Last Passage Percolation, KPZ, and Competition Interfaces

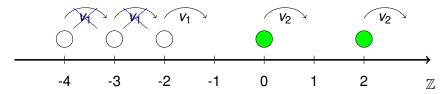
Peter Nejjar avec Patrik Ferrari

ENS Paris DMA

CIRM 8. 3. 2016

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Totally asymmetric simple exclusion process (TASEP)

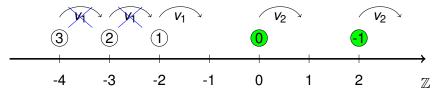


Dynamics: particles on Z perform independent jumps to the right subject to the exclusion constraint

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We will also consider particle-dependent speeds

Totally asymmetric simple exclusion process (TASEP)



- Dynamics: particles on Z perform independent jumps to the right subject to the exclusion constraint
- We will also consider particle-dependent speeds

We number particles from right to left

 $\ldots < x_3(0) < x_2(0) < x_1(0) < 0 \le x_0(0) < x_{-1}(0) < \ldots$

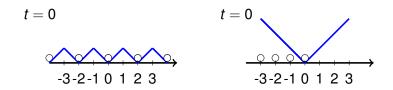
 $x_k(t)$ = position of particle *k* at time *t*

(日) (日) (日) (日) (日) (日) (日)

TASEP - a KPZ growth model

Set h(0,0) = 0 and

$$h(x+1,0)-h(x,0) = \begin{cases} -1 & \text{if } x+1 \text{ is occupied at time 0} \\ 1 & \text{otherwise} \end{cases}$$

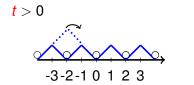


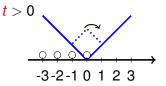
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

TASEP - a KPZ growth model

Set h(0,0) = 0 and

$$h(x+1,t) - h(x,t) = \begin{cases} -1 & \text{if } x+1 \text{ is occupied at time } t \\ 1 & \text{otherwise} \end{cases}$$



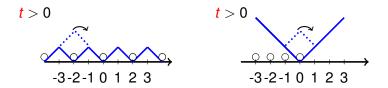


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

TASEP - a KPZ growth model

Set h(0,0) = 0 and

$$h(x+1,t) - h(x,t) = \begin{cases} -1 & \text{if } x+1 \text{ is occupied at time } t \\ 1 & \text{otherwise} \end{cases}$$



Hydrodynamic theory identifies TASEP as a KPZ model

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Flat TASEP and the Airy₁ process

TASEP with a flat geometry ($\partial_{\xi}^2 h_{ma} = 0$) for periodic initial data:



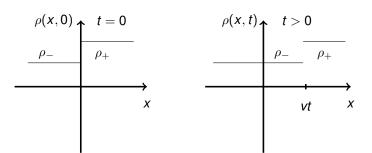
For flat TASEP we have [BFPS '07] in the sense of fin. dim. distr.

$$\lim_{t\to\infty}\frac{x_{t/4+\xi t^{2/3}}(t)+2\xi t^{2/3}}{-t^{1/3}}=\mathcal{A}_1(\xi),$$

with $A_1(\xi)$ the Airy₁ process with one-point distribution given by the F_1 (GOE) Tracy-Widom distribution from random matrix theory.

Shocks

Discontinuities of the particle density are called shocks



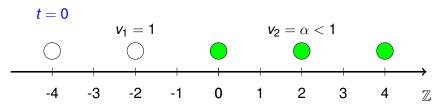
▶ Initial condition: $Ber(\rho_+)$ on \mathbb{N} and $Ber(\rho_-)$ on \mathbb{Z}_- .

- for $\rho_- < \rho_+$ there is a shock with speed $v = 1 (\rho_+ + \rho_-)$
- one can identify the microscopic shock with the position Z_t of a particle fluctuating around vt:

$$\lim_{t\to\infty} \frac{Z_t - vt}{t^{1/2}} \sim \mathcal{N}(0, \mu^2) \qquad \text{(see Lig '99)}$$

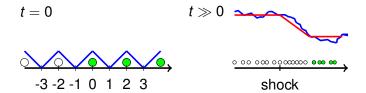
Question: What are the shock fluctuations for **non-random initial configuration (IC)**?

Two Speed TASEP with periodic IC

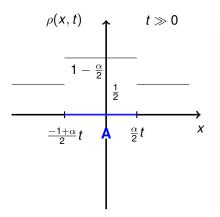


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

This leads to a wedge limit shape:



Shock as particle position



- The last slow particle is macroscopically at position (1 − ρ)αt = ^α/₂t.
- Behind it is a jam region A of increased density

$$\rho = 1 - \alpha/2.$$

 The particle ηt, with η = ^{2-α}/₄ is at the macro shock position.

