- $c \geq 0$ et ν mesure de dislocation sur $\mathcal{S}^{\downarrow} = \{(s_i): s_1 \geq s_2 \geq \ldots \ldots \geq 0: \sum_{i \geq 1} s_i \leq 1\}$
- $\mu_c = c \sum_{n \in \mathbb{N}} \delta_{\varepsilon_n}$ où ε_n partition de \mathbb{N} en 2 blocs $(\neq \emptyset)$: $\{n\}$ et $\mathbb{N} \setminus \{n\}$ c: coeff. érosion.
- $\mu_{\nu}(d\pi) = \int_{S^{\downarrow}} \mu_{\mathbf{s}}(d\pi)\nu(d\mathbf{s})$ où $\mu_{\mathbf{s}}$ est la loi de la boîte de peinture associée à la suite \mathbf{s}

Construction d'une fragmentation homogène (lpha=0) de paramètre $\kappa=\mu_{c}+\mu_{
u}$:

 $\mathsf{M} = \sum_i \delta_{(t_i,k_i,\Delta_i)}$ mesure de Poisson sur $(0,\infty) \times \mathbb{N} \times \mathcal{S}^\downarrow$ de mesure d'intensité $\mathrm{d} t \otimes \# \otimes \kappa$

Principe : au temps t_i le bloc n° k_i se fragmente suivant Δ_i .

Problème : les blocs peuvent se fragmenter "tout le temps".

- $c \geq 0$ et ν mesure de dislocation sur $\mathcal{S}^{\downarrow} = \{(s_i): s_1 \geq s_2 \geq \ldots \ldots \geq 0: \sum_{i \geq 1} s_i \leq 1\}$
- $\mu_c = c \sum_{n \in \mathbb{N}} \delta_{\varepsilon_n}$ où ε_n partition de \mathbb{N} en 2 blocs $(\neq \emptyset)$: $\{n\}$ et $\mathbb{N} \setminus \{n\}$ c: coeff. érosion.
- $\mu_{\nu}(d\pi) = \int_{S^{\downarrow}} \mu_{\mathbf{s}}(d\pi)\nu(d\mathbf{s})$ où $\mu_{\mathbf{s}}$ est la loi de la boîte de peinture associée à la suite \mathbf{s}

Construction d'une fragmentation homogène (lpha=0) de paramètre $\kappa=\mu_{c}+\mu_{ u}$:

 $\mathsf{M} = \sum_i \delta_{(t_i,k_i,\Delta_i)}$ mesure de Poisson sur $(0,\infty) \times \mathbb{N} \times \mathcal{S}^\downarrow$ de mesure d'intensité $\mathrm{d} t \otimes \# \otimes \kappa$

Principe : au temps t_i le bloc n° k_i se fragmente suivant Δ_i .

Problème: les blocs peuvent se fragmenter "tout le temps".

Donc on commence par se restreindre à $[n] = \{1, ..., n\}$ (n fixé). Puisque $\kappa(\mathcal{P}_n^*) < \infty$, on peut re-indexer les atomes

$$(t_i, k_i, \Delta_i)$$
 tel que $k_i \leq n, \ \Delta_i \cap [n] \neq [n]$

en
$$\left(t_i^{(n)}, k_i^{(n)}, \Delta_i^{(n)}\right)_{i > 1}$$
 de sorte que $0 < t_1^{(n)} < t_2^{(n)} < \dots$

Construction de $\Pi^{(n)}(t)$, $t \ge 0$:

- $\bullet \ \Pi^{(n)}(0) = [n]$
- \bullet $\Pi^{(n)}$ est constant sur les intervalles de temps $\left[t_{i-1}^{(n)},t_{i}^{(n)}\right[$
- au temps $t_i^{(n)}$, le bloc $\mathrm{n}^\circ k_i^{(n)}$ de $\Pi^{(n)}(t_i^{(n)}-)$ se fragmente suivant $\Delta_i^{(n)}$ $\rightarrow \Pi^{(n)}(t_i^{(n)})$ les autres blocs restent inchangés

$$\underline{\mathsf{Ex.}}: \mathsf{si}\; \Pi^{(6)}(t_i^{(6)}-) = \{\{1,6\},\{2,3,4\},\{5\}\}, \quad k_i^{(6)} = 2, \quad \Delta_i^{(n)} = \{\{1,2,3\},\{4,5,6\}\} \; \mathsf{alors}$$

$$\Pi^{(6)}(t_i^{(6)}) = \{\{1,6\},\{2,3\}\{4\},\{5\}\}$$

Construction de $\Pi^{(n)}(t)$, $t \ge 0$:

