
Good Predictions Are Worth
a Few Comparisons

Carine Pivoteau

with Nicolas Auger and Cyril Nicaud

LIGM - Université Paris-Est-Marne-la-Vallée

March 2016

Carine Pivoteau Good predictions are worth... 1/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 5
max = 5

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 5
max = 5

1 < min ? 1 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

1 < min ? 1 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

4 < min ? 4 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

3 < min ? 3 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

6 < min ? 6 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 6

6 < min ? 6 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 6

0 < min ? 0 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 6

0 < min ? 0 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 6

2 < min ? 2 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 6

8 < min ? 8 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 8

8 < min ? 8 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 8

7 < min ? 7 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 8

9 < min ? 9 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 9

9 < min ? 9 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm: 2n comparisons

5 1 4 3 6 0 2 8 7 9

min = 0
max = 9

9 < min ? 9 > max ?

Can we do better?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 5
max = 5

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 5
max = 5

5 < 1 ?

1 < min ?

5 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

5 < 1 ?

1 < min ?

5 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

4 < 3 ?

3 < min ?

4 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 1
max = 5

6 < 0 ?

0 < min ?

6 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 6

6 < 0 ?

0 < min ?

6 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 6

2 < 8 ?

2 < min ?

8 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 8

2 < 8 ?

2 < min ?

8 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 8

7 < 9 ?

7 < min ?

9 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5 1 4 3 6 0 2 8 7 9

min = 0
max = 9

7 < 9 ?

7 < min ?

9 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm: 3n/2 comparisons (optimal)

5 1 4 3 6 0 2 8 7 9

min = 0
max = 9

7 < 9 ?

7 < min ?

9 > max ?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm: 3n/2 comparisons (optimal)

Naive Algorithm: 2n comparisons

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm: 3n/2 comparisons (optimal)

Naive Algorithm: 2n comparisons

In practice, on uniform random data?

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

in C,

using
gcc -O0,

random
integers

Carine Pivoteau Good predictions are worth... 2/11

A case study

Find both the min. and the max. of an array of size n.

in C,

using
gcc -O0,

random
integers

Carine Pivoteau Good predictions are worth... 2/11

Some background (mostly from Hennessy and Patterson [HP11])

I Most modern
processors are pipelined

I Instructions are parallelized

Branch predictors are used to avoid stalls on branches!

Conditional instructions (such as the “if” statement) yield
branches in the execution of a program

The branch predictor will guess which branch will be
taken (T) or not (NT).

A misprediction can be quite expensive!

Different schemes: static, dynamic, local, global,. . .

Carine Pivoteau Good predictions are worth... 3/11

Some background (mostly from Hennessy and Patterson [HP11])

I Most modern
processors are pipelined

I Instructions are parallelized

Branch predictors are used to avoid stalls on branches!

1-bit predictor:

NT T

NT

T

NT

T

Carine Pivoteau Good predictions are worth... 3/11

Some background (mostly from Hennessy and Patterson [HP11])

I Most modern
processors are pipelined

I Instructions are parallelized

Branch predictors are used to avoid stalls on branches!

2-bit predictor:

S. NT NT T S. T

NT

T

NT

T

NT

T

NT

T

Carine Pivoteau Good predictions are worth... 3/11

Some background (mostly from Hennessy and Patterson [HP11])

I Most modern
processors are pipelined

I Instructions are parallelized

Branch predictors are used to avoid stalls on branches!

Global (or mixed) predictor:

N. Auger, C. Nicaud, and C. Pivoteau 11

0000...00

0000...01
...

1111...11

Ω≠ ¸ ≠æ Figure 10 A fully global predictor scheme: The
history table of size 2¸ keeps track of the outcomes
of the last ¸ branches encountered during the ex-
ecution, the last one corresponding to the right-
most bit. To each sequence of ¸ branches is asso-
ciated a global 2-bit predictor (shared by all the
conditional branches).

I Theorem 6. Let Cn and Mn be the number of comparisons and mispredictions per-
formed in our model of randomness. For BinarySearch, E[Cn] ≥ 1

log 2 logn and E[Mn] ≥
1

2 log 2 logn. For BiasedBinarySearch, E[Cn] ≥ 4
4 log 4≠3 log 3 logn and E[Mn] ≥ µ(1

4)E[Cn].
For SkewSearch, E[Cn] ≥ 7

6 log 2 logn and E[Mn] ≥
! 4

7µ(1
4)+ 3

7µ(1
3)

"
E[Cn], where µ is the

expected misprediction probability associated with the predictor.

5.4 Analysis of the global predictor for skewSearch
In this section we intend to give hints about the behavior of a global branching predictor,
such as the one depicted on Figure 10 (see also Section 2), for the algorithm SkewSearch.
Notice in particular that the predictor of each entry is a 2-bit saturated counter. This is not
the only possible choice of a global predictor, but it is simple enough without being trivial.
We make the analysis in the idealized framework that resemble the real case su�ciently well,
by ignoring the rounding e�ects of dealing with integers. We saw in the previous section
why these approximations still give the correct result for the first order asymptotic.

In our idealized model we only consider the sequence of taken / not taken produced by
the two conditional tests of SkewSearch. We deliberately do not consider the conditional
induced by the test within the “while” loop, which would be always not taken in our settings
(except for the very last step). Adding it would complicate the model without adding
interesting information to the branch predictor.10 We encode a taken conditional by a 1
and a not taken conditional by a 0. The trace of an execution of the algorithm is thus a
non-empty word on the binary alphabet B = {0, 1}. Because of the way the two conditional
tests are nested within the algorithm, we can keep track of the current “if” by the use of
the simple deterministic automaton Aif with two states depicted in Figure 11: main stands
for the first conditional and nested for the second one. In our model, main is taken with
probability 1

4 and nested with probability 1
3 . As done in Section 4, Aif can be changed into

a Markov chain Mif using this transition probabilities. A direct computation shows that its
stationary vector fiif satisfies fiif(main) = 4

7 and fiif(nested) = 3
7 .

