Replicative senescence

Shortening of Telomeres and Replicative Senescence

Sarah Eugene

joint work with Thibault Bourgeron, Philippe Robert and Zhou Xu

UPMC, INRIA and IBPC

March 8, 2016

Ínaía -

OUTLINE

Biological Framework and Experiments

Telomeres Evolving with Telomerase If telomeres were always repaired More Accurate Model

Replicative senescence The Model Time of Senescence

DEFINITIONS

- Telomere: non-coding sequences at the end of chromosomes
- ► Replicative Senescence: state of a cell unable to divide

DEFINITIONS

- Telomere: non-coding sequences at the end of chromosomes
- ► Replicative Senescence: state of a cell unable to divide

 \implies the replication machinery implies a shortening of telomeres \implies when too short, the cell enters in replicative senescence (otherwise loss of genetic information)

Replicative senescence

TELOMERES ARE FASHIONABLE IN CURRENT BIOLOGY

Telomeres are involved in:

Aging

Replicative senescence

TELOMERES ARE FASHIONABLE IN CURRENT BIOLOGY

Telomeres are involved in:

- ► Aging
- ► Cancer

Replicative senescence

SEMI-CONSERVATIVE DNA REPLICATION

Replicative senescence

SEMI-CONSERVATIVE DNA REPLICATION

Replicative senescence

SEMI-CONSERVATIVE DNA REPLICATION

Replicative senescence

The Telomere End Problem

Replicative senescence

The Telomere End Problem

Replicative senescence

The Telomere End Problem

MOTIVATIONS

► In stem cells and germ cells, telomeres are repaired by a protein, the telomerase

MOTIVATIONS

- In stem cells and germ cells, telomeres are repaired by a protein, the telomerase
- In somatic cells, the telomerase is inhibited: the telomeres are only shortened until they are too small to allow replication

EXPERIMENTS

► haploids lineages in Saccharomyces cerevisiae

EXPERIMENTS

- ► haploids lineages in Saccharomyces cerevisiae
- ▶ first: telomeres are repaired by the telomerase (↔ beginning of life)

EXPERIMENTS

- ► haploids lineages in Saccharomyces cerevisiae
- ► first: telomeres are repaired by the telomerase (↔ beginning of life)
- ► then: the telomerase is inhibited, the cells enter in replicative senescence (↔aging)

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov

Mathematical Goals

Model these two phases (obviously)

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov

Mathematical Goals

- Model these two phases (obviously)
- Describe the equilibrium of the first phase

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov

Mathematical Goals

- Model these two phases (obviously)
- Describe the equilibrium of the first phase
- From the time of senescence, estimate the parameters of this equilibrium ('inverse problem')

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov

OUTLINE

Biological Framework and Experiments

Telomeres Evolving with Telomerase If telomeres were always repaired More Accurate Model

Replicative senescence The Model Time of Senescence

QUALITATIVE BEHAVIOUR

previous experiments at nucleotide resolution prove that:

► the elongation doesn't depend on telomere length

M. Teixeira et al., Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell, 2004.

IF TELOMERES WERE ALWAYS REPAIRED...

- L_n : length of telomere at n^{th} generation
- ► *a*: shortening rate
- ► *G*: geometric random variable of parameter *p* (elongation)

Model

$$L_{n+1} = (L_n - a)^+ + \mathcal{G}$$
 (1)

EQUILIBRIUM DISTRIBUTION

► L_{∞} equilibrium distribution of $(L_n)_n$ (if exists)

•
$$\pi_k = \mathbb{P}(L_\infty = k)$$

EQUILIBRIUM DISTRIBUTION

► L_{∞} equilibrium distribution of $(L_n)_n$ (if exists)

$$\blacktriangleright \ \pi_k = \mathbb{P}(L_\infty = k)$$

$$\mathbb{E}(u^{L_{\infty}}) = \mathbb{E}\left(u^{(L_{\infty}-a)^{+}+\mathcal{G}}\right)$$

EQUILIBRIUM DISTRIBUTION

► L_{∞} equilibrium distribution of $(L_n)_n$ (if exists)

•
$$\pi_k = \mathbb{P}(L_\infty = k)$$

 $\mathbb{E}(u^{L_\infty}) = \mathbb{E}\left(u^{(L_\infty - a)^+ + \mathcal{G}}\right)$