- $\bullet \ \Pi^{(n)}(0) = [n]$
- \bullet $\Pi^{(n)}$ est constant sur les intervalles de temps $\left[t_{i-1}^{(n)},t_{i}^{(n)}\right[$
- au temps $t_i^{(n)}$, le bloc n° $k_i^{(n)}$ de $\Pi^{(n)}(t_i^{(n)}-)$ se fragmente suivant $\Delta_i^{(n)}$ les autres blocs restent inchangés $\} \to \Pi^{(n)}(t_i^{(n)})$

$$\underline{\mathsf{Ex.}} : \mathsf{si} \; \Pi^{(6)}(t_i^{(6)} -) = \{\{1,6\}, \{2,3,4\}, \{5\}\}, \quad k_i^{(6)} = 2, \quad \Delta_i^{(n)} = \{\{1,2,3\}, \{4,5,6\}\} \; \mathsf{alors}$$

$$\Pi^{(6)}(t_i^{(6)}) = \{\{1,6\},\{2,3\}\{4\},\{5\}\}\$$

Consistance : $\Pi^{(n+1)}(t)|_{[n]} = \Pi^{(n)}(t), \forall t \geq 0.$

On pose

$$\Pi_i(t) := \bigcup_{n \in \mathbb{N}} \Pi_i^{(n)}(t), \quad \forall i$$

Déf. Le processus Π est un processus de fragmentation de paramètres 0, c, v.

Il est échangeable, et p.s. $\Pi(t)$ a des fréquences asymptotiques pour tout t.

 $\alpha \in \mathbb{R}$, Π processus de fragmentation $(0, c, \nu)$.

 $\Pi_{(i)}(t)$: bloc de Π contenant i au temps t, $|\Pi_{(i)}(t)|$ sa fréquence asymptotique.

Changement de temps :

$$T_i(t) = \inf \left\{ u \ge 0 : \int_0^u |\Pi_{(i)}(r)|^{-\alpha} \mathrm{d}r > t \right\}.$$

Nouvelle partition:

$$\Pi_{(i)}^{(\alpha)}(t) = \Pi_{(i)}\left(T_i(t)\right), \quad i \in \mathbb{N}, t \geq 0$$

<u>Déf.</u> Le processus $\Pi^{(\alpha)}$ est un processus de fragmentation de paramètres α , c, ν .

Il est échangeable, p.s. $\Pi^{(\alpha)}(t)$ a des fréquences asymptotiques pour tout t.

 $\alpha \in \mathbb{R}$, Π processus de fragmentation $(0, c, \nu)$.

 $\Pi_{(i)}(t)$: bloc de Π contenant i au temps t, $|\Pi_{(i)}(t)|$ sa fréquence asymptotique.

Changement de temps :

$$T_i(t) = \inf \left\{ u \ge 0 : \int_0^u |\Pi_{(i)}(r)|^{-\alpha} \mathrm{d}r > t \right\}.$$

Nouvelle partition :

$$\Pi_{(i)}^{(\alpha)}(t) = \Pi_{(i)}\left(T_i(t)\right), \quad i \in \mathbb{N}, t \geq 0$$

<u>Déf.</u> Le processus $\Pi^{(\alpha)}$ est un processus de fragmentation de paramètres α , c, ν .

Il est échangeable, p.s. $\Pi^{(\alpha)}(t)$ a des fréquences asymptotiques pour tout t.

Processus de fréquences asymptotiques (=masses) :

On note F(t) la suite des fréq. asymptotiques de $\Pi^{(\alpha)}(t)$, rangées par ordre \downarrow .

<u>Déf.</u> F est un processus de fragmentation de paramètres α , c, ν , à valeurs dans S^{\downarrow} .

 $\Pi^{(\alpha)}$ vérifie les propriétés de branchement et auto-similarité : $\forall s,t\geq 0$, sachant que $\Pi^{(\alpha)}(t)=(\pi_1,\pi_2,\ldots)$, la partition $\Pi^{(\alpha)}(t+s)$ a même loi que la partition dont les blocs sont ceux de

$$\pi_i \cap \Pi^{(i)}(|\pi_i|^{\alpha}s), \quad i \geq 1,$$

où les $\Pi^{(i)}$ sont i.i.d., de même loi que $\Pi^{(\alpha)}$.

On a construit ainsi tous les processus markoviens, échangeables, vérifiant cette propriété de branchement.