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Integer partitions

Definition
A partition of a positive integer n is a finite non-increasing
sequence of positive integers A1,..., Ay such that

A1+ -+ Am = n. The integers A1, ..., Ay, are called the parts of
the partition.

v

Example
There are 5 partitions of 4:

43+1,2+2,2+1+1and1+1+1+1.
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Generating functions

Let n, k be positive integers. Let Q(n, k) denote the number of
partitions of n into k distinct parts. Then

14 Y Qnk)z¢" = (14 29)(1+ 28*)(1+ z°)(1 + z¢*) - -
n>1k>1

=[] +z).

n>1

Let p(n, k) denote the number of partitions of n into k parts. Then
l—i—ZZp(n,k)qu” = H (1+zq”+22q2"+'~)
n>1k>1 n>1

1
o (L= 2z97)
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Partition identities

Theorem (Euler 1748)

For every integer n, the number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.
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Partition identities

Theorem (Euler 1748)

For every integer n, the number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.

Proof.

[T - [T 252

n>1 n>1
H 1— q2n
n>1 1-q"
~11 1
- _ g2n-1"
n>1 1 q !
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The Rogers-Ramanujan identities

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

2

N q
;)(1—(])(1—(;2)(]_— H(l_ 5k+1 1_ 5k+4)
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The Rogers-Ramanujan identities

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

2

N q
;)(1—(])(1—(;2)(]_— H(l_ 5k+1 1_ 5k+4)

Theorem (Partition version)

For every positive integer n, the number of partitions of n such
that the difference between two consecutive parts is at least 2 is

equal to the number of partitions of n into parts congruent to 1 or
4 modulo 5.

V.
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The Rogers-Ramanujan identities

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

2

N q
;)(1—(])(1—(;2)(]_— H(l_ 5k+1 1_ 5k+4)

Theorem (Partition version)

For every positive integer n, the number of partitions of n such
that the difference between two consecutive parts is at least 2 is
equal to the number of partitions of n into parts congruent to 1 or
4 modulo 5.

V.

Rogers-Ramanujan type identity: “for all n, the number of
partitions of n satisfying some difference conditions is equal to the
number of partitions of n satisfying some congruence conditions.”
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Schur's theorem

Theorem (Schur 1926)

For any positive integer n, let A(n) denote the number of
partitions of n into distinct parts congruent to 1 or 2 modulo 3 and
B(n) denote the number of partitions A1 + - - - + Am of n such that

3 ifA;j=1,2 mod 3,
Ai — A1 > .
4 ifA;=0 mod 3.

Then A(n) = B(n).

Example

The partitions counted by A(10) are 10, 8+2,7+2+ 1 and
5+4+1.

The partitions counted by B(10) are 10, 9+ 1, 8+ 2 and 7 + 3.
There are 4 partitions in both cases.
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Some proofs of Schur’'s theorem

@ Recurrences and g-difference equations : Andrews (1967,
1968, 1971)
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Some proofs of Schur’'s theorem

@ Recurrences and g-difference equations : Andrews (1967,
1968, 1971)
1971 : Refinement
Let A(n, k) denote the number of partitions of n into k
distinct parts congruent to 1 or 2 modulo 3. Let B(n, k)
denote the number of partitions of n, satisfying the difference
conditions of Schur’s theorem, such that k = #{parts = 1,2
mod 3} + 2#{parts =0 mod 3}. Then for all k,n € N,
A(n, k) = B(n, k).
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Some proofs of Schur’'s theorem
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o Bijections : Bressoud (1980), Bessenrodt (1991)
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Some proofs of Schur’'s theorem

@ Recurrences and g-difference equations : Andrews (1967,
1968, 1971)
1971 : Refinement
Let A(n, k) denote the number of partitions of n into k
distinct parts congruent to 1 or 2 modulo 3. Let B(n, k)
denote the number of partitions of n, satisfying the difference
conditions of Schur’s theorem, such that k = #{parts = 1,2
mod 3} + 2#{parts =0 mod 3}. Then for all k,n € N,
A(n, k) = B(n, k).

o Bijections : Bressoud (1980), Bessenrodt (1991)