Generating function of L_{∞}

$$\left[(p-1)u^{a} + p(1+u+u^{2}+\ldots+u^{a-1}) \right] \mathbb{E} \left[u^{L_{\infty}} \right]$$
$$= pu^{a} \sum_{k=0}^{a-1} \pi_{k} \left(1 + \frac{1}{u} + \ldots + \frac{1}{u^{a-k}} \right)$$

Equilibrium: Identifying
$$(\pi_0, ... \pi_{a-1})$$

Normalisation condition

$$p\sum_{k=0}^{a-1}\pi_k(a-k+1) = ap - (1-p)$$

Rouché's Theorem:

$$\begin{bmatrix} (p-1)u^a + p(1+u+u^2+\ldots+u^{a-1}) \end{bmatrix} \text{has } a-1 \text{ roots in the} \\ \text{unit disk iff } ap>1-p, \\ \end{bmatrix}$$

Equilibrium: Identifying
$$(\pi_0, ... \pi_{a-1})$$

Normalisation condition

$$p\sum_{k=0}^{a-1}\pi_k(a-k+1) = ap - (1-p)$$

Rouché's Theorem:

 $[(p-1)u^a + p(1+u+u^2 + ... + u^{a-1})]$ has a-1 roots in the unit disk iff ap > 1-p, the ergodic condition.

QUALITATIVE BEHAVIOUR

previous experiments at nucleotide resolution prove that:

- ► the elongation doesn't depend on telomere length
- tendency to elongate rather short telomeres

M. Teixeira et al., Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell, 2004.

MORE ACCURATE MODEL

- L_n : length of telomere at n^{th} generation
- ► *a*: shortening rate
- ► *B*: Bernouilli random variable parameter 1/2
- ► *G*: geometric random variable parameter *p* (elongation)
- i_S : elongation threshold

Model

$$L_{n+1} = (L_n - a.B)^+ + \mathcal{G}\mathbb{1}_{\{L_n \le i_s\}}$$
(2)

- L_{∞} equilibrium distribution of $(L_n)_n$ (always exists)
- $\blacktriangleright \ \pi_k = \mathbb{P}(L_\infty = k)$

- L_{∞} equilibrium distribution of $(L_n)_n$ (always exists)
- $\pi_k = \mathbb{P}(L_\infty = k)$
- ► *a* = 1

- L_{∞} equilibrium distribution of $(L_n)_n$ (always exists)
- $\blacktriangleright \ \pi_k = \mathbb{P}(L_\infty = k)$
- ► *a* = 1

$$\mathbb{E}(u^{L_{\infty}}) = \mathbb{E}\left(u^{(L_{\infty}-1)^{+} + \mathcal{G}\mathbb{1}_{\{L_{n} \leq i_{s}\}}}\right)$$

- L_{∞} equilibrium distribution of $(L_n)_n$ (always exists)
- $\blacktriangleright \ \pi_k = \mathbb{P}(L_\infty = k)$
- ► *a* = 1

$$\mathbb{E}(u^{L_{\infty}}) = \mathbb{E}\left(u^{(L_{\infty}-1)^{+}+\mathcal{Gl}_{\{L_{n}\leq i_{s}\}}}\right)$$

Generating function of L_{∞}

$$\mathbb{E}(u^{L_{\infty}}) = \frac{(1-p)(1+u)}{1-u(1-p)} \sum_{k=0}^{i_s} u^k \pi_k + \frac{p}{1-u(1-p)} \pi_0 \qquad (3)$$

The $i_s + 1$ first states determine the whole chain:

Identifying
$$(\pi_0, ..., \pi_{i_S})$$

$$\begin{aligned} \forall 1 \le k \le i_s, \ \pi_k &= \left(\frac{2(1-p)}{p}\right)^k \pi_0 \\ \forall k > i_s, \ \pi_k &= p(1-p)^k \left(\frac{2}{p}\right)^{i_s+1} \pi_0 \end{aligned}$$

\implies geometric distribution with two regimes

The $i_s + 1$ first states determine the whole chain:

Identifying
$$(\pi_0, ..., \pi_{i_S})$$

$$\begin{aligned} \forall 1 \le k \le i_s, \ \pi_k &= \left(\frac{2(1-p)}{p}\right)^k \pi_0 \\ \forall k > i_s, \ \pi_k &= p(1-p)^k \left(\frac{2}{p}\right)^{i_s+1} \pi_0 \end{aligned}$$

\implies geometric distribution with two regimes

CONCLUSION

- ► the equilibrium is theoretically identified
- ► the parameters (i_S, p) are unknown (no experiments available)

