Random problems at the core of integer
factorization algorithms

Pierrick Gaudry

CArRAMBA — LORIA, NANCY
CNRS, UNIVERSITE DE LORRAINE, INRIA

Journées ALEA, March 2016

1/31

Plan

Introduction: crypto context
Integer factorization 101

How to quickly test smoothness?
A random structure in the test

Conclusion

2/31

A few words of crypto

Public key cryptography was invented in the 70’s.
This solves major practical problems for the deployment of crypto
in everyday life:

© Key exchange over an insecure channel;

@ Certificates (be sure that you are talking to the right person);
© Signatures.

o ...

The RSA algorithm is still widely used. Security relies on the

presumed difficulty of integer factorization.

n=pq

3/31

Example: EMV

EMV is the standard for chip-and-PIN payment cards.

© Widely used in Europe (and in France, with Carte Bleue);
© A 20-year old standard;

© Use vintage crypto algorithms: Triple-DES, SHA-1, RSA;
© RSA with key up to 1984 bits hard-coded in the standard.

What's in my card?

4/31

Example: EMV

EMV is the standard for chip-and-PIN payment cards.
© Widely used in Europe (and in France, with Carte Bleue);
© A 20-year old standard;
© Use vintage crypto algorithms: Triple-DES, SHA-1, RSA;
© RSA with key up to 1984 bits hard-coded in the standard.

What's in my card?

Script: courtesy of E. Thomé and J. Detrey, based on standard
Linux tools.

4/31

Plan

Introduction: crypto context
Integer factorization 101

How to quickly test smoothness?
A random structure in the test

Conclusion

5/31

Integer factorization is hard

Some integers are easy to factor:
© prime numbers (cf Bill Gates, Millenium 4, ...);
prime powers;

smooth numbers: all their prime factors are small;

@
@
© (smooth number) x (prime);
© p X nextprime(p);

@

In general (and for RSA numbers), best (heuristic) complexity is
exp (1.902 (log n)*/3(log log n)2/3) .

Worse than polynomial, but better than exponential.

6/31

Integer factorization is hard

Best complexity for integer factorization:

exp (1.902 (log n)*/3(log log n)?/?) .

Def. Security parameter = log of time of the attack.

Security ~ /key size

Here:

For comparison:

@ For an ideal system, the best attack would be exhaustive
search: security ~ key size.

© For a disastrous system, the best attack takes polynomial
time: security ~ log(key size).

7/31

Fermat: difference of squares

If one finds two integers x and y such that
n=x>— y27

then n can (maybe) be factored as n = (x — y)(x + y).

More generally, one can look for x and y such that
x> =y? mod n,

and x # +y mod n.

Rem. This is the basis of the quadratic sieve and of the number
field sieve leading to the complexity above.

8/31

Combining congruences

Let's pick a random x modulo n.
Compute z = x? mod n as an integer in [0, n — 1].
The chances that z is a square y? are exponentially small.

\Smoothness to the rescuel! ‘

Def An integer z is B-smooth if all its prime factors are < B.

Find many x;'s such that result is B-smooth:

€
X02 = Q2,0 3%,:1 ... pko’k mod n
X12 = Q€0 31 ... pzl’k mod n
€
X22 = 20 392,1 e pkz’k mod n

Goal: Multiply together a subset of these relations to get a square
on the RHS.

9/31

Combining congruences — 2

Write the exponents in a matrix, one row per relation:

€, €01 - €0,k
€10 €,1 - €1k
M =

€0 €1 - €k

Find a non-zero vector v in the left-kernel of M:
v M=0.

Rem. Only parity of the exponents is relevant: do this
computation in Fy.

Then v tells which relations to combine to get a square:

H x> = [0 modn

1
i st vi=1

10/31

How frequent are smooth numbers?

If smoothness bound B is very large: very frequent.
If B is tiny: very rare.

\Choose B in between: what we need!

Def. i(x, y): number of y-smooth integers smaller than x.

Thm. (CEP, 1983) Let u = %% We have:

V(x,y)/x = exp(—u(log u+ loglog u — 1 + o(1))),

assuming u not too close to 1. The o(1) is under control.