Inside the constant density regions, $\eta' \neq \eta$, the fluctuations of $x_{\eta't}$ are governed by the F_1 GOE Tracy-Widom distribution and live in the $t^{1/3}$ scale.

Goal: Determine the large time fluctuations of the (rescaled) particle position $x_{n(t)}$ around the shock:

$$\lim_{t\to\infty}\mathbb{P}\left(\frac{x_{n(t)}-\mathsf{v}t}{t^{1/3}}\leq s\right)=?$$

where *vt* is the macroscopic position of $x_{n(t)}$.

For arbitrary fixed IC, the law of $x_{n(t)}$ is given as a Fredholm determinant of a kernel K_t [BFPS '07],

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{x_{n(t)} - vt}{t^{1/3}} \le s\right) = \lim_{t\to\infty} \det(1 - \chi_s K_t \chi_s)_{\ell^2(\mathbb{Z})}, \quad (1)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Goal: Determine the large time fluctuations of the (rescaled) particle position $x_{n(t)}$ around the shock:

$$\lim_{t\to\infty}\mathbb{P}\left(\frac{x_{n(t)}-\mathsf{v}t}{t^{1/3}}\leq s\right)=?$$

where vt is the macroscopic position of $x_{n(t)}$.

For arbitrary fixed IC, the law of $x_{n(t)}$ is given as a Fredholm determinant of a kernel K_t [BFPS '07],

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{x_{n(t)} - vt}{t^{1/3}} \le s\right) = \lim_{t\to\infty} \det(1 - \chi_s \mathcal{K}_t \chi_s)_{\ell^2(\mathbb{Z})}, \quad (1)$$

Problem: K_t is diverging for our example (but its Fredholm determinant will still converge), so one cannot analyze (1) directly

Product structure for Two-Speed TASEP

Theorem (At the F_1 – F_1 shock, Ferrari, N. '14) Let $x_n(0) = -2n$ for $n \in \mathbb{Z}$. For $\alpha < 1$ let $\eta = \frac{2-\alpha}{4}$ and $v = -\frac{1-\alpha}{2}$. Then it holds

$$\lim_{t \to \infty} \mathbb{P}\left(\frac{x_{\eta t + \xi t^{1/3}}(t) - vt}{t^{1/3}} \le s\right) = F_1\left(\frac{s - 2\xi}{\sigma_1}\right) F_1\left(\frac{s - \frac{2\xi}{2 - \alpha}}{\sigma_2}\right),$$

where $\sigma_1 = \frac{1}{2}$ and $\sigma_2 = \frac{\alpha^{1/3}(2 - 2\alpha + \alpha^2)^{1/3}}{2(2 - \alpha)^{2/3}}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Product structure for Two-Speed TASEP

Theorem (At the F_1 – F_1 shock, Ferrari, N. '14) Let $x_n(0) = -2n$ for $n \in \mathbb{Z}$. For $\alpha < 1$ let $\eta = \frac{2-\alpha}{4}$ and $v = -\frac{1-\alpha}{2}$. Then it holds

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{x_{\eta t+\xi t^{1/3}}(t)-vt}{t^{1/3}}\leq s\right) = F_1\left(\frac{s-2\xi}{\sigma_1}\right)F_1\left(\frac{s-\frac{2\xi}{2-\alpha}}{\sigma_2}\right),$$

where $\sigma_1 = \frac{1}{2}$ and $\sigma_2 = \frac{\alpha^{1/3}(2-2\alpha+\alpha^2)^{1/3}}{2(2-\alpha)^{2/3}}.$

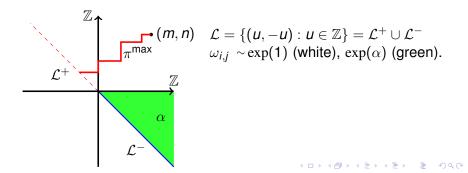
One recovers GOE by changing $s \to s + 2\xi$ and $\xi \to +\infty$, resp. by $s \to s + 2\xi/(2 - \alpha)$ and $\xi \to -\infty$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

TASEP as Last Passage Percolation (LPP)

► Let $\omega_{i,j}$, $(i,j) \in \mathbb{Z}^2$, be independent weights, $\mathcal{L} \subseteq \mathbb{Z}^2$ $\pi : \mathcal{L} \to (m, n)$ an up-right path