(Aif) main nested1

0

0, 1

(Mif) main nested1: 14

0: 34

0 : 2
3 , 1 : 1

3

Figure 11 On the left, the automaton Aif. On the right, the Markovian automaton Mif of
transition probabilities P(1 | main) = 1

4 , P(0 | main) = 3
4 , P(0 | nested) = 2

3 and P(1 | nested) = 1
3 .

10 Also, most modern architectures have “loop detectors” that are used to identify such conditionals.

Carine Pivoteau Good predictions are worth... 3/11

Some background (mostly from Hennessy and Patterson [HP11])

I Most modern
processors are pipelined

I Instructions are parallelized

Branch predictors are used to avoid stalls on branches!

Conditional instructions (such as the “if” statement) yield
branches in the execution of a program

The branch predictor will guess which branch will be
taken (T) or not (NT).

A misprediction can be quite expensive!

Different schemes: static, dynamic, local, global,. . .

Min and max search is very sensitive to branch prediction...

Carine Pivoteau Good predictions are worth... 3/11

Back to simultaneous min and max search

Proposition

Expected number of mispredictions, for the uniform distribution,
on arrays of size n:

Naive Min Max Search:

∼ 4 log n for the 1-bit predictor
∼ 2 log n for the two 2-bit predictors and the 3-bit saturating

counter.

Optimized Min Max Search:

∼ n/4 +O(log n) for all four predictors.

Idea of the proof:

asymptotic analysis of the records in a random permutation,

use the fundamental bijection that relates the records to the
cycles in permutations,

use classical results on the average number of cycles.

Carine Pivoteau Good predictions are worth... 4/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

An Experimental Study of Sorting and Branch
Prediction

PAUL BIGGAR1, NICHOLAS NASH1, KEVIN WILLIAMS2 and DAVID GREGG

Trinity College Dublin

Sorting is one of the most important and well studied problems in Computer Science. Many good
algorithms are known which offer various trade-offs in efficiency, simplicity, memory use, and
other factors. However, these algorithms do not take into account features of modern computer
architectures that significantly influence performance. Caches and branch predictors are two such
features, and while there has been a significant amount of research into the cache performance
of general purpose sorting algorithms, there has been little research on their branch prediction
properties. In this paper we empirically examine the behaviour of the branches in all the most
common sorting algorithms. We also consider the interaction of cache optimization on the pre-
dictability of the branches in these algorithms. We find insertion sort to have the fewest branch
mispredictions of any comparison-based sorting algorithm, that bubble and shaker sort operate
in a fashion which makes their branches highly unpredictable, that the unpredictability of shell-
sort’s branches improves its caching behaviour and that several cache optimizations have little
effect on mergesort’s branch mispredictions. We find also that optimizations to quicksort – for
example the choice of pivot – have a strong influence on the predictability of its branches. We
point out a simple way of removing branch instructions from a classic heapsort implementation,
and show also that unrolling a loop in a cache optimized heapsort implementation improves the
predicitability of its branches. Finally, we note that when sorting random data two-level adaptive
branch predictors are usually no better than simpler bimodal predictors. This is despite the fact
that two-level adaptive predictors are almost always superior to bimodal predictors in general.

Categories and Subject Descriptors: E.5 [Data]: Files—Sorting/Searching; C.1.1 [Computer
Systems Organization]: Processor Architectures, Other Architecture Styles—Pipeline proces-
sors

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Sorting, Branch Prediction, Pipeline Architectures, Caching

1. MOTIVATION

Classical analyses of algorithms make simplifying assumptions about the cost of
different machine instructions. For example, the RAM model used for establishing

1Supported by the Irish Research Council for Science, Engineering and Technology (IRCSET).
2Supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) and
IBM.

Corresponding author’s address: David Gregg, Department of Computer Science, University of
Dublin, Trinity College, Dublin 2, Ireland. David.Gregg@cs.tcd.ie.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–38.

20 ·

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2097152 524288 131072 32768 8192

In
st

ru
ct

io
ns

 p
er

 k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

 0

 2

 4

 6

 8

 10

 12

 2097152 524288 131072 32768 8192
Br

an
ch

 m
is

pr
ed

ic
tio

ns
 p

er
 k

ey
Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort (bimodal)
Insertion multi-mergesort (two-level adaptive)

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2097152 524288 131072 32768 8192

Le
ve

l 2
 m

is
se

s
pe

r k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2097152 524288 131072 32768 8192

C
yc

le
s

pe
r k

ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

(c) (d)

Fig. 8. (a) Shows the instruction counts for the insertion d-way mergesort algorithms, for a variety
of values of d. It also shows the much lower instruction count of our cache-optimized insertion
multi-mergesort variation compared to these algorithms. (b) Shows the branch mispredictions
per key for the algorithms, all results show bimodal predictor results, except for cache-optimized
insertion multi-mergesort, for which we also show results when using a two-level adaptive predictor
with a 10-bit history register and 4096 table entries, since for this algorithm the two-level adaptive
predictor is significantly better than the bimodal predictor. (c) Shows the level 2 cache misses of
the algorithms when operating on a 2 MB direct mapped cache with 32-byte cache lines. These
results were gathered using sim-cache and sim-bpred. Finally (d) shows the cycles per key of the
algorithms, measured using Pentium 4 hardware performance counters. Despite cache-optimized
insertion multi-mergesort’s heightened cache misses and branch mispredictions, its low instruction
count enables it to out-perform the insertion d-way mergesort algorithms.