@ The method of weighted words : Alladi-Gordon (1993)
— further refinement
— generalisation
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The method of weighted words

The principle of method of weighted words is the following :
@ Assign a color to each part according to its value modulo 3 :
color ¢ : 0 mod 3,
color a: 1 mod 3,
color b : 2 mod 3.
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The method of weighted words

The principle of method of weighted words is the following :

@ Assign a color to each part according to its value modulo 3 :
color ¢ : 0 mod 3,
color a: 1 mod 3,
color b : 2 mod 3.
@ Order the colors
< a< b,
such that the corresponding ordering of the positive integers
in three colors a, b,

<1< 1p <2, <2, <2, <3:<3,<3p<--+,
becomes the natural ordering of integers
<1<2<3<4<hchbcT <8<,
under the transformations

s ko 3k — 2, kp — 3k — 1.
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The method of weighted words

e Find difference conditions on the non-dilated colored integers

2 if color(\;j) = ¢ or color()\;) < color(Ai+1),
Ai = Aip1 2> _
1 otherwise,
such that after the same transformations
s ko 3k — 2 kp— 3k —1,
they become the difference conditions of Schur's theorem

3 iftA;=1,2 mod 3,
Ai = i1 > )
4 ifA\;=0 mod3.
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The method of weighted words

e Find difference conditions on the non-dilated colored integers

2 if color(\;j) = ¢ or color()\;) < color(Ai+1),
Ai = Aip1 2> .
1 otherwise,
such that after the same transformations
s ko 3k — 2 kp— 3k —1,
they become the difference conditions of Schur's theorem
3 ifA=1,2 d3,
Ai — A1 > I me
4 ifA\;=0 mod3.

@ Find conditions on the colors such that the generating
function for partitions with difference conditions equals

[T+ ag"*)(1+ bg").
k>1
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Let S(u, v, w, n) denote the number of partitions of n with u parts
colored a, v parts colored b and w parts colored c, satisfying the
difference conditions

2 if color(\j) = ¢ or color(\;) < color(\i+1),
Ai = Aip1 2 :
1 otherwise,

with no part
Its generating function is

rts r rbs
Z S(u, v, w,n)a"b"c"q" = Z q( s+)aq b°q

u,v,w,n>0 r,s,t>0
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Let S(u, v, w, n) denote the number of partitions of n with u parts
colored a, v parts colored b and w parts colored c, satisfying the
difference conditions

2 if color(\j) = ¢ or color(\;) < color(\i+1),
Ai = Aip1 2 :
1 otherwise,

with no part
Its generating function is

S

Z S(u,v,w,n)a"b"c"q" = Z q(”i“)aibi

rq"
u,v,w,n>0 r,s,t>0 (q)f (q)

partition into r parts of color a,
partition into s parts of color b,

r+5+t)

q( 2 J : staircase of size r + s + t.
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The non-dilated theorem

By g-series calculations (g-binomial identity, g-Chu-Vandermonde
identity), one sees that the generating function for S(u, v, w,n) is
an infinite product if and only if ¢ = ab, and in that case it equals
indeed [[,~; (1 + aq"”) (1 + bq").
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The non-dilated theorem

By g-series calculations (g-binomial identity, g-Chu-Vandermonde
identity), one sees that the generating function for S(u, v, w,n) is
an infinite product if and only if ¢ = ab, and in that case it equals
indeed [[,~; (1 + aq"”) (1 + bq").

Non-dilated version of Schur's theorem (Alladi-Gordon 1993)

Let S(u, v, n) denote the number of partitions of n with u parts
colored a or ab and v parts colored b or ab such that there is no
part 1,5, satisfying the difference conditions. Then we have

Z S(u,v,n)a"b"q" = H (14+aq")(1+ bq").

n>1
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The non-dilated theorem

By g-series calculations (g-binomial identity, g-Chu-Vandermonde
identity), one sees that the generating function for S(u, v, w,n) is
an infinite product if and only if ¢ = ab, and in that case it equals
indeed [[,~; (1 + aq"”) (1 + bq").

