (=1 a(m) ;= qln) = [Z pw]
o L v wen*

Sequence f(n) and source S = Q(z) and ¢(n)
How to return to r(n)?
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Description of the two possible paths.

Begin with a sequence k — f(k),
consider its Poisson transform P(z) and its Poisson sequence 7[f] :n — p(n)

72 Z n Zn
= Zf e Z(*l) HP(”)
k>0 n>0
Assume some “knowledge”
on the Poisson transform P(z) or the Poisson sequence 7|f].

There are two paths for returning to the initial sequence

» Depoissonisation method (DP)
» Deal with P(z), find its asymptotics (z — 00)
» Compare the asymptotics of the sequence f(n) (n — o0)
to the asymptotics of P(n)

» Rice method (Ri)
> Deal with the sequence 7[f] : n — p(n),
> and its analytic lifting 7[f] which is proven to exist

> Return to the sequence n — f(n) via the binomial formula
which is tranfered into an integral, the Rice integral.
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Definition. For a non zero real sequence n — f(n), define

val(f) :=min{k | f(k) # 0},

deg(f) :=inf{c| f(k) = O(k C)}zlimsup{% | kao} .

The sequence n — f(n) satisfies the Valuation-Degree Condition (VD),
if and only if d := deg(f) < ko := val(f).
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A first technical condition: Valuation-Degree Condition

Definition. For a non zero real sequence n — f(n), define
val(f) := min{k | f(k) # 0},

deg(f) :=inf{c| f(k) = O(k C)}zlimsup{%kEko} :
The sequence n — f(n) satisfies the Valuation-Degree Condition (VD),

if and only if d := deg(f) < ko := val(f).

If n+— f(n) is of polynomial growth, then deg (f) is finite.
In this case, the VD-Condition is not restrictive: Replace f by fi

f+(n)=0 for n < d, f+(n) = f(n) forn>d.

We always assume the VD-Condition to hold,
with a difference d — k¢ as smallest as wished.
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A second technical tool: the canonical sequence.
When val(f) = ko, P(z) is written as
’ . z n?
PE)=2QG), Q)= S gt = S (-1 Sl
k>0 n>0
The sequence k — g(k) is the canonical sequence associated with k — f(k)

J(k + ko)
(1) (k+ ko)

It satisfies the VD-Condition, with val(g) = 0 and deg g = d — ko < 0.
Sufficient to consider sequences with val(g) = 0 and deg g = d — ko < 0.

g(k) = fork>0.

There are relations to return to the initial sequence f(n)
> between the Poisson sequences k — ¢(k) and k — p(k)
» between the Poisson transforms P(z) = zFQ(2)

Ex:  f(k) = klogk with ko =2 = g(k) = C i(lf)—(;? % =% Jlr T log(k+2)




A tool which is used in each of the two paths: The Mellin transform (I).

The Mellin transform H* : s — H*(s) of x — H(x) is
H*(s) ::/ H(z)z* dx.
0

If H(z) = O(z=) as x — 0 and H(z) = O(x=%) as & — o0,
then the Mellin transform H* exists in the strip (a, 8) := {s | s €]a, B[}.



A tool which is used in each of the two paths: The Mellin transform (1).

The Mellin transform H* : s — H*(s) of x — H(z) is

H*(s) := ; H(z)z* dx.

If H(z) = O(z=) as x — 0 and H(z) = O(x=%) as & — o0,
then the Mellin transform H* exists in the strip (a, 8) := {s | s €]a, B[}.

When H is defined inside cones C(a, ) := {z | |arg(z — a)| < 6},

an important lemma, often called “Exponential Smallness Lemma”.

Lemma. [Flajolet-Gourdon-Dumas (1998)] /7, inside the cone C(0,6)
with 6 > 0 one has H(z) = O(|z|™) as z — 0 and H(z) = O(|z|7?) as
|z| = oo, then the following estimate is uniform in {(«, j3)

H*(s) = O(e™ 01, (s =0 +it)
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The Mellin transform (I1): a powerful tool for the two paths
We use the Mellin transform P*(s) of the Poisson transform P(z) of f(n)
for which we have some “knowlege”

The "knowledge” on P(z) is tranfered into some “knowledge” on P*(s).
An instance of this type of transfer

Qz)= > P(zpw) = Q*(8)=[ P

weX* weX*

For the Newton-Rice path, use directly P*(s) and more precisely P*(s)/T'(s)
For the DP path, use also the properties of the inverse Mellin transform:

1

P =
G =5 /.