substantially mitigate the high instruction count of the technique by varying the
value of d depending on the number of keys which remain to be sorted. In addition,
for small values of d the insertion merge should be special-cased. It is also likely that
the cache performance of the algorithm could be substantially improved by copying
blocks of keys (for example, as many keys as fit in a cache-line) to small buffers
when appending keys from subarrays to the destination buffer. We leave a fuller
investigation into determining the best trade-offs between reducing the instruction
count of the algorithm, improving its locality and maintaining a modest number of
branch mispredictions to future work.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

0

20

40

60

80

100

medianinsertionji

%
 B

ra
nc

he
s

Correct
Taken

0

20

40

60

80

100

insertionji

%
 B

ra
nc

he
s

Correct
Taken

(a) Basic quicksort (b) Memory-tuned quicksort

0

20

40

60

80

100

insertionbinary rightbinary leftji

%
 B

ra
nc

he
s

Correct
Taken

0

20

40

60

80

100

sequentialinsertionji

%
 B

ra
nc

he
s

Correct
Taken

(c) Multi-quicksort (binary search) (d) Multi-quicksort (sequential search)

Fig. 9. Overview of branch prediction behaviour in our quicksort implementations. Every figure
shows the behaviour of the i and j branches when using a median-of-3 pivot. As described in
Section 8.2, these branches are about 60% biased and 64% predictable when using the median-of-3.
In (a) the median branch is the combined results of the branches which compute the median-of-3
(these branches are also executed for (b), (c) and (d)). Comparing (a) with (b), (c) and (d), we
see that the insertion branch associated with its insertion sort is slightly less predictable than in
the other variations. This is due to it running as a post-pass. Finally, comparing (c) with (d) we
see that the binary search branches of (c), binary left and binary right, are very unpredictable
compared to the sequential branch of (d).

pv = a[l];

i = l, j = r + 1;

while(true)

{

while(a[++i] < pv) ; // i-loop

while(a[--j] > pv) ; // j-loop

if(i >= j) break;

swap(a[i], a[j]);

}

swap(a[l], a[j]);

Fig. 10. Quicksort’s partition inner-loop. We refer to the inner while loops as the i and j loops.
We refer to their associated branches as the i and j branches respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Branch Mispredictions Don’t A↵ect Mergesort?

Amr Elmasry1, Jyrki Katajainen1,2, and Max Stenmark2

1 Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen East, Denmark

2 Jyrki Katajainen and Company
Thorsgade 101, 2200 Copenhagen North, Denmark

Abstract. In quicksort, due to branch mispredictions, a skewed pivot-
selection strategy can lead to a better performance than the exact-
median pivot-selection strategy, even if the exact median is given for
free. In this paper we investigate the e↵ect of branch mispredictions on
the behaviour of mergesort. By decoupling element comparisons from
branches, we can avoid most negative e↵ects caused by branch mispre-
dictions. When sorting a sequence of n elements, our fastest version of
mergesort performs n log2 n + O(n) element comparisons and induces at
most O(n) branch mispredictions. We also describe an in-situ version
of mergesort that provides the same bounds, but uses only O(log2 n)
words of extra memory. In our test computers, when sorting integer
data, mergesort was the fastest sorting method, then came quicksort,
and in-situ mergesort was the slowest of the three. We did a similar kind
of decoupling for quicksort, but the transformation made it slower.

1 Introduction

Branch mispredictions may have a significant e↵ect on the speed of programs.
For example, Kaligosi and Sanders [8] showed that in quicksort [6] it may be
more advantageous to select a skewed pivot instead of finding a pivot close to
the median. The reason for this is that for a comparison against the median
the outcome has a fifty percent chance of being smaller or larger, whereas the
outcome of comparisons against a skewed pivot is easier to predict. All in all, a
skewed pivot will lead to a better branch prediction and—possibly—a decrease
in computation time. In a same vein, Brodal and Moruz [3] showed that skewed
binary search trees can perform better than perfectly balanced search trees.

In this paper we tackle the following question posed in [8]. Given a random
permutation of the integers {0, 1, . . . , n � 1}, does there exist a faster in-situ
sorting algorithm than quicksort with skewed pivots for this particular type of
input? We use the word in-situ to indicate that the algorithm is allowed to use
O(log2 n) extra words of memory (as any careful implementation of quicksort).

It is often claimed that quicksort is faster than mergesort. To check the cor-
rectness of this claim, we performed some simple benchmarks for the quicksort
(std::sort) and mergesort (std::stable sort) programs available at the GNU
implementation (g++ version 4.6.1) of the C++ standard library; std::sort is

? c� 2012 Springer-Verlag. This is the authors’ version of the work. The original pub-
lication is available at www.springerlink.com.

and sorting, the other half of the elements can be handled recursively. We stop
the recursion when the number of remaining elements is less than n/ log2 n and
use introsort to handle them. An iterative procedure-level description of this
sorting program is given below. Its interface is the same as that for std::sort.

1 template <typename iterator , typename comparator>
2 void sort(iterator p , iterator r , comparator less) {
3 typedef typename std : : iterator_traits<iterator>::difference_type index ;
4 index n = r � p ;
5 index threshold = n / ilogb(2 + n) ;
6 while (n > threshold) {
7 iterator q_1 = p + n / 2;
8 iterator q_2 = r � n / 2;
9 converse_relation<comparator> greater(less) ;

10 std : : nth_element(p , q_1 , r , greater) ;
11 mergesort(p , q_1 , q_2 , less) ;
12 r = q_1 ;
13 n = r � p ;
14 }
15 std : : sort(p , r , less) ;
16 }

Most of the work is done in the basic steps, and each step only uses O(1)
extra space in addition to the input sequence. Compared to normal mergesort,
the inner loop is not much longer. In the following code extracts, the variables
have the same meaning as those used in tuned mergesort: p, q, r, s, t, t1, and
t2 store iterators; x and y elements; and done and smaller Boolean values.