Non-dilated version of Schur's theorem (Alladi-Gordon 1993)

Let S(u, v, n) denote the number of partitions of n with u parts
colored a or ab and v parts colored b or ab such that there is no
part 1,5, satisfying the difference conditions. Then we have

Z S(u,v,n)a"b"q" = H (14+aq")(1+ bq").

n>1

The dilation g — ¢3,a — ag~2, b — bg~! gives Schur's theorem.
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The theorem

Theorem (Siladi¢ 2005)

The number of partitions of an integer n into distinct odd parts
equals the number of partitions \1 + - - - + As of n into parts
different from 2 such that the difference between two consecutive
parts is at least 5 (ie. A\j — Aiy1 > 5) and

Ai— A1 =5= A+ A1 £ £1, 45 4£7 mod 16,
Ai— A1 =6= A+ A\jy1 £ £2,46 mod 16,
Ai—= A1 =7= A+ Aiy1 13 mod 16,

Ai—= A1 =8= A+ \jiyx1 Z1+4 mod 16.
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The theorem

Theorem (Siladi¢ 2005)

The number of partitions of an integer n into distinct odd parts
equals the number of partitions \1 + - - - + As of n into parts
different from 2 such that the difference between two consecutive
parts is at least 5 (ie. A\j — Aiy1 > 5) and

Ai— A1 =5= A+ A1 £ £1, 45 4£7 mod 16,
Ai— A1 =6= A+ A\jy1 £ £2,46 mod 16,
Ai—= A1 =7= A+ Aiy1 13 mod 16,

Ai—= A1 =8= A+ \jiyx1 Z1+4 mod 16.

Originally proved by studying representations of the twisted affine
Lie algebra Agz).



Refinement of Siladi¢'s theorem (D. 2013)

For k,n € N, let C(k, n) denote the number of partitions of n into
k distinct odd parts. For n € N and k € N*, let D(k, n) denote the
number of partitions A1 + - -- 4+ As of n such that k equals the
number of odd part plus twice the number of even parts, satisfying
the following conditions:

Q Vix>1X\#2
Q@ Vi>1 A — A1 25,
Q@ Vi>1,

Ai—Air1=5=X=1,4 mod 8,
Ai—Air1=6=X;=1,3,57 mod 8,
Ai—Air1=7=X=0,1,3,4,6,7 mod 8,
Ai—Air1=8=X;=0,1,3,4,5,7 mod 8.

Then for all k,n € N, C(k, n) = D(k, n).
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Idea of the proof

@ Show that the two formulations are equivalent
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@ Show that the two formulations are equivalent

e The generating function for C(k, n) is [re, (1 + tg®<*1).
We need to show that the generating function for D(k, n) is
the same:
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Idea of the proof

@ Show that the two formulations are equivalent
e The generating function for C(k, n) is [re, (1 + tg®<*1).
We need to show that the generating function for D(k, n) is
the same:
» Let dn(k, n) denote the number of partitions Ay + -+ + A
counted by D(k, n) such that the largest part A; is at most N,
and

Gn(t,q) =1+ > du(k,n)thq".
k=1 n=1
By a combinatorial reasoning, we establish eight g-difference
equations satisfied by Gy(t, q).
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Idea of the proof

@ Show that the two formulations are equivalent
e The generating function for C(k, n) is [re, (1 + tg®<*1).
We need to show that the generating function for D(k, n) is
the same:
» Let dn(k, n) denote the number of partitions Ay + -+ + A
counted by D(k, n) such that the largest part A; is at most N,
and

Gn(t,q) =1+ > du(k,n)thq".
k=1 n=1
By a combinatorial reasoning, we establish eight g-difference
equations satisfied by Gy(t, q).
» By induction, we show that for all m € N*|

Gam(t, q) = (1 + tq) Gom—3(td?, q).



Siladi¢’s theorem
00®0000000

Idea of the proof

@ Show that the two formulations are equivalent
e The generating function for C(k, n) is [re, (1 + tg®<*1).
We need to show that the generating function for D(k, n) is
the same:
» Let dn(k, n) denote the number of partitions Ay + -+ + A
counted by D(k, n) such that the largest part A; is at most N,
and

Gn(t,q) =1+ > du(k,n)thq".
k=1 n=1
By a combinatorial reasoning, we establish eight g-difference
equations satisfied by Gy(t, q).
» By induction, we show that for all m € N*|

Gam(t, q) = (1 + tq) Gom—3(td?, q).