Rule of thumb: take Probability(smooth) ~ p(u) ~ uv™".

11/31

Tuning the smoothness bound

In the previous algorithm, the optimal bound is of the form

B = exp(cy/log nv/log log n).
The total cost is then of the same form (with another c¢).

The exact constants in the exponent depends on
© How to test for smoothness?
© Trial division;
© Sieving;
o Elliptic curves.
© How to do the linear algebra?

© Gauss: cubic time;
© Strassen, .. .;
© lterative methods (sparse matrix): quadratic time.

12/31

Lowering the complexity: NFS

The number field sieve (NFS):
@ Invented by Pollard, Lenstra, Lenstra, ...; early 90's.
® Use number fields and a smoothness notion for ideals.

© Main feature: reduces the size of the integers to test for
smoothness from ~ n to ~ exp((log n)?/3).

® In practice, starts to win around 100 digits.

The general idea stays the same: combining congruences.

13/31

Plan

Introduction: crypto context
Integer factorization 101

How to quickly test smoothness?
A random structure in the test

Conclusion

14/31

Main task in the NFS algorithm

Two tasks takes almost all the time in NFS:

© Collect relations:
Find many pairs of coprime integers (a, b) such that f(a, b)
and g(a, b) are simultaneously smooth for some fixed
polynomials f and g.

@ Linear algebra:
Find a non-zero left-kernel vector of a matrix over F».

Latest record RSA-768 (done in 2010) provides some data.

15/31

Sieving

f(a,b) = fs2° + fsa®b + fa"b% + - + b,

Just like in Eratosthenes:

‘If plf(a,b), then p|f(a+ kp, b+ k’p).‘

Strategy:

© Look for (a, b) in a box [/, I[x]0, J[;

@ Initialize a 2-dim array;

© Loop over all prime p < B:
© Find a first position where p divides;
© Visit all the other positions (boing, boing!);
© Remember which ones are divisible by p.

o Collect results.

Problem. Not enough memory!

16/31

Sieving as a prefilter

A filtering strategy:
1. Sieve with a bound B’ < B;
2. Discard (a, b)-pairs which don't look promising;

3. For the survivors, use (batch'd) trial division or ECM to finish
the smoothness test.

ECM = elliptic curve method (Lenstra 85).
A survivor that enters step 3 looks like (m not too large):

f(a,b) =p1 X p2 X - XpeX m,

B’-smooth part B-smooth?

17/31

ECM for testing smoothness — 1

ECM is a probabilistic algorithm that extract prime factors.

Main building block:

© take an integer m as input;

© choose a parameter By;

© choose a (random) elliptic curve E over Q;

© do some computation in E modulo Z/mZ,;
Features:

@ the runtime is roughly proportional to Bs;

© maybe the algorithm returns a proper factor of m;

@ in nothing is returned, the probability that there is a prime
factor of b bits in m can be bounded;

@ the bound depends only on B; and b.

18/31

ECM for testing smoothness — 2

Now, iterate the process with many curves and tune Bj.

We obtain a Las Vegas algorithm that
© takes an integer m as input;

© takes a target prime size B as a parameter;

® after a time O(exp(y/2log Bloglog B)(log m)?):

© maybe returns a proper factor of m;
© If nothing is returned, the probability that m has a prime
factor p less than B is < 1/2.

Rem. Probability of failure can be made arbitrarily small, but you
will not know for sure that the input m is not smooth.

Rem. The parameter B; and the number of curves to try grow like
exp(\/% log Bloglog B). (e.g. By =500, number of curves = 20)

19/31

Plan

Introduction: crypto context
Integer factorization 101

How to quickly test smoothness?
A random structure in the test

Conclusion

20/31

Which criterion for being a survivor?

f(a,b):plxp2><...><pk X m

B’-smooth part B-smooth?

21/31

Which criterion for being a survivor?

f(a,b) = p1 X p2 X --- X p % m

B’-smooth part B-smooth?

@ If m < B’: bug in the sieve!
® If mis prime: can readily decide.

e If m> B? and m < B2 < B’3: can have only 2 prime factors.
The more ECM fails to factor m, the more likely it is
B-smooth!

Here, strategy is clear: continue until we factor completely the
number.