•
$$L_{\mathcal{L}\to(m,n)} = \max_{\pi} \sum_{\omega_{i,j}\in\pi} \omega_{i,j} = \sum_{\omega_{i,j}\in\pi^{\max}} \omega_{i,j}$$

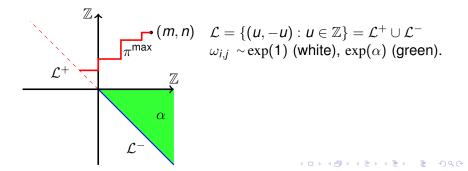


TASEP as Last Passage Percolation (LPP)

► Let $\omega_{i,j}$, $(i,j) \in \mathbb{Z}^2$, be independent weights, $\mathcal{L} \subseteq \mathbb{Z}^2$ $\pi : \mathcal{L} \to (m, n)$ an up-right path

•
$$L_{\mathcal{L}\to(m,n)} = \max_{\pi} \sum_{\omega_{i,j}\in\pi} \omega_{i,j} = \sum_{\omega_{i,j}\in\pi^{\max}} \omega_{i,j}$$

$$\begin{array}{ll} \mathsf{Link:} \quad \mathbb{P}\left(L_{\mathcal{L} \to (m,n)} \leq t \right) = \mathbb{P}\left(x_n(t) \geq m-n \right), \\ \omega_{i,j} \sim \exp(v_j) \mathbf{1}_{(i,j) \in \mathcal{L}^c}, \ \mathcal{L} = \{ (k+x_k(0),k) : k \in \mathbb{Z} \} \end{array}$$



Last Passage Percolation in combinatorics

There is a bijection between integer matrices

$$\mathcal{M}_{M,N}^{k} = \{A | A = (a_{i,j})_{\substack{1 \le i \le M \\ 1 \le j \le N}}, a_{i,j} \in \mathbb{N}_{0}, \sum_{i,j} = k\}$$

and generalized permutations σ

$$\{\sigma : \sigma = \begin{pmatrix} i_1 & i_2 & i_3 & \cdots & i_{k-1} & i_k \\ j_1 & j_2 & j_3 & \cdots & j_{k-1} & j_k \end{pmatrix}, i_l \in [N], j_l \in [M], \text{ either } i_l < i_{l+1} \\ \text{or } i_l = i_{l+1}, j_l \le j_{l+1}\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $[M] = \{1, 2, ..., M\}$. Call $\binom{i_{r_1}}{j_{r_1}} \cdots \binom{i_{r_m}}{j_{r_m}}$ an increasing subsequence of length *m* if $r_1 < r_2 < \cdots < r_m$ and $j_1 \leq j_2 \cdots \leq j_m$, and denote $\ell(\sigma)$ a longest increasing subsequence.

Last Passage Percolation in combinatorics

There is a bijection between integer matrices

$$\mathcal{M}_{M,N}^{k} = \{ A | A = (a_{i,j})_{\substack{1 \leq i \leq M \\ 1 \leq j \leq N}}, a_{i,j} \in \mathbb{N}_{0}, \sum_{i,j} = k \}$$

and generalized permutations σ

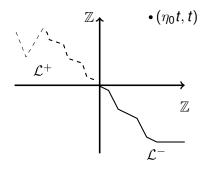
$$\{\sigma : \sigma = \begin{pmatrix} i_1 & i_2 & i_3 & \cdots & i_{k-1} & i_k \\ j_1 & j_2 & j_3 & \cdots & j_{k-1} & j_k \end{pmatrix}, i_l \in [N], j_l \in [M], \text{ either } i_l < i_{l+1} \\ \text{ or } i_l = i_{l+1}, j_l \le j_{l+1}\}$$

where $[M] = \{1, 2, ..., M\}$. Call $\binom{i_{r_1}}{j_{r_1}} \cdots \binom{i_{r_m}}{j_{r_m}}$ an increasing subsequence of length *m* if $r_1 < r_2 < \cdots < r_m$ and $j_1 \leq j_2 \cdots \leq j_m$, and denote $\ell(\sigma)$ a longest increasing subsequence.

