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DEFINITIONS

I Telomere: non-coding sequences at the end of
chromosomes

I Replicative Senescence: state of a cell unable to divide

=⇒ the replication machinery implies a shortening of telomeres
=⇒ when too short, the cell enters in replicative senescence

(otherwise loss of genetic information)
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TELOMERES ARE FASHIONABLE IN CURRENT BIOLOGY

Telomeres are involved in:

I Aging
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SEMI-CONSERVATIVE DNA REPLICATION

Replication Forks
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THE TELOMERE END PROBLEM

3’5’

5’3’

DNA Replication

3’5’

5’3’

+

5’3’

3’5’



Biological Framework and Experiments Telomeres Evolving with Telomerase Replicative senescence

MOTIVATIONS

I In stem cells and germ cells, telomeres are repaired by a
protein, the telomerase

I In somatic cells, the telomerase is inhibited: the telomeres
are only shortened until they are too small to allow
replication
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EXPERIMENTS

I haploids lineages in Saccharomyces cerevisiae

I first: telomeres are repaired by the telomerase (↔
beginning of life)

I then: the telomerase is inhibited, the cells enter in
replicative senescence (↔aging)

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov
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Mathematical Goals

I Model these two phases (obviously)

I Describe the equilibrium of the first phase
I From the time of senescence, estimate the parameters of

this equilibrium (’inverse problem’)

http://www.nature.com/ncomms/2015/150709/ncomms8680/extref/ncomms8680-s3.mov
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QUALITATIVE BEHAVIOUR

previous experiments at nucleotide resolution prove that:

I the elongation doesn’t depend on telomere length

M. Teixeira et al., Telomere length homeostasis is achieved via a switch between telomerase- extendible and
-nonextendible states. Cell, 2004.
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IF TELOMERES WERE ALWAYS REPAIRED...

I Ln: length of telomere at nth generation
I a: shortening rate
I G: geometric random variable of parameter p (elongation)

Model

Ln+1 = (Ln − a)+ + G (1)
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EQUILIBRIUM DISTRIBUTION

I L∞ equilibrium distribution of (Ln)n (if exists)
I πk = P(L∞ = k)

E(uL∞) = E
(
u(L∞−a)

++G
)

Generating function of L∞

[
(p− 1)ua + p(1 + u+ u2 + ...+ ua−1)

]
E
[
uL∞

]
= pua

a−1∑
k=0

πk

(
1 +

1

u
+ ...+

1

ua−k
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EQUILIBRIUM: IDENTIFYING (π0, ...πa−1)

Normalisation condition

p

a−1∑
k=0

πk(a− k + 1) = ap− (1− p)

Rouché’s Theorem:[
(p− 1)ua + p(1 + u+ u2 + ...+ ua−1)

]
has a− 1 roots in the

unit disk iff ap > 1− p,

the ergodic condition.
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QUALITATIVE BEHAVIOUR

previous experiments at nucleotide resolution prove that:

I the elongation doesn’t depend on telomere length
I tendency to elongate rather short telomeres

M. Teixeira et al., Telomere length homeostasis is achieved via a switch between telomerase- extendible and
-nonextendible states. Cell, 2004.
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MORE ACCURATE MODEL

I Ln: length of telomere at nth generation
I a: shortening rate
I B: Bernouilli random variable parameter 1/2
I G: geometric random variable parameter p (elongation)
I iS : elongation threshold

Model

Ln+1 = (Ln − a.B)+ + G1{Ln≤is} (2)
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EQUILIBRIUM

I L∞ equilibrium distribution of (Ln)n (always exists)
I πk = P(L∞ = k)

I a = 1

E(uL∞) = E
(
u(L∞−1)

++G1{Ln≤is}
)

Generating function of L∞

E(uL∞) =
(1− p)(1 + u)

1− u(1− p)

is∑
k=0

ukπk +
p

1− u(1− p)
π0 (3)
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THE is + 1 FIRST STATES DETERMINE THE WHOLE

CHAIN:

Identifying (π0, ...πiS)

∀ 1 ≤ k ≤ is, πk =

(
2(1− p)

p

)k

π0

∀ k > is, πk = p(1− p)k
(
2

p

)is+1

π0

=⇒ geometric distribution with two regimes
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CONCLUSION

I the equilibrium is theoretically identified
I the parameters (iS , p) are unknown (no experiments

available)
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Motivation

I Experiments allow to estimate the distribution of the time
of senescence

I Goal: from these data, estimate the parameter of the
previous equilibrium distribution
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TWO TELOMERES OF THE SAME CHROMOSOME ARE

PAIRED

3’5’

5’3’

DNA Replication

3’5’

5’3’

+
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MODEL OF SHORTENING FOR THE WHOLE CELL

I the telomerase is switched-off: no reparation
I 16 chromosomes =⇒ 32 telomeres =⇒ 16 independent

couples (Xi
n, Y

i
n)1≤i≤16

I initially distributed according to the previous equilibrium:

∀i,Xi
0
dist∼ L∞ ∼ π
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Model for one chromosome Xn+1

Yn+1

 =

 (Xn − a ·B)+

(Yn − a · (1−B))+



Model for the whole cell

16 independent couples (Xn, Yn)
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MODEL OF REPLICATIVE SENESCENCE

Senescence
The first time when the shortest telomere is below an
(unknown) threshold S. (S = 0 in the following calculations)

Time of Senescence

T = inf{n ≥ 0, min
1≤i≤16

[
min(Xi

n, Y
i
n)
]
< 0}

=⇒ distribution of T ?
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ONE CHROMOSOME

Y

X

Y0

X0

Xn = Xn−1 − a.B
= X0 − n.a.B
= X0 − a.Bin(n, 1/2)

Yn = Y0 − n.a+ a.Bin(n, 1/2)
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THE WHOLE CELL

Expected Time of Senescence (a=1)

E(T ) =
∞∑
n=0

 ∑
k+l≥n

π(X0 = k)π(Y0 = l)
1

2n

k∑
t=n−l

(
n

t

)16

=⇒ too difficult to handle for an inverse problem
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HOW DOES THE MEAN OF THE INITIAL STATE

INFLUENCE THE TIME OF SENESCENCE?

I Deterministic and Constant Initial State:

∀i ∈ {1, .., 16}, Xi
0 = Y i

0 = E(L∞)

Y

X

X0

X0

Asympotitic Expected Time
of Senescence

EX0(T ) ∼
X0→∞

2X0

=⇒ Problem: the initial is NOT infinite at all (∼ 100). Second
order?
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HOW THE VARIANCE OF THE INITIAL STATE

INFLUENCES THE TIME OF SENESCENCE? (ONGOING WORK)

Uniformly distributed initial state: ∀i ∈ {1, .., 16},

Xi
0 ∼ Y i

0 ∼ Unif [E(L∞) + σ,E(L∞)− σ]

0 100 200 300 400 500

1,000

1,200

1,400

1,600

1,800

2,000

σ

E(L∞) = 1000

simulated E(T )
2E(L∞)
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Random initial state (conjecture)

E(T ) ∼ 2E
(

min
1≤i≤16

[
min(Xi

0, Y
i
0 )
])

0 100 200 300 400 500
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(
min1≤i≤16

[
min(Xi

0, Y
i
0 )
])
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CONCLUSION

I Explicit form of initial condition
I Explicit form of expected time of senescence
I Inverse Problem?
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FUTURE WORK

I Information about the initial distribution from measures of
time of senescence

I Asymptotics are not enough: the initial is NOT infinite at
all (∼ 100). How does the second order influence the time
of senescence?
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