1 while (p != t1 && q != t2) {
2 i f (less(⇤q , ⇤p)) {
3 s = q ;
4 ++q ;
5 }
6 else {
7 s = p ;
8 ++p ;
9 }

10 x = ⇤r ;
11 ⇤r = ⇤s ;
12 ⇤s = x ;
13 ++r ;
14 }

1 test :
2 done = (q == t2) ;
3 i f (done) goto exit ;
4 entrance :
5 x = ⇤p ;
6 s = p + 1;
7 y = ⇤q ;
8 t = q + 1;
9 smaller = less(y , x) ;

10 i f (smaller) s = t ;
11 i f (smaller) q = t ;
12 i f (! smaller) p = s ;
13 i f (! smaller) y = x ;
14 x = ⇤r ;
15 ⇤r = y ;
16 ��s ;
17 ⇤s = x ;
18 ++r ;
19 done = (p == t1) ;
20 i f (! done) goto test ;
21 exit :

As shown on the right above, an ideal translation of the loop contains 18 assembly-
language instructions, which is only four more than that required by the inner
loop of mergesort. Because of register spilling, the actual code produced by
the g++ compiler was a bit longer; it contained 26 instructions. Again, the two
branches of the if statement were compiled using conditional moves.

For an input of size m, the worst-case cost of std::nth element and std::sort

is O(m) and O(m log2 m), respectively [13]. Thus, the overhead caused by these
subroutines is linear in the input size. Both of these routines require at most a
logarithmic amount of extra space. To sum up, we rely on standard library com-
ponents and ensure that our program only induces O(n) branch mispredictions.

6

Table 3. The execution time [ns], the number of conditional branches, and the number
of mispredictions, each per n log2 n, for two in-situ variants of mergesort.

Program In-situ std::stable sort In-situ mergesort
Time Branches Mispredicts Time Branches Mispredicts

n Per Ares Per Ares

210 49.2 29.7 9.0 2.08 7.3 5.7 1.93 0.26
215 57.6 35.0 11.1 2.38 7.1 5.6 1.94 0.15
220 62.7 38.5 12.9 2.53 7.4 5.7 1.92 0.11
225 68.0 41.3 14.4 2.62 7.6 5.7 1.92 0.09

In our experiments, we compared our in-situ mergesort against the space-
economical mergesort provided by the C++ standard library. The library routine
is recursive, so (due to the recursion stack) it requires a logarithmic amount of
extra space. The performance di↵erence between the two programs is stunning,
as seen in Table 3. We admit that this comparison is unfair; the library routine
promises to sort the elements stably, whereas our in-situ mergesort does not.
However, this comparison shows how well our in-situ mergesort performs.

4 Comparison to Quicksort

In the C++ standard library shipped with our compiler, std::sort is an imple-
mentation of introsort [13], which is a variant of median-of-three quicksort [6].
Introsort is half-recursive, it coarsens the base case by leaving small subprob-
lems (of size 16 or smaller) unsorted, it calls insertionsort to finalize the sorting
process, and it calls heapsort if the recursion depth becomes too large. Since
introsort is known to be fast, it was natural to use it as our starting point.

The performance-critical loop of quicksort is tight as shown on the left below;
p and r are iterators indicating how far the partitioning process has proceeded
from the beginning and the end, respectively; v is the pivot, and less is the
comparator used in element comparisons; the four additional variables are tem-
porary: x and y store elements, and smaller and cross Boolean values.

1 while (true) {
2 while (less(⇤p , v)) {
3 ++p ;
4 }
5 ��r ;
6 while (less(v , ⇤r)) {
7 ��r ;
8 }
9 i f (p >= r) {

10 return p ;
11 }
12 x = ⇤p ;
13 ⇤p = ⇤r ;
14 ⇤r = x ;
15 ++p ;
16 }

1 ��p ;
2 goto first_loop ;
3 swap :
4 ⇤p = y ;
5 ⇤r = x ;
6 first_loop :
7 ++p ;
8 x = ⇤p ;
9 smaller = less(x , v) ;

10 i f (smaller) goto first_loop ;
11 second_loop :
12 ��r ;
13 y = ⇤r ;
14 smaller = less(v , y) ;
15 i f (smaller) goto second_loop ;
16 cross = (p < r) ;
17 i f (cross) goto swap ;
18 return p ;

7

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

How Branch Mispredictions Affect Quicksort

Kanela Kaligosi1 and Peter Sanders2

1 Max Planck Institut für Informatik
Saarbrücken, Germany

kaligosi@mpi-sb.mpg.de
2 Universität Karlsruhe, Germany

sanders@ira.uka.de

Abstract. We explain the counterintuitive observation that finding
“good” pivots (close to the median of the array to be partitioned) may
not improve performance of quicksort. Indeed, an intentionally skewed
pivot improves performance. The reason is that while the instruction
count decreases with the quality of the pivot, the likelihood that the
direction of a branch is mispredicted also goes up. We analyze the ef-
fect of simple branch prediction schemes and measure the effects on real
hardware.

1 Introduction

Sorting is one of the most important algorithmic problems both practically and
theoretically. Quicksort [1] is perhaps the most frequently used sorting algo-
rithm since it is very fast in practice, needs almost no additional memory, and
makes no assumptions on the distribution of the input. Hence, quicksort, its
analysis and efficient implementation is discussed in most basic courses on al-
gorithms. When we take a random pivot, the expected number of comparisons
is 2n lnn ≈ 1.4n lg n. One of the most well known optimizations is that taking
the median of three elements reduces the expected number of comparisons to
12
7 n lnn ≈ 1.2n lg n [2]. Indeed, by using the median of a larger random sample,
the expected number of comparisons can be made as close to n lg n as we want
[3]. For sufficiently large inputs, the increased overhead for pivot selection is
negligible. At first glance, counting comparisons makes a lot of practical sense
since in quicksort, the number of executed instructions and cache faults grow
proportionally with this figure.

