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Totally asymmetric simple exclusion process (TASEP)
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» Dynamics: particles on Z perform independent jumps to
the right subject to the exclusion constraint

» We will also consider particle-dependent speeds



Totally asymmetric simple exclusion process (TASEP)

Y VS VN N
® @ O © @
4 3 2 - 0 1 2 7

» Dynamics: particles on Z perform independent jumps to
the right subject to the exclusion constraint

» We will also consider particle-dependent speeds
We number particles from right to left
e < X3(0) < XQ(O) < X1(0) <0< Xo(O) < X_1(0) < ...

Xk (t) = position of particle k at time t



TASEP - a KPZ growth model

Set h(0,0) = 0 and

—1 if x 4+ 1 is occupied at time O

1 otherwise

h(x+1,0)—h(x,0) = {

t=0 t=0
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TASEP - a KPZ growth model

Set h(0,0) = 0 and

—1 if x + 1 is occupied at time ¢

h(x+1,t)—h(x,t):{

1 otherwise

t>0 >0
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TASEP - a KPZ growth model

Set h(0,0) = 0 and

—1 if x + 1 is occupied at time ¢

h(x+1,t)—h(x,t):{

1 otherwise
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Hydrodynamic theory identifies TASEP as a KPZ model



Flat TASEP and the Airy, process

TASEP with a flat geometry (92hn, = 0) for periodic initial data:

t=0 t>0 A
AVAVAVAR SUSUNEUSESN

For flat TASEP we have [BFPS ’07] in the sense of fin. dim.
distr.

. Xpjayeress(l) + 2¢¢2/3
tll[go / +§ —t1 /3 = ./41 (5)7

with A4(&) the Airy, process with one-point distribution given
by the F; (GOE) Tracy-Widom distribution from random matrix

theory.




Shocks

» Discontinuities of the particle density are called shocks

p(x,0) 4 t=0 p(x,)a t>0

P— P+ pP— P+

» Initial condition: Ber(p+) on N and Ber(p_) on Z_.

» for p_ < py there is a shock with speed v =1 — (py + p_)
» one can identify the microscopic shock with the position Z;
of a particle fluctuating around vt:

lim Zt — vt
tl>oo t1/2 ~

N(0,4%)  (see Lig’99)



Question: What are the shock fluctuations for non-random
initial configuration (IC)?



Two Speed TASEP with periodic IC

t=0
vi =1 Vo =a <1
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This leads to a wedge limit shape:

t=0
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Shock as particle position

p(x, 1) & t>0
» The last slow particle is
— macroscopically at position
. (1 —pat = 5t.
2 » Behind it is a jam region A
o a 9 of increased density
et A St p=1—0a/2.
» The particle nt, with
n = 272 is at the macro
shock position.

Inside the constant density regions, ' # n, the fluctuations of
Xyt are governed by the Fy GOE Tracy-Widom distribution and

live in the t'/3 scale.



Goal: Determine the large time fluctuations of the
(rescaled) particle position xp;) around the shock:

. Xn(ty — VI .,
()

where vt is the macroscopic position of xpy).

For arbitrary fixed IC, the law of x, ;) is given as a Fred-
holm determinant of a kernel K; [BFPS ’07],

im p (X0 V0 = lim det(1 — xsKixs)2(z, (1)
3 = ts00 STHASI(Z):

t—o0



Goal: Determine the large time fluctuations of the
(rescaled) particle position xp;) around the shock:

. Xn(t) — vt _ -
e (")

where vt is the macroscopic position of xpy).

For arbitrary fixed IC, the law of x, ;) is given as a Fred-
holm determinant of a kernel K; [BFPS ’07],

. Xn(t) - Vt _ .
lim P (1‘1/3 < s> = lim det(1 — xsKixs)eez), (1)

t—o0

Problem: K; is diverging for our example (but its Fred-
holm determinant will still converge), so one cannot ana-
lyze (1) directly



Product structure for Two-Speed TASEP

Theorem (At the F—F; shock, Ferrari, N. ’14)
Let x,(0) = —2n for n € Z. For a < 1 letn = 23* and
v=—152 Then it holds

X t) — vt _ s — 2%
lim ]P( 7It+£t1/13/(3) < S> ~ F, (S 2§> F, < Za) :
t—o0 t 01 02

a'/3(2—2a+a?)1/3
2(2—)?/3

where o1 = 5 and oo =



Product structure for Two-Speed TASEP

Theorem (At the F—F; shock, Ferrari, N. ’14)

Let x,(0) = —2n forn € Z. For o < 1 letn = 232 and
v=—152 Then it holds

X t) — vt _ s— 25
lim ]P’( ””5’”13(3) < s> = F (s 2§> Fi ( 2“) :

1 a'/3(2—2a+0?2)1/3

One recovers GOE by changing s — s + 2¢ and £ — +o0, resp.
by s —+s+2{/(2—«a)and £ - —¢



TASEP as Last Passage Percolation (LPP)

» Letw;j,(i,j) € Z2, be independent weights, £ C 72
7 : L — (m, n) an up-right path

> Lgﬁ(m,n) = maX Zw,,ieﬂ Wjj = wa‘eﬂ'max Wi j

Zo
(mn) L={(u—-u):ueZ}=LTUL
. rmax wij ~exp(1) (white), exp() (green).
Lt = z
(6]
r-




TASEP as Last Passage Percolation (LPP)