P*(s)z"%ds

Poles of P*(s) on the right of the fundamental strip
= Asymptotic behaviour of P(z) for z — co.
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Part 11l — the Depoissonization path (DP)

It deals with the Poisson transform P(z). It

» compares f(n) and P(n) with the Poisson—Charlier expansion
» uses the Mellin inverse transform for the asymptotics of P(n)

» needs depoissonization sufficient conditions JS,
for using and the saddle-point method
and truncating the Poisson-Charlier expansion

v

obtains the asymptotics of f(n).

» better understands the JS conditions:
they are true in any practical situation !

Main contributors
» Jacquet and Szpankowski [1998], two papers...
» Hwang-Fuchs-Zacharovas [2010]
» Jacquet [2014]



Depoissonization path (I). The Charlier-Poisson expansion
introduced in the AofA domain by Hwang-Fuchs-Zacharovas [2010]
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introduced in the AofA domain by Hwang-Fuchs-Zacharovas [2010]

PO (n ) 1, PY(n
P(z) = Z # (z—n) = f(n):=nl2"]("P(2)) = Z "( )Tj('n,)
iz T iz T
with 7,0n) =[] (G = npie”) = 37 (7) (-t e
A —\! (n—20)!
n — 7j(n) are polynomials closely related to the Charlier polynomials.
They are called the Charlier-Poisson polynomials. One has deg7; = |j/2|
The first few Poisson-Charlier polynomials are
To(n) =1, T1(n) =0, T2(n) = —n, T3(n) = 2n,

Ta(n) =3n(n—2), 7s5(n)=4n(5n —6), 76(n) = —5n(3n’> — 26n + 24).

P(z) entire = the expansion of f(n) in terms of PU)(n) is always valid

D (n
fy = 20 )

7l
7>0 J:

But we wish truncate ... Are the first terms dominant for n — 0o?

We need depoissonnization conditions on the Poisson transform P(z)....
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The infinite expansion of f(n) in terms of PU)(n) is always valid

Jj=0
What happens when we drop terms with j > 2¢ ? We expect an error of
order P29 (n)n! which in typical cases is of order P(n)n*...
There are sufficient conditions on cones provided by Haymann (1956), and

introduced in the AofA domain by Jacquet and Szpankowski (1998)

[JS admissibility] An entire function P(z) is JS-admissible with
parameters (o, [3) if there exist § €]0,7/2[, 6 < 1 for which (for z — c0)
(I) Forargz < 6, one has |P(2)| = O (|2I* 1og” (1 + |21)).

(O) For < argz < m, one has |[P(z)e?| = O (°1?)).




Depoissonization Path (1) : the main result.

Theorem. (Jacquet-Szpankowski[1998] Hwang-Fuchs-Zacharovas[2010])
If the Poisson transform P(z) of f(n) is JS(a, 3) admissible, then

fy=" P<J'>(n)7j§,”)+0(na—klogﬂn)
0<j<2k J:
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Depoissonization Path (II1) : the main result.

Theorem. (Jacquet-Szpankowski[1998] Hwang-Fuchs-Zacharovas[2010])
If the Poisson transform P(z) of f(n) is JS(a, 3) admissible, then

f) = 3 PO o+ 10g )
0<j<2k ’

! P(z2)e?
Begin with the Cauchy formula:  f(n) = 2%_/ Z(ni)f dz
|z|=n

and apply the saddle-point method.
(O) = the integral over {|z| = n,e < |argz| < 7} is negligible.
(I) = smooth estimates for all derivatives P(¥)(z)

w|*log? (1 + |w o
P<k><z>=0< [ DIde) — 0 (sl 0g?(1 + |2))
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Theorem. (Jacquet and Szpankowski [1998], Jacquet [2014])
Let P(z) be the Poisson transform of f(n) assumed to be entire.
» The two conditions are equivalent
(¢) P(z) is JS-admissible
(ii) The sequence n +— f(n) admits an analytical lifting ¢(z) which is of
polynomial growth in a cone C(0,0).