But: For current and future records, we need to allow 3, 4 or
maybe more prime factors in m.
[Why? Asymptotically, this depends on your computational model:

Turing machine, circuit...]
21/31

Basic early abort criteria

m: remaining unfactored part
B’: sieve bound; no prime < B’ in m
B: smoothness bound

Fact. Let kK > 2, and assume that
m € [BX, B/,

then m can not be B-smooth.

If m > B* is B-smooth, it has at least k + 1 prime factors.
Since all of them are > B', then m must be > B'¥*1.

Rem. For large k the interval is empty and the statement is void.

Let's draw a picture...

22/31

Turning these into probabilities

In the remaining intervals, it is possible to compute the probability
that m is B-smooth, assuming it is not prime.

© Heuristic: m is uniformly random among non-prime numbers
with given size, without prime factors < B’;

© Play Lego with primes and count how many are B-smooth.
variants of W() function; want approximate values, not
asymptotic.

Consequence. If probability is small, just discard the survivor
wiithout testing it with ECM.

23/31

Refining the probabilities during ECM

Trying one curve in ECM has an associated succes probability
depending on the size of the target prime factor.

© Can be estimated asymptotically;

© Can be computed for the actual implementation by sampling.

Consequence. After each failed trial, it is possible to update the
knowledge on the probability of B-smoothness of m.

Rem. In the Shadok case, the success probabilities increase!

24/31

Varying ECM parameters

ECM can be tuned to target any smoothness bound, not
necessarily the bound B which is the final target.
Of course, a larger smoothness bound means a costly ECM step.

Strategy: starts with fast ECMs targeting primes smaller than B:

© Maybe there is one in m.
Could in principle estimate the probability that this is the case, and
update it after each ECM failure!

@ Even if there is not, this might be a way to gain knowledge
(update probabilities) faster than with a more costly ECM.

© Possibly have a better choice for the subsequent expensive
ones.

25/31

Let's summarize

Input: the unfactored part m, with no primes < B'.

We want to find a sequence of ECMs parameters that:
© Finds quickly a factor < B of m if there is one;

© Accumulates quickly knowledge so that we can discard it if it
is not B-smooth.

How many curves in the sequence? A few dozens, at most.
How much time per survivor? A few milliseconds, at most.

26/31

In practice: Kleinjung's approach

Main (only?) reference on the topic:
T. Kleinjung. Cofactorization strategies |[...], 2006.

© Heuristic: extracting the first prime factor is the dominant
part. Becoming more and more wrong...

© Some genetic algorithm to pre-select good chains of ECMs.

© Convexity arguments for choosing the best chain for each
size of m.

Much better in practice than a naive approach: was used for the
latest record.

27/31

On the theoretical side

There are two contexts where tuning an ECM chain improved the
asymptotical complexity.
© Bernstein-Lange (in Batch NFS, 2014): essentially same
context as here.
Only interested in asymptotics; circuit model (no sieve!).
Improved the second term in the runtime estimates.
® Barbulescu (in PhD, 2013): discrete logarithm context, final
step.
Asymptotics; classical model.
Improved the exponent.

These works are of essentially no use in practice except for general
guidance.

28/31

Wanted! Something in between

General feeling that there must be a better answer to the problem:

© Pure asymptotic complexities are too far away from reality;

@ Kleinjung's approach might miss a lot: too many heuristics;
© Could AofA give an answer? Something between
© Analytic number theory;

© Operational Research.
First step: need a good modeling...

Even some insight about what's going on in Kleinjung's approach
would be useful.

Remember: In the end, there is an implementation to optimize!

29/31

Plan

Introduction: crypto context
Integer factorization 101

How to quickly test smoothness?
A random structure in the test

Conclusion

30/31

Conclusion

© A better understanding of some random process could lead to
important speed-up in integer factorization algorithms.

© Most of it applies as well to discrete logarithm in prime fields.

© A related question:
© Predict accurately the properties of the matrix;
© Deduce the time for the linear algebra step;
© Generate random matrices with these properties to test
software before running the record!

31/31

	Introduction: crypto context
	Integer factorization 101
	How to quickly test smoothness?
	A random structure in the test
	Conclusion