However, in comparison based sorting algorithms like quicksort or mergesort,
neither the executed instructions nor the cache faults dominate execution time.
Comparisons are much more important, but only indirectly since they cause
the direction of branch instructions depending on them to be mispredicted.
In modern processors with long execution pipelines and superscalar execution,
dozens of subsequent instructions are executed in parallel to achieve a high peak
throughput. When a branch is mispredicted, much of the work already done
on the instructions following the predicted branch direction turns out to be
wasted. Therefore, ingenious and very successful schemes have been devised to
accurately predict the direction a branch takes. Unfortunately, we are facing a

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 780–791, 2006.
c⃝ Springer-Verlag Berlin Heidelberg 2006

788 K. Kaligosi and P. Sanders

of branch mispredictions. In Fig. 5 we see the number of instructions that are
executed. These are proportional to the number of comparisons and therefore
we see that the exact median is the best, followed by the median of 3, then the
random pivot and finally the 1/10-skewed pivot. Observe that the curves in this
figure are very flat and smooth in contrast to the curves in Fig. 3. Therefore, it
is not only the number of executed instructions that plays a major role in the
running time. The fluctuations in Fig. 3 indicate architectural effects. Observe
that for n = 216 the number of branch mispredictions of random pivot drop and
for this n we also see a significant drop in its running time. Having a closer look at
the curves we see that the curves of time and those of the branch mispredictions
have the same shape, in the sense that when the branch mispredictions drop, the
running time drops too and when the branch mispredictions increase the running
time increases too. Note that the branch mispredictions only slowly approach

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 3. Time / n lg n for random pivot, median of 3, exact median, 1/10-skewed pivot

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 10 12 14 16 18 20 22 24 26

#b
ra

nc
h

m
is

se
s

/ n
 lg

 n

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 4. Number of branch mispredictions / n lg n for random pivot, median of 3, exact
median, 1/10-skewed pivot

784 K. Kaligosi and P. Sanders

Table 1. Number of branch mispredictions

random pivot α-skewed pivot

static predictor ln 2
2

n lg n + O(n), ln 2
2

≈ 0.3466 α
H(α)

n lg n + O(n), α < 1/2
1−α
H(α)

n lg n + O(n), α ≥ 1/2

1-bit predictor 2 ln 2
3

n lg n + O(n), 2 ln 2
3

≈ 0.4621 2α(1−α)
H(α)

n lg n + O(n)

2-bit predictor 28 ln 2
45

n lg n + O(n), 28 ln 2
45

≈ 0.4313 2α4−4α3+α2+α
(1−α(1−α))H(α)

n lg n + O(n)

with static predictor there is no such assumption and for the entry α-skewed
with static predictor we give a worst case analysis.

In Fig. 2 we see the α-dependent coefficients of n lg n for the case of the α-skewed
pivot. As expected they are maximized for α = 0.5 and their value decreases as
we move towards smaller or larger α’s. Moreover, the best curve is the one for
the static predictor, followed by the one for the 2-bit predictor and then the one
for the 1-bit predictor.

3.1 Static Prediction Scheme

Next we analyze the number of branch mispredictions quicksort could achieve
with static branch prediction if somebody would tell the predictor whether the
pivot is smaller or larger than the median. We can judge dynamic branch pre-
diction by comparing its performance with this “best possible” prediction. We
consider the random pivot and the α-skewed pivot case. For the former we give

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

(#
br

an
ch

 m
is

se
s

-
O

(n
))

 /
 n

 lg
 n

α

static predictor
1-bit predictor
2-bit predictor

Fig. 2. The α-dependent coefficients of n lg n for varying α

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Analysis of Branch Misses in Quicksortú

Conrado Martínez† Markus E. Nebel‡§ Sebastian Wild‡

November 11, 2014

Abstract
The analysis of algorithms mostly relies on count-
ing classic elementary operations like additions,
multiplications, comparisons, swaps etc. This ap-
proach is often su�cient to quantify an algorithm’s
e�ciency. In some cases, however, features of mod-
ern processor architectures like pipelined execution
and memory hierarchies have significant impact on
running time and need to be taken into account to
get a reliable picture. One such example is Quick-
sort: It has been demonstrated experimentally that
under certain conditions on the hardware the clas-
sically optimal balanced choice of the pivot as me-
dian of a sample gets harmful. The reason lies in
mispredicted branches whose rollback costs become
dominating.

In this paper, we give the first precise ana-
lytical investigation of the influence of pipelining
and the resulting branch mispredictions on the ef-
ficiency of (classic) Quicksort and Yaroslavskiy’s
dual-pivot Quicksort as implemented in Oracle’s
Java 7 library. For the latter it is still not fully
understood why experiments prove it 10 % faster
than a highly engineered implementation of a clas-
sic single-pivot version. For di�erent branch pre-
diction strategies, we give precise asymptotics for
the expected number of branch misses caused by
the aforementioned Quicksort variants when their

úPart of this research was done during a visit at UPC, for which
the second and third authors acknowledge support by project
TIN2007-66523 Formal methods and algorithms for system de-
sign (FORMALISM) of the Spanish Ministry of Economy and
Competitiveness

†Department of Computer Science, Univ. Politècnica de
Catalunya, Email: conrado@cs.upc.edu

‡Computer Science Department, University of Kaiserslautern,
Email: {wild,nebel}@cs.uni-kl.de

§Department of Mathematics and Computer Science, Univer-
sity of Southern Denmark

pivots are chosen from a sample of the input. We
conclude that the di�erence in branch misses is too
small to explain the superiority of the dual-pivot
algorithm.