» There exists an analytical lifting ©(z) in the cone C(—1,0) with 0 <

w

The Theorem was proven in several steps.

> First (1) — (¢) was proven in JS [1998] with the Laplace transform.

> Then the existence of an analytic lifting was proven in Ja [2014],
and used for proving (i) — (3).

> Jacquet proves that the analytic lifting exists in the cone C(0, 6).

He does not remark that it exists in fact in the cone C(—1,6)...

It will be important for us in the following...



Depoissonization Path (IV) : A simpler condition.

Theorem. (Jacquet and Szpankowski [1998], Jacquet [2014])
Let P(z) be the Poisson transform of f(n) assumed to be entire.
» The two conditions are equivalent
(¢) P(z) is JS-admissible
(it) The sequence n +— f(n) admits an analytical lifting ¢(z) which is of
polynomial growth in a cone C(0, 0).

> There exists an analytical lifting ©(z) in the cone C(—1,6) with 6 < 7

v

The analytical lifting (2) is obtained with an extension of the Cauchy formula

fin) = 2 / ) Z(ﬁfzdz

T 4w

tm ) )
as:  p(z—1)= zg(z) zfz/ e P(ze") explz(e” — i) do
T

The integral part is an analytical function of z on the whole complex plane
The function 2I'(z)z ™% is analytical in C(0, 6) with 6 < .

-
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Part IV — The Newton-Rice path (Ri)

It deals with the Poisson sequence 7[f]. It

> proves the existence of an analytical lifting for 7| f]

with the (direct) Mellin transform and Newton interpolation.

v

transforms the binomial relation into a Rice integral expression

> needs tameness sufficient conditions on [ f] for shifting on the left.

v

obtains the asymptotics of f(n).

v

What are exactly the conditions for tameness? Not well studied !
Are they are true in any practical situation 7

Main contributors
» Flajolet and Sedgewick [1995]
» Many other

> A first attempt here for the last item...



The Mellin-Newton-Rice path (I). Mellin—Newton

If n— f(n) has val(f) =0, deg(f) = ¢ <0,
the sequence 7r[f] has an analytic lifting on Rs > ¢ of polynomial growth,

m[f](s) = Z(—l)kf(k)s(s = 1), k'(s —k+1) .

k>0

which is also an analytic extension of P*(—s)/T'(—s).
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The Mellin-Newton-Rice path (I). Mellin—Newton

If n— f(n) has val(f) =0, deg(f) = ¢ <0,
the sequence 7r[f] has an analytic lifting on Rs > ¢ of polynomial growth,

rlfl() = Y (-1 py =Dl kE D

k>0

which is also an analytic extension of P*(—s)/T'(—s).

In the strip <O, —c), the Mellin transform P*(s) of P(z) exists and satisfies

nt ) [~ F(B) Tk + 5)
SO [ et =y L

k>0 k>0

Exchange of integration and summation is justified
» each I'(s + k) is well defined for & > 0 as soon as Rs > 0.
> P*(s)/T(s) is convergent for Rs + ¢ < 0 due to the estimate

1T(s+k) s(s+1)...(s+k—1) k! {1+0(%)}

BTG ! T(s) (k= 00),




The equality holds on the strip (c, 0)

_ P*(—s) :Z(_l)kf(k)s(s—1)...(s—kz+1)

w(s) = T !

k>0

The right series is a Newton interpolation series...
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The equality holds on the strip (c, 0)

_ P*(—s) :Z(—l)kf(k)s(s_1)"'(8_k+1>.

w(s) = T k!

k>0
The right series is a Newton interpolation series...

which converges in right halfplanes and thus on $s > c.
This provides an analytic extension of w(s) on Rs > ¢. Moreover,

n

w(n) = Z(—l)kf(k)n(n —1). k'(n —k+1) _ Z(_l)k (Z)f(k) — p(n)

k=0 k=0




The equality holds on the strip (c, 0)

_ P*(—s) :Z(_l)kf(k)s(s—1)...(s—k’+1)

=(8) = Ty !

k>0

The right series is a Newton interpolation series...
which converges in right halfplanes and thus on $s > c.
This provides an analytic extension of w(s) on fs > ¢. Moreover,

n

w(n) = Z(—l)kf(k)n(n —1). .];:!(n —k+1) _ Z(_l)k (Z)f(k) — p(n)

k=0 k=0

This proves the analytic extension of n — p(n) on Rs > ¢

which is also an analytic extension of P*(—s)/T'(—s),
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The Mellin-Newton-Rice path (Il). Rice (algebraic)

The binomial relation between f(n) and p(n) is transfered into a Rice integral.

