
Last Passage Percolation, KPZ, and
Competition Interfaces

Peter Nejjar avec Patrik Ferrari

ENS Paris
DMA

CIRM 8. 3. 2016



Totally asymmetric simple exclusion process (TASEP)

v1 v1 v1 v2 v2

-4 -3 -2 -1 0 1 2 Z

I Dynamics: particles on Z perform independent jumps to
the right subject to the exclusion constraint

I We will also consider particle-dependent speeds

We number particles from right to left

. . . < x3(0) < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < . . .

xk (t) = position of particle k at time t
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TASEP - a KPZ growth model

Set h(0,0) = 0 and

h(x+1,0)−h(x ,0) =

{
−1 if x + 1 is occupied at time 0
1 otherwise

h(x+1, t)−h(x , t) =

{
−1 if x + 1 is occupied at time t
1 otherwise
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Hydrodynamic theory identifies TASEP as a KPZ model
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Flat TASEP and the Airy1 process

TASEP with a flat geometry (∂2
ξhma = 0) for periodic initial data:

t = 0 t � 0

For flat TASEP we have [BFPS ’07] in the sense of fin. dim.
distr.

lim
t→∞

xt/4+ξt2/3(t) + 2ξt2/3

−t1/3 = A1(ξ),

with A1(ξ) the Airy1 process with one-point distribution given
by the F1 (GOE) Tracy-Widom distribution from random matrix
theory.



Shocks
I Discontinuities of the particle density are called shocks

ρ+ρ−

ρ(x ,0) t = 0

x

t > 0

ρ+ρ−

ρ(x , t)

vt x

I Initial condition: Ber(ρ+) on N and Ber(ρ−) on Z−.
I for ρ− < ρ+ there is a shock with speed v = 1− (ρ+ + ρ−)
I one can identify the microscopic shock with the position Zt

of a particle fluctuating around vt :

lim
t→∞

Zt − vt
t1/2 ∼ N (0, µ2) (see Lig ’99)



Question: What are the shock fluctuations for non-random
initial configuration (IC)?



Two Speed TASEP with periodic IC

v1 = 1 v2 = α < 1

-4 0-3 -2 -1 0 1 2 3 4 Z

t = 0

This leads to a wedge limit shape:

t = 0

-3 -2 -1 0 1 2 3 shock

t � 0



Shock as particle position

1− α
2

1
2

ρ(x , t) t � 0

−1+α
2 t α

2 t xA

I The last slow particle is
macroscopically at position
(1− ρ)αt = α

2 t .
I Behind it is a jam region A

of increased density
ρ = 1− α/2.

I The particle ηt , with
η = 2−α

4 is at the macro
shock position.

Inside the constant density regions, η′ 6= η, the fluctuations of
xη′t are governed by the F1 GOE Tracy-Widom distribution and
live in the t1/3 scale.



Goal: Determine the large time fluctuations of the
(rescaled) particle position xn(t) around the shock:

lim
t→∞

P
(

xn(t) − vt
t1/3 ≤ s

)
=?

where vt is the macroscopic position of xn(t).

For arbitrary fixed IC, the law of xn(t) is given as a Fred-
holm determinant of a kernel Kt [BFPS ’07],

lim
t→∞

P
(

xn(t) − vt
t1/3 ≤ s

)
= lim

t→∞
det(1− χsKtχs)`2(Z), (1)

Problem: Kt is diverging for our example (but its Fred-
holm determinant will still converge), so one cannot ana-
lyze (1) directly
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Product structure for Two-Speed TASEP

Theorem (At the F1–F1 shock, Ferrari, N. ’14)
Let xn(0) = −2n for n ∈ Z. For α < 1 let η = 2−α

4 and
v = −1−α

2 . Then it holds

lim
t→∞

P
(xηt+ξt1/3(t)− vt

t1/3 ≤ s
)

= F1

(
s − 2ξ
σ1

)
F1

(
s − 2ξ

2−α
σ2

)
,

where σ1 = 1
2 and σ2 = α1/3(2−2α+α2)1/3

2(2−α)2/3 .

