
Random problems at the core of integer
factorization algorithms

Pierrick Gaudry

Caramba – LORIA, Nancy
CNRS, Université de Lorraine, Inria

Journées ALEA, March 2016

1/31

Plan

Introduction: crypto context

Integer factorization 101

How to quickly test smoothness?

A random structure in the test

Conclusion

2/31

A few words of crypto

Public key cryptography was invented in the 70’s.
This solves major practical problems for the deployment of crypto
in everyday life:

Key exchange over an insecure channel;
Certificates (be sure that you are talking to the right person);
Signatures.
. . .

The RSA algorithm is still widely used. Security relies on the
presumed difficulty of integer factorization.

n = p q

3/31

Example: EMV

EMV is the standard for chip-and-PIN payment cards.

Widely used in Europe (and in France, with Carte Bleue);
A 20-year old standard;
Use vintage crypto algorithms: Triple-DES, SHA-1, RSA;
RSA with key up to 1984 bits hard-coded in the standard.

What’s in my card?

Script: courtesy of E. Thomé and J. Detrey, based on standard
Linux tools.

4/31

Example: EMV

EMV is the standard for chip-and-PIN payment cards.

Widely used in Europe (and in France, with Carte Bleue);
A 20-year old standard;
Use vintage crypto algorithms: Triple-DES, SHA-1, RSA;
RSA with key up to 1984 bits hard-coded in the standard.

What’s in my card?

Script: courtesy of E. Thomé and J. Detrey, based on standard
Linux tools.

4/31

Plan

Introduction: crypto context

Integer factorization 101

How to quickly test smoothness?

A random structure in the test

Conclusion

5/31

Integer factorization is hard

Some integers are easy to factor:
prime numbers (cf Bill Gates, Millenium 4, ...);
prime powers;
smooth numbers: all their prime factors are small;
(smooth number) × (prime);
p× nextprime(p);
. . .

In general (and for RSA numbers), best (heuristic) complexity is

exp
(
1.902 (log n)1/3(log log n)2/3

)
.

Worse than polynomial, but better than exponential.

6/31

Integer factorization is hard
Best complexity for integer factorization:

exp
(
1.902 (log n)1/3(log log n)2/3

)
.

Def. Security parameter = log of time of the attack.

Here:
Security ≈ 3

√
key size

For comparison:
For an ideal system, the best attack would be exhaustive
search: security ≈ key size.
For a disastrous system, the best attack takes polynomial
time: security ≈ log(key size).

7/31

Fermat: difference of squares

If one finds two integers x and y such that

n = x2 − y2,

then n can (maybe) be factored as n = (x − y)(x + y).

More generally, one can look for x and y such that

x2 ≡ y2 mod n,

and x 6≡ ±y mod n.

Rem. This is the basis of the quadratic sieve and of the number
field sieve leading to the complexity above.

8/31

Combining congruences

Let’s pick a random x modulo n.
Compute z ≡ x2 mod n as an integer in [0, n − 1].
The chances that z is a square y2 are exponentially small.

Smoothness to the rescue!

Def An integer z is B-smooth if all its prime factors are < B.

Find many xi ’s such that result is B-smooth:

x2
0 ≡ 2e0,0 3e0,1 · · · pe0,k

k mod n
x2

1 ≡ 2e1,0 3e1,1 · · · pe1,k
k mod n

x2
2 ≡ 2e2,0 3e2,1 · · · pe2,k

k mod n
...

...

Goal: Multiply together a subset of these relations to get a square
on the RHS.

9/31

Combining congruences – 2
Write the exponents in a matrix, one row per relation:

M =


e0,0 e0,1 · · · e0,k
e1,0 e1,1 · · · e1,k
e2,0 e2,1 · · · e2,k
...

...


Find a non-zero vector v in the left-kernel of M:

v M = 0.

Rem. Only parity of the exponents is relevant: do this
computation in F2.
Then v tells which relations to combine to get a square:∏

i s.t. vi =1
x2

i ≡ � mod n

10/31

How frequent are smooth numbers?

If smoothness bound B is very large: very frequent.
If B is tiny: very rare.

Choose B in between: what we need!

Def. ψ(x , y): number of y -smooth integers smaller than x .

Thm. (CEP, 1983) Let u = log x
log y . We have:

Ψ(x , y)/x = exp(−u(log u + log log u − 1 + o(1))),

assuming u not too close to 1. The o(1) is under control.