For any a €]c,0[ and n > 0, one has:

_n_kn n—L e S)-T s)as
o = S0 (ot = 00 = gz [ " a(o) 7119
(=1)"+Lnp!

with the Rice kernel L, (s) =
S

(s—1)(s—=2)...(s—n)

The proof is an easy application of the Residue Theorem.

This integral representation is valid for a € [c, 0].
We now shift to the left ... and we need tameness conditions on 7[f],

and thus sufficient conditions on the sequence n — f(n).
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The Mellin-Newton-Rice path (IIl). Rice — Tameness and shifting to the left?

Definition. A function to analytic and of polynomial growth on Rs > c is
tame if there exists a region R between a curve C C {fs < ¢} and the line
Rs = ¢ for which @ is meromorphic and of polynomial growth on R.

Proposition. Consider n — f(n) with val(f) =0 and deg f = ¢ < 0.
If the lifting 7[f] is R-tame, then

f)=—| 3 Res[Lu(s)-nlfl(s)ss = 5] + / Lu(s) - 7[f1(s) ds] ,

The sum is over the poles s; of 7[f] inside R.

Very easy to apply ... but we need sufficient conditions for tameness of

e = 5 = S a2 e =R D,

Closely related to the Mellin transform P*(s).
Meromorphy is easy to ensure, the poles are easy to find...
And polynomial growth? True for P*(—s) — But with the factor 1/T'(—s)??



The Mellin-Newton-Rice path (1V). Sufficient conditions for tameness of 7[f] ?

ﬂ[f](s) = P;*((__:;) = kzm(_l)kf(k)s(s — 1) . kl(s —k+ 1) .




The Mellin-Newton-Rice path (1V). Sufficient conditions for tameness of 7[f] ?

Pr(-s) k s(s=1)...(s—k+1)
w| fl(s) = = -1 k .
1) = 5 g%( )" f (k) o
Sometimes..(or often?), the factor I'(s) clearly appears in P*(s)
and/or the Newton interpolation is explicit.

This is the case for sequences f(k) related to basic parameters on tries.



The Mellin-Newton-Rice path (1V). Sufficient conditions for tameness of 7[f] ?

Pr(-s) k s(s=1)...(s—k+1)
5) = = -1 k .
1) = F kZ( )" f (k) o
Sometimes..(or often?), the factor I'(s) clearly appears in P*(s)
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The Mellin-Newton-Rice path (V). Sufficient conditions for tameness of 7[f] ?

wf1(s) = ];((__j)) = ;(_1)kf(k)s(s —1). .].d(s —k+1)

Sometimes..(or often?), the factor I'(s) clearly appears in P*(s)
and/or the Newton interpolation is explicit.

This is the case for sequences f(k) related to basic parameters on tries.

But what about other sequences, for instance f(k) = klogk
» where the depoissonization path can be used.
» |s the Rice path useful in this case?
> Is it true that the Rice path is useful only for very specific cases?

There are other “easy” sequences, geometric sequences f (k) = a* (a < 1),
P(z) = exp[=2(1 —a)], P'(s) =T(s)(1—a)”", =[fl(s)=(1—a)

There are sequences f(k) which resemble geometric sequences...
when the function f is a Laplace transform of some function f. Then

f(k) = / T e, alf](s) = / T ) (1 - ) du
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Part V — Tameness of the 7[f] function

The study deals with the lifting f of the sequence f
and its inverse Laplace transform f. It

v

obtains a nice integral expression for the [f] lifting

» then focuses on particular sequences f(n), the basic ones,

and their canonical sequences g, where g is explicit

v

proves the tameness condition to hold on 7[g] in this basic case.

v

(in progress) extends the previous study to “generic” sequences f



Expression for the 7[f] lifting

Proposition. Consider a sequence f — f(n) which is extended into a
function f : [0, +00] — R. Assume the following

f is the Laplace transform of a function f: [0, +00] — RT integrable on
[0, +00] and continuous on |0, +o0].