1 Introduction
Quicksort (QS) is one of the most intensively used
sorting algorithms, e.g., as the default sorting
method in the standard libraries of C, C++, Java
and Haskell. Classic Quicksort (CQS) uses one
element of the input as pivot P according to which
the input is partitioned into the elements smaller
than P and the ones larger than P , which are then
sorted recursively by the same procedure.

The choice of the pivot is essential for the ef-
ficiency of Quicksort. If we always use the small-
est or largest element of the (sub-)array, quadratic
runtime results, whereas using the median gives an
(asymptotically) comparison-optimal sorting algo-
rithm. Since the precise computation of the median
is too expensive, sampling strategies have been in-
vented: out of a sample of k randomly selected
elements of the input, a certain order statistic is se-
lected as the pivot— the so-called median-of-three
strategy is one prominent example of this approach.

In theory, Quicksort can easily be generalized
to split the input into s Ø 2 partitions around s≠1
pivots. (CQS corresponds to s = 2). However,
the implementations of Sedgewick and others did
not perform as well in running time experiments as
classic single-pivot Quicksort [15]; it was common
belief that the overhead of using several pivots is
too large in practice. In 2009, however, Vladimir
Yaroslavskiy proposed a new dual-pivot variant
of Quicksort which surprisingly outperformed the
highly engineered classic Quicksort of Java 6, which

ar
X

iv
:1

41
1.

20
59

v1
 [

cs
.D

S]
 7

 N
ov

 2
01

4

⁄ 1

0

xa(1 ≠ x)b
1 ≠ x(1 ≠ x) dx = ≠

b≠1ÿ

i=0
B(a ≠ i, b ≠ i) +

Âa≠b
3 Êÿ

i=1
(≠1)i≠1! 1

(a≠b)≠3i+2 + 1
(a≠b)≠3i+1

"
+ fl1(a ≠ b). (a Ø b)

⁄ 1

0

xa(1 ≠ x)b
1
2 ≠ x(1 ≠ x)

dx = ≠
b≠1ÿ

i=0
2≠iB(a ≠ i, b ≠ i) + 2≠b

Âa≠b
4 Êÿ

i=1

!≠1
4
"i≠1! 1

(a≠b)≠4i+3 + 1
(a≠b)≠4i+2 + 1/2

(a≠b)≠4i+1
"

+ 2≠bfl2(a ≠ b).

fl1(d) = (≠1)Âd3Ê

Y
]
[

2fi

3
Ô

3 if d © 0 (mod 3)
fi

3
Ô

3 if d © 1 (mod 3)
1 ≠ fi

3
Ô

3 if d © 2 (mod 3)
, fl2(d) =

!
≠ 1

4

"Âd4Ê

Y
__]
__[

fi if d © 0 (mod 4)
fi/2 if d © 1 (mod 4)
1 if d © 2 (mod 4)
3
2 ≠ fi

4 if d © 3 (mod 4)

.

Figure 4: Explicit expressions for the integrals involved in “(1)
a,b and “(2)

a,b. The formulas are only valid for
a Ø b, but since the integrals are symmetric, one can simply use aÕ = max{a, b} and bÕ = min{a, b}. The proof
consists in finding recurrences for the polynomial long division of the integrand, solving these recurrences and
integrating them summand by summand. Details are given in Appendix C.

2 4 6 8 10 12 14
t

0.62

0.64

0.66

0.68

0.70

0.72
BM

Figure 5: Branch mispredictions, as a function
of t, in CQS (black) and YQS (red) with 1-bit
branch prediction (fat), 2-bit saturating counter
(thin solid) and 2-bit flip-consecutive (dashed) using
symmetric sampling: tCQS = (3t + 2, 3t + 2) and
tYQS = (2t + 1, 2t + 1, 2t + 1)

· the Dir(t + 1) distribution degenerates to a
deterministic vector, i.e., D æ · in probability.
By the continuous mapping theorem, we also have
the limit (in probability) f(D1) æ f(·1) and thus
E[f(D1)] æ f(·1). ⇤

6 Discussion
Table 2 (page 10) summarizes the leading factor
(the constant in front of n lnn) in the total ex-
pected number of branch mispredictions for both
CQS and YQS under the various branch prediction
schemes and di�erent pivot sampling strategies.

In practice, classic Quicksort implementations
typically use median-of-3 sampling, while in Ora-
cle’s YQS from Java 7 the chosen pivots are the
second and the fourth in a sample of 5 (tertiles-of-
5). With 1-bit prediction, this results in approx-

2 4 6 8 10 12 14
t

0.2

0.3

0.4

0.5

0.6

BM

Figure 6: Branch mispredictions, as a function of t,
in CQS (black) and YQS (red) with 1-bit (fat), 2-
bit sc (thin solid) and 2-bit fc (dashed) predictors,
using extremely skewed sampling: tCQS = (0, 6t+4)
and tYQS = (0, 6t + 3, 0)

imately 0.6857n lnn vs. 0.6867n lnn BMs in the
asymptotic average; for the other branch predic-
tion strategies the di�erence is similar. It is very
unlikely that the substantial di�erences in running
times between CQS and YQS are caused by this
tiny di�erence in the number of branch misses.