» Letw;j,(i,j) € Z2, be independent weights, £ C 72
7 : L — (m, n) an up-right path

> Lgﬁ(m,n) = maX Zw,,ieﬂ Wjj = wa‘eﬂ'max Wi j

Link: P (Lzoy(mny < t) =P (Xn(t) > m—n),
wij ~ exXp(Vi)1(ijece, £ = {(k+ xk(0),k) : k € Z}

Zo
(mn) L={(u—-u):ueZ}=LTUL
. rmax wij ~exp(1) (white), exp() (green).
Lr = z
(6]
r-




Last Passage Percolation in combinatorics
There is a bijection between integer matrices

k
My ={AlA= (ai,j)EE%, aj;j € No, ; = k}
and generalized permutations o

{o:0= (125 k1l cN],j e [M], either i < iy

J1de j3 o Jk—1 Jk
or iy =41, Ji < ji+1}

where [M] = {1,2,... M} . Call (]': ) (/’:Z) an increasing
subsequence of length mifry <o <--- < ryand
/1 <jo--- < jm, and denote /(o) a longest increasing

subsequence.



Last Passage Percolation in combinatorics
There is a bijection between integer matrices

k
My ={AlA= (ai,j)EE%, aj;j € No, ; = k}
and generalized permutations o

{o:0= (125 k1l cN],j e [M], either i < iy

J1de j3 o Jk—1 Jk
or iy =41, Ji < ji+1}

where [M] = {1,2,... M} . Call (]': )+ (j™) anincreasing
subsequence of length mifry <o <--- < ryand

/1 <jo--- < jm, and denote /(o) a longest increasing
subsequence.

If we set w;; = a;; then under the above bijection

Li =Ny = o).



Generic Theorem

/PN ° (770t7 t)
NN Assume that there exists some
N 1 such that
—+ ~\
£ '~ N i Levpot,ty — pt B
> im P ——22—— <s] = Gi(s),
7 t—o0 t /
lim P W<s = G»(8)
t—o0 t/3 - 2
=

Theorem (Ferrari, N. ’14)
Under some assumptions we have

. Leosmotny — mt
lim P <W < s) = Gi(s)G2(s),

t—o00

where L= LT U L.



On the assumptions
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On the assumptions

@ (770t7

I. Assume that we have a point
+

) ET = (not — kt”,t — t”) such that
for some g, and v € (1/3,1) it
holds

Lo e, — pt+ pot”
t1/3
Les S (not,ty — Hot”
tu/3

— Gy
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On the assumptions

Slow Decorrelation



On the assumptions

i I. Slow Decorrelation
E,,. tt
o ot 1) Il. Assume there is a point D =
"D (no(t — t7),t — t7) with not? <
max xt” such that 7** and 7™ cross

(0,0)D with vanishing probability.
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On the assumptions

Ly |. Slow Decorrelation

\ Ey,..p(not,t) [l. No crossing
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Some remarks:

» |. is related to the universal phenomenon known as slow
decorrelation [CFP '12]

» |l. follows if we have that the ’characteristic lines’ of the two
LPP problems meet at (7ot, t), together with the transversal
fluctuations which are only O(?/3) [Jo '00]

» |Il. An extension to joint laws

m
P (m {LL—>(nt+ukt1/3,t) < ut+ Skt1/3}>
k=1

is available (Ferrari, N. 16) and based on controling local
fluctuations in LPP



£+

(0,0)

Let £ = £ U £~ with £LT{(k +
xk(0), k) - k > 1}, L~{(k + x«(0), k) :
k <0}and xp = 1,x_4 < —1 and
Xk > Xk+1 -



£+

Let £ = £ U £~ with £LT{(k +
x(0), k) : k > 1}, L{(k + x(0), k) -
k <0}and xp = 1,x_4 < —1 and
Xk > Xk41 -

7, Paint (k,/) € Z2, red if

(0,0)

Lev Sk > Lok

and blue if

Loy > Lok



U0 Lete = £t UL with £H{(k +
. e+« k<O0}andxg=1,x1 < —1and

° Xk > Xk41 -
*z, Paint (k, /) € Z&, red if

©.0)
Lev Sk > Lok

and blue if

L~ Le— k) > Lov s
The competition interface {¢n},>0 is defined via ¢g = (0,0) and

¢ _ ¢n+(170) if ¢n+(1,1) is red
" én+(0,1) if ¢p+(1,1) is blue



Some Properties of competition interfaces

» if (k,/) is red, then so are (k,/+ 1) and (k — 1, /) ( or they
have no color)

» if (k, /) is blue, then so are (k +1,/) and (k,/ — 1) ( or they
have no color)

» for ¢n = (In, Jn) we have that I, + J, = nand (k,n— k) is
red for 0 < k < I, and blue for I, < k < n.

» I, — Jn is again located at the shock, and is related to the
position of a "second-class particle" Z;



Theorem (Ferrari, N. '16)

lim P

t—o0

lt _Jf —(()d—1)t
(LJ Livs < >—P(XGOE Xa5e > 0)

where x5, Xa5s are independent random variables with
shifted GOE distribution,

P(xGSs < 7) = Fooe ((7 + (2/(2 - @))*s)/o1)
P(x&Se < 7) = Foos (( +(2/(2 - a))*3s/a) /o2) ,

22/3
where o = W and oo =

22/3(2—2a+0a?)!/3
( —_—————

a?/3(2—a)
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