If we set $\omega_{i,j} = a_{i,j}$ then under the above bijection

$$L_{\{(1,1)\}\to(M,N)}=\ell(\sigma).$$

Generic Theorem



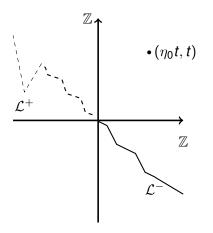
Assume that there exists some μ such that

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{L_{\mathcal{L}^+\to(\eta_0 t,t)}-\mu t}{t^{1/3}}\leq s\right) = G_1(s),$$
$$\lim_{t\to\infty} \mathbb{P}\left(\frac{L_{\mathcal{L}^-\to(\eta_0 t,t)}-\mu t}{t^{1/3}}\leq s\right) = G_2(s).$$

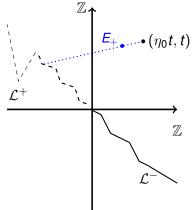
Theorem (Ferrari, N. '14) Under some assumptions we have

$$\lim_{t\to\infty}\mathbb{P}\left(\frac{L_{\mathcal{L}\to(\eta_0 t,t)}-\mu t}{t^{1/3}}\leq s\right)=G_1(s)G_2(s),$$

where $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$.



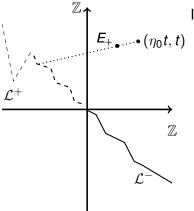
◆ロト ◆課 ▶ ◆語 ▶ ◆語 ▶ ○語 ○ の久(で)



...• $(\eta_0 t, t)$ I. Assume that we have a point $E^+ = (\eta_0 t - \kappa t^{\nu}, t - t^{\nu})$ such that for some μ_0 , and $\nu \in (1/3, 1)$ it holds

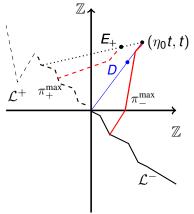
$$\frac{L_{\mathcal{L}^+ \to E_+} - \mu t + \mu_0 t^{\nu}}{t^{1/3}} \to G_1$$
$$\frac{L_{E^+ \to (\eta_0 t, t)} - \mu_0 t^{\nu}}{t^{\nu/3}} \to G_0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



I. Slow Decorrelation

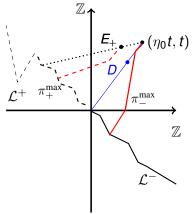
▲□▶▲圖▶▲≣▶▲≣▶ = 悪 - のへで



I. Slow Decorrelation

II. Assume there is a point $D = (\eta_0(t - t^\beta), t - t^\beta)$ with $\eta_0 t^\beta \le \kappa t^\nu$ such that π_+^{\max} and π_-^{\max} cross (0,0)D with vanishing probability.

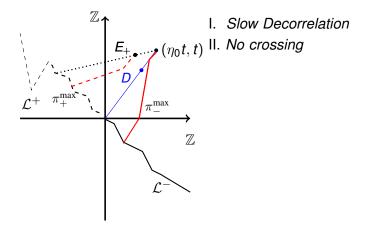
・ロン ・四 と ・ ヨ と ・ ヨ と



I. Slow Decorrelation

II. Assume there is a point $D = (\eta_0(t - t^\beta), t - t^\beta)$ with $\eta_0 t^\beta \le \kappa t^\nu$ such that π_+^{\max} and π_-^{\max} cross (0,0)D with vanishing probability.

・ロン ・四 と ・ ヨ と ・ ヨ と



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

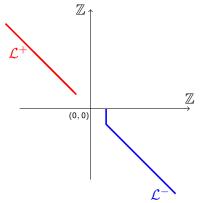
Some remarks:

- I. is related to the universal phenomenon known as slow decorrelation [CFP '12]
- ► II. follows if we have that the 'characteristic lines' of the two LPP problems meet at $(\eta_0 t, t)$, together with the transversal fluctuations which are only $O(t^{2/3})$ [Jo '00]
- III. An extension to joint laws

$$\mathbb{P}\left(\bigcap_{k=1}^{m} \{L_{\mathcal{L}\to(\eta t+u_k t^{1/3},t)} \leq \mu t + s_k t^{1/3}\}\right)$$

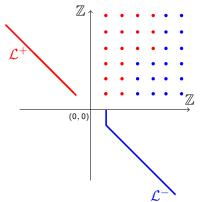
is available (Ferrari, N. '16) and based on controling local fluctuations in LPP

(日) (日) (日) (日) (日) (日) (日)



Let
$$\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$$
 with $\mathcal{L}^+\{(k + x_k(0), k) : k \ge 1\}$, $\mathcal{L}^-\{(k + x_k(0), k) : k \le 0\}$ and $x_0 = 1, x_{-1} < -1$ and $x_k > x_{k+1}$.