Denote by o the infimum of the reals 7 for which [~ u” f(u)du < 00
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Expression for the 7[f] lifting

Proposition. Consider a sequence f — f(n) which is extended into a
function f : [0, +occ] — R. Assume the following

f is the Laplace transform of a function f: [0, +00] — RT integrable on
[0, +00] and continuous on ]0, +o0].

Denote by o the infimum of the reals 7 for which [~ u” f(u)du < 00

Then, the 7[f] function admits an integral form on the halfplane s > o

Ao = [ Fwa-eya= [Cuiw () @

u

A nice alternative integral expression of 7[f]
» It is important to characterise such functions f
and compare o to ¢ = deg(f)
» We do not know yet such a precise charecterisation...

» We limit ourselves to a class of particular functions...



A particular class of interest : Basic functions.

Consider a triple (ko, d,b) with an integer b > 0, an integer ko > 1 which
satisfies kg > 2 for b > 0 and a real d < ky.
A sequence k — f(k) is called basic with the triple (ko,d,b) if it satisfies

fk) = k* logka(%> for k > ko, f(k)=0 fork < ko

S is analytic at 0 with a convergence radius r = 1/(kg — 1), and S(0) = 1.

v

The VD condition d < kg holds with val(f) = ko and deg(f) = d.
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A particular class of interest : Basic functions.

Consider a triple (ko, d,b) with an integer b > 0, an integer ko > 1 which
satisfies kg > 2 for b > 0 and a real d < ky.

A sequence k — f(k) is called basic with the triple (ko,d,b) if it satisfies

fk) = k* logka(%> for k > ko, f(k)=0 fork < ko

S is analytic at 0 with a convergence radius r = 1/(kg — 1), and S(0) = 1.

v

The VD condition d < kg holds with val(f) = ko and deg(f) = d.

The canonical sequence g : k — g(k) is extended into g :] — 1, +o0] — R

1
z) = (z + ko) log®(z + k. T( >
gl) = (& + ko) H log' (o -+ ko) T (-

T is analytic at 0 with a convergence radius r = 1/(ko—1), and T'(0) = 1..

- T+ 2

—1
Ex: f(k) = klogk with ko = 2 = g(z) = logaf‘f:; 2 _ logx(“:;m (1 - )
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Proposition. Consider the canonical sequence g(n) associated with a
basic sequence of the form f(k) = k% log" k S(1/k). Let ¢ = d — ko < 0.

The following holds for the function g which extends g(n) into | — 1, 400
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e mou ! (log w) Vo(u) for £ € [0..b]

where V; satisfy V;(0) # 0 and |[Vy(u)| < e(#/2)(ko=1),
» On Rs > ¢, its 7[g] function is a linear combination of functions

—u

[ e ot v (50) au for e o
a u

where the functions V; are as previously.




Expression of 7[g] for canonical sequences associated with basic functions f.

Proposition. Consider the canonical sequence g(n) associated with a
basic sequence of the form f(k) = k% log" k S(1/k). Let ¢ = d — ko < 0.

The following holds for the function g which extends g(n) into | — 1, 400
> lts inverse Laplace transform g is a linear combination of functions

e mou ! (log w) Vo(u) for £ € [0..0]

where Vj satisfy V;(0) # 0 and |Vy(u)| < e(/2)(Zko=1),
» On Rs > ¢, its 7[g] function is a linear combination of functions

—u

[ e ot v (50) au for e o
a u

where the functions V; are as previously.

Proof. g =042 — G(u)=

We deal with the log factors via the derivative wrt to t at t =0



Tameness of 7[g] for canonical sequences associated with basic functions f.

Proposition. Consider the canonical sequence n — g(n) associated with a
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Tameness of 7[g] for canonical sequences associated with basic functions f.

Proposition. Consider the canonical sequence n — g(n) associated with a
basic sequence f(k) = k% log® k S(1/k). Let ¢ = d — ko < 0.
The following holds for the function 7[g] on the half-plane fts > ¢ — 1

> it is meromorphic, with an only pole at s = ¢ of multiplicity b+ 1,

> it is of polynomial growth in any half-plane Rs > 0¢ > ¢ — 1.