OUTLINE

Biological Framework and Experiments

Telomeres Evolving with Telomerase If telomeres were always repaired More Accurate Model

Replicative senescence The Model Time of Senescence

Motivation

- Experiments allow to estimate the distribution of the time of senescence
- Goal: from these data, estimate the parameter of the previous equilibrium distribution

TWO TELOMERES OF THE SAME CHROMOSOME ARE PAIRED

MODEL OF SHORTENING FOR THE WHOLE CELL

- ► the telomerase is switched-off: no reparation
- ► 16 chromosomes \implies 32 telomeres \implies 16 independent couples $(X_n^i, Y_n^i)_{1 \le i \le 16}$
- ► initially distributed according to the previous equilibrium:

$$\forall i, X_0^i \overset{dist}{\sim} L_\infty \sim \pi$$

Model for one chromosome

$$\begin{pmatrix} X_{n+1} \\ Y_{n+1} \end{pmatrix} = \begin{pmatrix} (X_n - a \cdot B)^+ \\ (Y_n - a \cdot (1-B))^+ \end{pmatrix}$$

Model for the whole cell

16 independent couples (X_n, Y_n)

MODEL OF REPLICATIVE SENESCENCE

Senescence

The first time when the shortest telomere is below an (unknown) threshold S. (S = 0 in the following calculations)

MODEL OF REPLICATIVE SENESCENCE

Senescence

The first time when the shortest telomere is below an (unknown) threshold *S*. (S = 0 in the following calculations)

Time of Senescence

$$T = \inf\{n \ge 0, \min_{1 \le i \le 16} \left[\min(X_n^i, Y_n^i)\right] < 0\}$$

 \implies distribution of T ?

ONE CHROMOSOME

Replicative senescence

The Whole Cell

Expected Time of Senescence (*a*=1)

$$\mathbb{E}(T) = \sum_{n=0}^{\infty} \left[\sum_{k+l \ge n} \pi(X_0 = k) \pi(Y_0 = l) \frac{1}{2^n} \sum_{t=n-l}^k \binom{n}{t} \right]^{16}$$

Replicative senescence

THE WHOLE CELL

Expected Time of Senescence (*a*=1)

$$\mathbb{E}(T) = \sum_{n=0}^{\infty} \left[\sum_{k+l \ge n} \pi(X_0 = k) \pi(Y_0 = l) \frac{1}{2^n} \sum_{t=n-l}^k \binom{n}{t} \right]^{16}$$

 \implies too difficult to handle for an inverse problem

How does the mean of the initial state influence the time of senescence?

• Deterministic and Constant Initial State:

$$\forall i \in \{1, ..., 16\}, X_0^i = Y_0^i = \mathbb{E}(L_\infty)$$

HOW DOES THE MEAN OF THE INITIAL STATE INFLUENCE THE TIME OF SENESCENCE?

• Deterministic and Constant Initial State:

$$\forall i \in \{1, .., 16\}, X_0^i = Y_0^i = \mathbb{E}(L_\infty)$$

Asympotitic Expected Time of Senescence

$$\mathbb{E}_{X_0}(T) \underset{X_0 \to \infty}{\sim} 2X_0$$

HOW DOES THE MEAN OF THE INITIAL STATE INFLUENCE THE TIME OF SENESCENCE?

• Deterministic and Constant Initial State:

$$\forall i \in \{1, .., 16\}, X_0^i = Y_0^i = \mathbb{E}(L_\infty)$$

Replicative senescence

HOW THE VARIANCE OF THE INITIAL STATE INFLUENCES THE TIME OF SENESCENCE? (ONGOING WORK)

Uniformly distributed initial state: $\forall i \in \{1, .., 16\}$,

$$X_0^i \sim Y_0^i \sim \mathcal{U}nif\left[\mathbb{E}(L_\infty) + \sigma, \mathbb{E}(L_\infty) - \sigma\right]$$

Replicative senescence

Random initial state (conjecture)

$$\mathbb{E}(T) \sim 2\mathbb{E}\left(\min_{1 \le i \le 16} \left[\min(X_0^i, Y_0^i)\right]\right)$$

 $\mathbb{E}(L_{\infty}) = 1000$

CONCLUSION

- Explicit form of initial condition
- Explicit form of expected time of senescence
- Inverse Problem?

FUTURE WORK

- Information about the initial distribution from measures of time of senescence
- ► Asymptotics are not enough: the initial is NOT infinite at all (~ 100). How does the second order influence the time of senescence?