Rule of thumb: take Probability(smooth) ≈ ρ(u) ≈ u−u.

11/31

Tuning the smoothness bound

In the previous algorithm, the optimal bound is of the form

B = exp(c
√
log n

√
log log n).

The total cost is then of the same form (with another c).

The exact constants in the exponent depends on
How to test for smoothness?

Trial division;
Sieving;
Elliptic curves.

How to do the linear algebra?
Gauss: cubic time;
Strassen, . . . ;
Iterative methods (sparse matrix): quadratic time.

12/31

Lowering the complexity: NFS

The number field sieve (NFS):
Invented by Pollard, Lenstra, Lenstra, . . . ; early 90’s.
Use number fields and a smoothness notion for ideals.
Main feature: reduces the size of the integers to test for
smoothness from ≈ n to ≈ exp((log n)2/3).
In practice, starts to win around 100 digits.

The general idea stays the same: combining congruences.

13/31

Plan

Introduction: crypto context

Integer factorization 101

How to quickly test smoothness?

A random structure in the test

Conclusion

14/31

Main task in the NFS algorithm

Two tasks takes almost all the time in NFS:
Collect relations:
Find many pairs of coprime integers (a, b) such that f (a, b)
and g(a, b) are simultaneously smooth for some fixed
polynomials f and g .

Linear algebra:
Find a non-zero left-kernel vector of a matrix over F2.

Latest record RSA-768 (done in 2010) provides some data.

15/31

Sieving

f (a, b) = f6a6 + f5a5b + f4a4b2 + · · ·+ f0b6,

Just like in Eratosthenes:

If p|f (a, b), then p|f (a + kp, b + k ′p).

Strategy:
Look for (a, b) in a box [−I, I[×[0, J [;
Initialize a 2-dim array;
Loop over all prime p < B:

Find a first position where p divides;
Visit all the other positions (boing, boing!);
Remember which ones are divisible by p.

Collect results.

Problem. Not enough memory!
16/31

Sieving as a prefilter

A filtering strategy:
1. Sieve with a bound B′ < B;
2. Discard (a, b)-pairs which don’t look promising;
3. For the survivors, use (batch’d) trial division or ECM to finish

the smoothness test.

ECM = elliptic curve method (Lenstra 85).

A survivor that enters step 3 looks like (m not too large):

f (a, b) = p1 × p2 × · · · × pk︸ ︷︷ ︸
B′-smooth part

× m︸︷︷︸
B-smooth?

17/31

ECM for testing smoothness – 1

ECM is a probabilistic algorithm that extract prime factors.

Main building block:
take an integer m as input;
choose a parameter B1;
choose a (random) elliptic curve E over Q;
do some computation in E modulo Z/mZ;

Features:
the runtime is roughly proportional to B1;
maybe the algorithm returns a proper factor of m;
in nothing is returned, the probability that there is a prime
factor of b bits in m can be bounded;
the bound depends only on B1 and b.

18/31

ECM for testing smoothness – 2

Now, iterate the process with many curves and tune B1.

We obtain a Las Vegas algorithm that
takes an integer m as input;
takes a target prime size B as a parameter;
after a time O(exp(

√
2 logB log logB)(logm)2):

maybe returns a proper factor of m;
If nothing is returned, the probability that m has a prime
factor p less than B is < 1/2.

Rem. Probability of failure can be made arbitrarily small, but you
will not know for sure that the input m is not smooth.
Rem. The parameter B1 and the number of curves to try grow like
exp(

√
1
2 logB log logB). (e.g. B1 = 500, number of curves = 20)

19/31

Plan

Introduction: crypto context

Integer factorization 101

How to quickly test smoothness?

A random structure in the test

Conclusion

20/31

Which criterion for being a survivor?

f (a, b) = p1 × p2 × · · · × pk︸ ︷︷ ︸
B′-smooth part

× m︸︷︷︸
B-smooth?

If m < B′: bug in the sieve!
If m is prime: can readily decide.
If m > B′2 and m < B2 < B′3: can have only 2 prime factors.
The more ECM fails to factor m, the more likely it is
B-smooth!
Here, strategy is clear: continue until we factor completely the
number.

But: For current and future records, we need to allow 3, 4 or
maybe more prime factors in m.
[Why? Asymptotically, this depends on your computational model:
Turing machine, circuit...]

21/31

Which criterion for being a survivor?

f (a, b) = p1 × p2 × · · · × pk︸ ︷︷ ︸
B′-smooth part

× m︸︷︷︸
B-smooth?