One recovers GOE by changing s → s + 2ξ and ξ → +∞, resp.
by s → s + 2ξ/(2− α) and ξ → −∞
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TASEP as Last Passage Percolation (LPP)
I Let ωi,j , (i , j) ∈ Z2, be independent weights, L ⊆ Z2

π : L → (m,n) an up-right path
I LL→(m,n) = maxπ

∑
ωi,j∈π ωi,j =

∑
ωi,j∈πmax ωi,j

Link: P
(
LL→(m,n) ≤ t

)
= P (xn(t) ≥ m − n) ,

ωi,j ∼ exp(vj)1(i,j)∈Lc , L = {(k + xk (0), k) : k ∈ Z}

L−

L+

Z
(m,n)

πmax

α

Z

L = {(u,−u) : u ∈ Z} = L+ ∪ L−
ωi,j ∼ exp(1) (white), exp(α) (green).
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Last Passage Percolation in combinatorics
There is a bijection between integer matrices

Mk
M,N = {A|A = (ai,j) 1≤i≤M

1≤j≤N
, ai,j ∈ N0,

∑
i,j

= k}

and generalized permutations σ

{σ : σ =
( i1 i2 i3 ··· ik−1 ik

j1 j2 j3 ··· jk−1 jk

)
, il ∈ [N], jl ∈ [M], either il < il+1

or il = il+1, jl ≤ jl+1}

where [M] = {1,2, . . .M} . Call
( ir1

jr1

)
· · ·
( irm

jrm

)
an increasing

subsequence of length m if r1 < r2 < · · · < rm and
j1 ≤ j2 · · · ≤ jm, and denote `(σ) a longest increasing
subsequence.

If we set ωi,j = ai,j then under the above bijection

L{(1,1)}→(M,N) = `(σ).
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Generic Theorem

L+

L−

Z (η0t , t)

Z

Assume that there exists some
µ such that

lim
t→∞

P
(

LL+→(η0t,t) − µt
t1/3 ≤ s

)
= G1(s),

lim
t→∞

P
(

LL−→(η0t,t) − µt
t1/3 ≤ s

)
= G2(s).

Theorem (Ferrari, N. ’14)
Under some assumptions we have

lim
t→∞

P
(

LL→(η0t ,t) − µt
t1/3 ≤ s

)
= G1(s)G2(s),

where L = L+ ∪ L−.
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Z

E+

I. Assume that we have a point
E+ = (η0t − κtν , t − tν) such that
for some µ0, and ν ∈ (1/3,1) it
holds

LL+→E+
− µt + µ0tν

t1/3 → G1

LE+→(η0t,t) − µ0tν

tν/3 → G0,

πmax
+ πmax

−
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D
II. Assume there is a point D =
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I. Slow Decorrelation

D
πmax
+ πmax

−

E+ II. No crossing



Some remarks:
I I. is related to the universal phenomenon known as slow

decorrelation [CFP ’12]
I II. follows if we have that the ’characteristic lines’ of the two

LPP problems meet at (η0t , t), together with the transversal
fluctuations which are only O(t2/3) [Jo ’00]

I III. An extension to joint laws

P

(
m⋂

k=1

{LL→(ηt+uk t1/3,t) ≤ µt + sk t1/3}

)

is available (Ferrari, N. ’16) and based on controling local
fluctuations in LPP



Z

Z

L−

L+

φn

(0, 0)

Let L = L+ ∪ L− with L+{(k +
xk (0), k) : k ≥ 1}, L−{(k + xk (0), k) :
k ≤ 0} and x0 = 1, x−1 < −1 and
xk > xk+1 .

Paint (k , l) ∈ Z2
≥1 red if

LL+→(k ,l) > LL−→(k ,l)

and blue if

LL−→(k ,l) > LL+→(k ,l)

The competition interface {φn}n≥0 is defined via φ0 = (0,0) and

φn+1 =

{
φn + (1,0) if φn + (1,1) is red
φn + (0,1) if φn + (1,1) is blue
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Some Properties of competition interfaces

I if (k , l) is red, then so are (k , l + 1) and (k − 1, l) ( or they
have no color)

I if (k , l) is blue, then so are (k + 1, l) and (k , l − 1) ( or they
have no color)

I for φn = (In, Jn) we have that In + Jn = n and (k ,n − k) is
red for 0 ≤ k < In and blue for In < k ≤ n.

I In − Jn is again located at the shock, and is related to the
position of a "second-class particle" Zt



Theorem (Ferrari, N. ’16)

lim
t→∞

P
(

Ibtc − Jbtc − (α− 1)t
t1/3 ≤ s

)
= P(χ1,s

GOE − χ
2,s
GOE > 0)

where χ1,s
GOE, χ

2,s
GOE are independent random variables with

shifted GOE distribution,

P(χ1,s
GOE ≤ τ) = FGOE

(
(τ + (2/(2− α))4/3s)/σ1

)
,

P(χ2,s
GOE ≤ τ) = FGOE

(
(τ + (2/(2− α))4/3s/α)/σ2

)
,

where σ1 = 22/3

(2−α)1/3 and σ2 = 22/3(2−2α+α2)1/3

α2/3(2−α) .
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