6.1 BM-Optimal Sampling. Figure 5 shows
the leading factor of BMs as a function of t, where
pivots are chosen equidistantly from samples of size
k = 6t + 5, i.e., in CQS we use the median as
pivot, in YQS the tertiles. Notice that, contrary to
many other performance measures, sampling can
be harmful with respect to branch mispredictions.
In particular, notice that with symmetric sampling
(i.e., median-of-(2t+1) for CQS, tertiles-of-(3t+2)
for YQS) the expected number of BMs increases

9

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

We are not alone...

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Sander and Winkel, 2004 : quicksort variant without branches

Elmasry et al, 2012 : mergesort variant without branches

Kaligosi and Peter Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Brodal and Moruz, 2006 : skewed binary search trees

Carine Pivoteau Good predictions are worth... 5/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1)

P = 1
2

r = r * x;
n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1)

P = 1
2

r = r * x;
// n1 == 1
if (n & 2)

P = 1
2

r = r * t;
n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){

P = 3
4

if (n & 1)

P = 2
3

r = r * x;
if (n & 2)

P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1)

P = 2
3

r = r * x;
if (n & 2)

P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Introducing unnecessary tests to speed up

pow(x,n)
r = 1;
while (n > 0) {
// n is odd
if (n & 1) P = 1

2
r = r * x;

n /= 2;
x = x * x;

}

x is a floating-point
number, n is an integer
and r is the result.

xn = (x2)bn/2cxn0

unrolled(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n0 == 1
if (n & 1) P = 1

2
r = r * x;

// n1 == 1
if (n & 2) P = 1

2
r = r * t;

n /= 4;
x = t * t;

}

xn =(x4)bn/4c(x2)n1xn0

guided(x,n)
r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3){ P = 3

4
if (n & 1) P = 2

3
r = r * x;

if (n & 2) P = 2
3

r = r * t;
}
n /= 4;
x = t * t;

}

25 % more comparisons for guided than for unrolled

guided exponential is 14% faster than the unrolled one;

guided exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.

Carine Pivoteau Good predictions are worth... 6/11

Guided Pow: average number of mispredictions

Theorem

Compute xn, for random n in {0, . . . , N − 1}.
Expected nb. of conditionals:

∼ log2N for classical and unrolled pow
∼ 5

4 log2N for the guided one

Expected nb. of mispredictions:

∼ 1
2 log2N for classical and unrolled pow

∼ (1
2µ(3

4) + 3
4µ(2

3)) log2N for guided pow

guided(x,n)

r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3) {

if (n & 1)
r = r * x;

if (n & 2)
r = r * t;

}
n /= 4;
x = t * t;

}

S. NT NT T S. T

1/4
3/4

1/4

3/4

1/4

3/4

1/4

3/4

µ(34) = 3
10 and µ(23) = 2

5

25 % more comparisons than unrolled

unnecessary if : added mispred.

other ones : less mispred.

I 5 % less mispred. (2-bit predictor)

I 11 % less mispred. (3-bit predictor)

Carine Pivoteau Good predictions are worth... 7/11

Guided Pow: average number of mispredictions

Theorem

Compute xn, for random n in {0, . . . , N − 1}.
Expected nb. of conditionals:

∼ log2N for classical and unrolled pow
∼ 5

4 log2N for the guided one

Expected nb. of mispredictions:

∼ 1
2 log2N for classical and unrolled pow

∼ 0.45 log2N for guided pow (2-bit pred.)

guided(x,n)

r = 1;
while (n > 0) {
t = x * x;
// n1n0! = 00
if (n & 3) {

if (n & 1)
r = r * x;

if (n & 2)
r = r * t;

}
n /= 4;
x = t * t;

}

S. NT NT T S. T

1/4
3/4

1/4

3/4

1/4

3/4

1/4

3/4

µ(34) = 3
10 and µ(23) = 2

5

25 % more comparisons than unrolled

unnecessary if : added mispred.

other ones : less mispred.

I 5 % less mispred. (2-bit predictor)

I 11 % less mispred. (3-bit predictor)

Carine Pivoteau Good predictions are worth... 7/11

Unbalancing the binary search

n/2 n/2

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

Carine Pivoteau Good predictions are worth... 8/11

Unbalancing the binary search

n/2

n/4

n/2

3n/4

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

Carine Pivoteau Good predictions are worth... 8/11

Unbalancing the binary search

n/2

n/4

n/2

n/4

3n/4

3n/4

n/4 n/4 n/2

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

8 Good Predictions Are Worth a Few Comparisons8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that – is equal to 25
48 ¥ 0.52,

9
20 = 0.45, 2045

4368 ¥ 0.47 and 1095
2788 ¥ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not e�cient enough to o�set the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ¥ 0.25 log2 n more
comparisons than UnrolledPow, but ¥ 0.11 log2 n less mispredictions.

5 Binary Search and Variants

5.1 Unbalancing the Binary Search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n

3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to
cache e�ects, since the way we partition the array influences the location where the memory

partition
twice

Carine Pivoteau Good predictions are worth... 8/11

Unbalancing the binary search

Carine Pivoteau Good predictions are worth... 8/11

Analysis of the local predictor

Theorem

For arrays of size n filled with random uniform integers. Cn is the

number of comparisons and Mn the number of mispredictions.

BinarySearch BiasedBinarySearch SkewSearch

E[Cn] log n
log 2

4 log n
(4 log 4−3 log 3)

7 log n
(6 log 2)

E[Mn]
log n

(2 log 2) µ(1
4
)E[Cn]

(
4
7
µ(1

4
)+ 3

7
µ(1

3
)
)
E[Cn]

µ is the expected misprediction probability associated with the predictor.

Idea of the proof:

Get the expected number of times a given conditional is executed
by Roura’s Master Theorem [Rou01].

Ensure that our predictors behave almost like Markov chains.

Carine Pivoteau Good predictions are worth... 9/11

Analysis of the local predictor

Theorem

For arrays of size n filled with random uniform integers. Cn is the

number of comparisons and Mn the number of mispredictions.