Proof. Consider the derivatives of the I" function and the linear form Zg

F(Z)(s):/ e "“u* " logh udu Zs[h] ::/ h(u)u® (17; ) du
0 0

On any halfplane Rs 4+ ¢ > o9 > —1, the difference, for any fixed ¢,

- o —u_ct+s— 1- Y\ °
T u log' u] =T (s +¢) = / e “u " loghu {( ue ) - 1} du
0

defines a normally convergent integral.




Tameness of 7[g] for canonical sequences associated with a generic functions f.

We have shown tameness of 7[f] for basic sequences,
We solve our problem for f(k) = klogk
where we prove that the Newton-Rice path may be used.

We expect a general result which validates the Newton—Rice path for

generic sequences in the same general framework as Depoissonization.



Tameness of 7[g] for canonical sequences associated with a generic functions f.

We have shown tameness of 7[f] for basic sequences,
We solve our problem for f(k) = klogk
where we prove that the Newton-Rice path may be used.

We expect a general result which validates the Newton—Rice path for
generic sequences in the same general framework as Depoissonization.
Remind : If the sequence f satisfies the 7S condition, then

» the sequence f admits an analytical lifting f(2) in any cone
C(—1,60) which is of polynomial growth in a cone C(0, 6)

» the canonical sequence g admits an analytical lifting g(z) in any
cone C(—1,0) which is of polynomial growth in a cone C(0,6,). We
can choose the polynomial growth ¢ < —1.

We thus need a result for general canonical sequences g which

» describes the properties of their inverse Laplace transform g

» makes possible the extension of our previous study



Tameness of 7[g] for canonical sequences associated with a generic functions f.
We thus need a result as follows (but yet not completely proven)
Proposition (?). Consider a function g as follows

> it is analytic in the cone C(—1,8) with any 6 < .
> For ¢ < —1, g(2) is O(z + 1)¢log’(z + 1) in a cone C(0,6), 6 > /2
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Tameness of 7[g] for canonical sequences associated with a generic functions f.

We thus need a result as follows (but yet not completely proven)

Proposition (?). Consider a function g as follows
> it is analytic in the cone C(—1, ) with any 6 < 7.
> For ¢ < —1, g(2) is O(z + 1)¢log’(z + 1) in a cone C(0,6), 6 > /2

Then its inverse Laplace transform g(u) exists, is analytic on the real line
[0, +00] and satisfies for some a €]0, 1] the estimate O (e““’u“‘l log’ u)

It would validate our approach for the Newton-Rice path.

Proposition/Conjecture. Consider a sequence n — f(n) which satisfies
the JS condition, namely, it admits an analytical lifting f(z) in any cone
C(—1,60) which is of polynomial growth in a cone C(0, 6)).

If moreover, the angle 6y satisfies 6y > 7/2, then

» the method of the inverse Laplace transform may be used,

» the Newton-Rice path may be used




Conclusion : Comparison between the two paths.
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High-level and formal view

Tools used in Depoissonization.

first derive asymptotics of P(z) for large |z| by the inverse Mellin integral

1 * —s
P(z) = % TP (s)z"%ds 2W/P )2%ds, (1)
and use the Cauchy integral formula
n! . 1
fln) = %im P(z)e g dz.

|zl=r

Compare with the Newton-Rice approach.
As P(z)e* is entire, replace the contour {|z| = r} by a Hankel contour

! P . 1 d 5
f(n)—% - (Z)eﬁz (2)
Now formally substitute (1) into (2), interchange the order of integration
. 1 1 ., 2°
and use the equality m = %/ e P dz,

we obtain the representation

_onl [ 1 _ 1 (=)l
Fn) = 2i7T/TP ( s)F(n—i—l—s)ds_ 22'77/Tﬂ[f](s)s(s—1)...(s—n)d8'




Comparison of analytic tools. Conclusion
— A priori not the same tools in the two paths
— It is interesting to compare these two paths (not generally done...)

— The method of the inverse Laplace transform seems powerful
(when it may be used) for the two paths

— It remains to completely validate this approach....