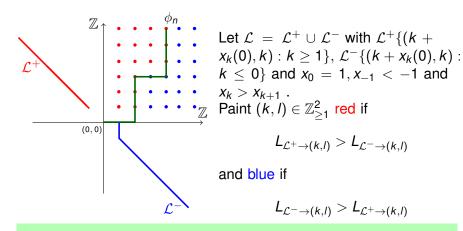
・ロト・日本・モン・モン・ ヨー うくぐ



Let $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$ with $\mathcal{L}^+\{(k + x_k(0), k) : k \ge 1\}$, $\mathcal{L}^-\{(k + x_k(0), k) : k \le 0\}$ and $x_0 = 1, x_{-1} < -1$ and $x_k > x_{k+1}$. Paint $(k, l) \in \mathbb{Z}_{\ge 1}^2$ red if $\mathcal{L}_{\mathcal{L}^+ \to (k, l)} > \mathcal{L}_{\mathcal{L}^- \to (k, l)}$ and blue if

$$L_{\mathcal{L}^- \to (k,l)} > L_{\mathcal{L}^+ \to (k,l)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●



The competition interface $\{\phi_n\}_{n>0}$ is defined via $\phi_0 = (0,0)$ and

$$\phi_{n+1} = \begin{cases} \phi_n + (1,0) & \text{if } \phi_n + (1,1) & \text{is } red \\ \phi_n + (0,1) & \text{if } \phi_n + (1,1) & \text{is } blue \end{cases}$$

Some Properties of competition interfaces

- ► if (k, l) is red, then so are (k, l + 1) and (k 1, l) (or they have no color)
- ► if (k, l) is blue, then so are (k + 1, l) and (k, l 1) (or they have no color)
- ▶ for $\phi_n = (I_n, J_n)$ we have that $I_n + J_n = n$ and (k, n k) is red for $0 \le k < I_n$ and blue for $I_n < k \le n$.
- I_n − J_n is again located at the shock, and is related to the position of a "second-class particle" Z_t

Theorem (Ferrari, N. '16)

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{I_{\lfloor t \rfloor} - J_{\lfloor t \rfloor} - (\alpha - 1)t}{t^{1/3}} \le s\right) = \mathbb{P}(\chi_{\text{GOE}}^{1,s} - \chi_{\text{GOE}}^{2,s} > 0)$$

where $\chi_{\text{GOE}}^{1,s}, \chi_{\text{GOE}}^{2,s}$ are independent random variables with shifted GOE distribution,

$$\mathbb{P}(\chi_{\text{GOE}}^{1,s} \leq \tau) = F_{\text{GOE}}\left((\tau + (2/(2-\alpha))^{4/3}s)/\sigma_1\right), \\ \mathbb{P}(\chi_{\text{GOE}}^{2,s} \leq \tau) = F_{\text{GOE}}\left((\tau + (2/(2-\alpha))^{4/3}s/\alpha)/\sigma_2\right),$$

where
$$\sigma_1 = \frac{2^{2/3}}{(2-\alpha)^{1/3}}$$
 and $\sigma_2 = \frac{2^{2/3}(2-2\alpha+\alpha^2)^{1/3}}{\alpha^{2/3}(2-\alpha)}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼

References

[KPZ '86] M. Kardar, G. Parisi and Y.Z. Zhang, *Dynamic scaling of growing interfaces*, Phys. Rev. Lett. **56** (1986), 889-892.

[Lig '99]

Thomas Liggett,

Stochastic Interacting Systems, Springer, Grundlehren der mathematischen Wissenschaften **324** (1999).

[CFP '12]

Ivan Corwin, Patrik Ferrari and Sandrine Péché,

Universality of slow decorrelation, Ann. Inst. H. Poincaré B 48 No.1 (2012), 134-150

[Jo '00]

K. Johansson,

Transversal fluctuations for increasing subsequences on the plane, Probab. Theory Relat. Fields **116** (2000), 445-456.

[BSS '14] R. Basu, V. Sidoravicius and A. Sly Last Passage Percolation with a Defect Line and the Solution of the Slow Bond Problem, arXiv:1408.3464 (2014)

[Bor '10]

Folkmar Bornemann,

On the Numerical Evaluation of Fredholm determinants, Math. Comp. **79** (2010), 871-915 .

[BFPS '07]

A. Borodin, P.L. Ferrari, M. Prähofer and T. Sasamoto, *Fluctuation properties of the TASEP with periodic initial configuration*, J. Stat. Phys. **129** (2007), 1055-1080 [FN '15]

Patrik Ferrari, Peter Nejjar,

Shock fluctuations in flat TASEP under critical scaling, J. Stat. Phys. **60** (2015), 985-1004

[FN '14]

Patrik Ferrari, Peter Nejjar, Anomalous shock fluctuations in TASEP and last passage percolation models, Probab. Theory Relat. Fields, 61 (2015), 61 -109

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@