BinarySearch BiasedBinarySearch SkewSearch

E[Cn] 1.44 logn 1.78 logn 1.68 logn

E[Mn] 0.72 logn 0.53 logn 0.58 logn

with a 2-bit saturated counter.

Idea of the proof:

Get the expected number of times a given conditional is executed
by Roura’s Master Theorem [Rou01].

Ensure that our predictors behave almost like Markov chains.

Carine Pivoteau Good predictions are worth... 9/11

What about a global predictor?

1 d = 0; f = n;

2 while (d < f){

3 m1 = (3*d+f)/4;

4 if (T[m1] > x) f = m1;

5 else {

6 m2 = (d+f)/2;

7 if (T[m2] > x){

8 f = m2;

9 d = m1+1;

10 }

11 else d = m2+1;

12 }

13 }

14 return f;

main nested1:14

0:34

0 : 2
3 , 1 : 1

3

Global predictor

N. Auger, C. Nicaud, and C. Pivoteau 11

0000...00

0000...01
...

1111...11

Ω≠ ¸ ≠æ Figure 10 A fully global predictor scheme: The
history table of size 2¸ keeps track of the outcomes
of the last ¸ branches encountered during the ex-
ecution, the last one corresponding to the right-
most bit. To each sequence of ¸ branches is asso-
ciated a global 2-bit predictor (shared by all the
conditional branches).

I Theorem 6. Let Cn and Mn be the number of comparisons and mispredictions per-
formed in our model of randomness. For BinarySearch, E[Cn] ≥ 1

log 2 logn and E[Mn] ≥
1

2 log 2 logn. For BiasedBinarySearch, E[Cn] ≥ 4
4 log 4≠3 log 3 logn and E[Mn] ≥ µ(1

4)E[Cn].
For SkewSearch, E[Cn] ≥ 7

6 log 2 logn and E[Mn] ≥
! 4

7µ(1
4)+ 3

7µ(1
3)

"
E[Cn], where µ is the

expected misprediction probability associated with the predictor.

5.4 Analysis of the global predictor for skewSearch
In this section we intend to give hints about the behavior of a global branching predictor,
such as the one depicted on Figure 10 (see also Section 2), for the algorithm SkewSearch.
Notice in particular that the predictor of each entry is a 2-bit saturated counter. This is not
the only possible choice of a global predictor, but it is simple enough without being trivial.
We make the analysis in the idealized framework that resemble the real case su�ciently well,
by ignoring the rounding e�ects of dealing with integers. We saw in the previous section
why these approximations still give the correct result for the first order asymptotic.

In our idealized model we only consider the sequence of taken / not taken produced by
the two conditional tests of SkewSearch. We deliberately do not consider the conditional
induced by the test within the “while” loop, which would be always not taken in our settings
(except for the very last step). Adding it would complicate the model without adding
interesting information to the branch predictor.10 We encode a taken conditional by a 1
and a not taken conditional by a 0. The trace of an execution of the algorithm is thus a
non-empty word on the binary alphabet B = {0, 1}. Because of the way the two conditional
tests are nested within the algorithm, we can keep track of the current “if” by the use of
the simple deterministic automaton Aif with two states depicted in Figure 11: main stands
for the first conditional and nested for the second one. In our model, main is taken with
probability 1

4 and nested with probability 1
3 . As done in Section 4, Aif can be changed into

a Markov chain Mif using this transition probabilities. A direct computation shows that its
stationary vector fiif satisfies fiif(main) = 4

7 and fiif(nested) = 3
7 .

(Aif) main nested1

0

0, 1

(Mif) main nested1: 14

0: 34

0 : 2
3 , 1 : 1

3

Figure 11 On the left, the automaton Aif. On the right, the Markovian automaton Mif of
transition probabilities P(1 | main) = 1

4 , P(0 | main) = 3
4 , P(0 | nested) = 2

3 and P(1 | nested) = 1
3 .

10 Also, most modern architectures have “loop detectors” that are used to identify such conditionals.

SNT
main

NT
main

T
main

ST
main

SNT
nested

NT
nested

T
nested

0:34

0:23 0:34

0:34

0:34

0:23

0:23

1:13

1:13

1:13

1:14 1:14 1:14
1:14

Carine Pivoteau Good predictions are worth... 10/11

Concluding remarks

Gerth Stølting Brodal and Gabriel Moruz.

Tradeoffs Between Branch Mispredictions and Comparisons for Sorting Algorithms.
In Algorithms and Data Structures, volume 3608, pages 385–395. Springer Berlin
Heidelberg, 2005.

Gerth Stølting Brodal and Gabriel Moruz.

Skewed Binary Search Trees.
In Algorithms ESA 2006, volume 4168, pages 708–719. Springer Berlin Heidelberg, 2006.

Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg.

An experimental study of sorting and branch prediction.
Journal of Experimental Algorithmics, 12:1, June 2008.

John L. Hennessy and David A. Patterson.

Computer Architecture, Fifth Edition: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

Kanela Kaligosi and Peter Sanders.

How Branch Mispredictions Affect Quicksort.
In Algorithms ESA 2006, volume 4168, pages 780–791. Springer Berlin Heidelberg, 2006.

Conrado Mart́ınez, Markus E. Nebel, and Sebastian Wild.

Analysis of branch misses in quicksort.
In Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2015, San Diego, CA, USA, January 4, 2015, pages 114–128, 2015.

Salvador Roura.

Improved master theorems for divide-and-conquer recurrences.
Journal of the ACM, 48(2):170–205, 2001.

Carine Pivoteau Good predictions are worth... 11/11

	Simultaneous min and max
	Exponentiation by squaring
	Binary Search