If m < B′: bug in the sieve!
If m is prime: can readily decide.
If m > B′2 and m < B2 < B′3: can have only 2 prime factors.
The more ECM fails to factor m, the more likely it is
B-smooth!
Here, strategy is clear: continue until we factor completely the
number.

But: For current and future records, we need to allow 3, 4 or
maybe more prime factors in m.
[Why? Asymptotically, this depends on your computational model:
Turing machine, circuit...]

21/31

Basic early abort criteria

m: remaining unfactored part
B′: sieve bound; no prime < B′ in m
B: smoothness bound

Fact. Let k ≥ 2, and assume that

m ∈ [Bk ,B′k+1],

then m can not be B-smooth.

If m > Bk is B-smooth, it has at least k + 1 prime factors.
Since all of them are > B′, then m must be > B′k+1.

Rem. For large k the interval is empty and the statement is void.

Let’s draw a picture...
22/31

Turning these into probabilities

In the remaining intervals, it is possible to compute the probability
that m is B-smooth, assuming it is not prime.

Heuristic: m is uniformly random among non-prime numbers
with given size, without prime factors < B′;
Play Lego with primes and count how many are B-smooth.
variants of Ψ() function; want approximate values, not
asymptotic.

Consequence. If probability is small, just discard the survivor
wiithout testing it with ECM.

23/31

Refining the probabilities during ECM

Trying one curve in ECM has an associated succes probability
depending on the size of the target prime factor.

Can be estimated asymptotically;
Can be computed for the actual implementation by sampling.

Consequence. After each failed trial, it is possible to update the
knowledge on the probability of B-smoothness of m.

Rem. In the Shadok case, the success probabilities increase!

24/31

Varying ECM parameters

ECM can be tuned to target any smoothness bound, not
necessarily the bound B which is the final target.
Of course, a larger smoothness bound means a costly ECM step.

Strategy: starts with fast ECMs targeting primes smaller than B:

Maybe there is one in m.
Could in principle estimate the probability that this is the case, and
update it after each ECM failure!
Even if there is not, this might be a way to gain knowledge
(update probabilities) faster than with a more costly ECM.
Possibly have a better choice for the subsequent expensive
ones.

25/31

Let’s summarize

Input: the unfactored part m, with no primes < B′.

We want to find a sequence of ECMs parameters that:
Finds quickly a factor < B of m if there is one;
Accumulates quickly knowledge so that we can discard it if it
is not B-smooth.

How many curves in the sequence? A few dozens, at most.
How much time per survivor? A few milliseconds, at most.

26/31

In practice: Kleinjung’s approach

Main (only?) reference on the topic:
T. Kleinjung. Cofactorization strategies [...], 2006.

Heuristic: extracting the first prime factor is the dominant
part. Becoming more and more wrong...
Some genetic algorithm to pre-select good chains of ECMs.
Convexity arguments for choosing the best chain for each
size of m.

Much better in practice than a naive approach: was used for the
latest record.

27/31

On the theoretical side

There are two contexts where tuning an ECM chain improved the
asymptotical complexity.

Bernstein-Lange (in Batch NFS, 2014): essentially same
context as here.
Only interested in asymptotics; circuit model (no sieve!).
Improved the second term in the runtime estimates.
Barbulescu (in PhD, 2013): discrete logarithm context, final
step.
Asymptotics; classical model.
Improved the exponent.

These works are of essentially no use in practice except for general
guidance.

28/31

Wanted! Something in between

General feeling that there must be a better answer to the problem:

Pure asymptotic complexities are too far away from reality;
Kleinjung’s approach might miss a lot: too many heuristics;
Could AofA give an answer? Something between

Analytic number theory;
Operational Research.

First step: need a good modeling...

Even some insight about what’s going on in Kleinjung’s approach
would be useful.

Remember: In the end, there is an implementation to optimize!

29/31

Plan

Introduction: crypto context

Integer factorization 101

How to quickly test smoothness?

A random structure in the test

Conclusion

30/31

Conclusion

A better understanding of some random process could lead to
important speed-up in integer factorization algorithms.

Most of it applies as well to discrete logarithm in prime fields.

A related question:
Predict accurately the properties of the matrix;
Deduce the time for the linear algebra step;
Generate random matrices with these properties to test
software before running the record!

31/31

	Introduction: crypto context
	Integer factorization 101
	How to quickly test smoothness?
	A random structure in the test
	Conclusion