» Letting m — oo and iterating leads to

oo

Jim Gu(t, q) = kl;[O (1+ tg?*).
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The g-difference equations

For all N € N*,
Gsn(t, q) = Gen—1(t, q) + t2q®N Gen_7(t, q),

Gent1(t, q) = Gan(t, q) + tg®V 1 Gan_a(t. q),
Gan+2(t, q) = Geni1(t, q) + 2¢*N 2 Gen_7(t, q),
Gen3(t,q) = Ganio(t, ) + tg®V T3 Gen_s(t, q),

Gen+a(t, q) = Genpa(t, q)+t2¢® VT Ganos(t, q)+3q"N B Gen (2, q),
Genss(t, q) = Ganra(t, q)+ta® VT2 Genos(t, q)+t2q™*N ™ Gen_1(t. q),
_ 2 8N+6 3 _16N+5
Gan+6(t, q) = Ganys(t, q)+t°q°" " Gagn—3(t, q)+t7q Gegn—7(t, q),

Gen7(t,q) = Ganao(t, q) + ta®N 17 Ggnyi(t, q).
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The method of weighted words

@ We associate 8 different colors to integers depending on their
value modulo 8, which adds eight parameters to the
g-difference equations.
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The method of weighted words

@ We associate 8 different colors to integers depending on their
value modulo 8, which adds eight parameters to the
g-difference equations.

@ These equations can only be solved if there are certain
relations between the variables representing the colors. One
obtains the infinite product

H(l+aq4k+1)(1+ bq4k+3).
k>0
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The method of weighted words

@ We associate 8 different colors to integers depending on their
value modulo 8, which adds eight parameters to the
g-difference equations.

@ These equations can only be solved if there are certain
relations between the variables representing the colors. One
obtains the infinite product

H(l+aq4k+1)(1+ bq4k+3).
k>0

@ Only five different colors remain at the end:
color a : integers congruent to 1 mod 4,
color b: integers congruent to 3 mod 4,
color ab : integers congruent to 0 mod 4,
color a® : integers congruent to 6 mod 8,
color b” : integers congruent to 2 mod 8.
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We consider the following order on colored integers:
1op <1< 1 <1p <2, <2,<3,<2p<3,p <3< 32 <>

and difference conditions given by the matrix A (the entry (x,y)
gives the minimal difference between \; of color x and A;y; of

color y):
dodd b2 bodd abeven deven 4 beven abodd
a 2 2 2 1 2 2 2 2
b 1 2 2 1 1 1 2 1
A= ab 2 3 3 2 2 2 2 2
2| 4 4 4 3 3 4 3 4
>\ 2 4 4 3 3 2 3 2
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We consider the following order on colored integers:
1op <1< 1 <1p <2, <2,<3,<2p<3,p <3< 32 <>

and difference conditions given by the matrix A (the entry (x,y)
gives the minimal difference between \; of color x and A;y; of

color y):
dodd b2 bodd abeven deven 4 beven abodd
a 2 2 2 1 2 2 2 2
b 1 2 2 1 1 1 2 1
A= ab 2 3 3 2 2 2 2 2
2| 4 4 4 3 3 4 3 4
>\ 2 4 4 3 3 2 3 2

Then the transformations
kab%—>4k—4,k3i—>4k—3,kb>—>4k—1,/(b2 }—>4/<72,k32 — 4k — 6

give the conditions of Siladi¢’s theorem.
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The non-dilated theorem

Theorem (D. 2016)

Let D(u, v, n) denote the number of partitions A1 + --- + s of n,
with no part 1,4 or 1,», satisfying the difference conditions given
by the matrix A, such that u equals the number of parts a or ab
plus twice the number of parts a®> and v equals the number of
parts b or ab plus twice the number of parts b”.

Then for all u,v,n € N,

> D(u,v,n)a"b"q" =[] (1 +aq") (1 + bg").

n>1
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The non-dilated theorem

Theorem (D. 2016)

Let D(u, v, n) denote the number of partitions A1 + --- + s of n,
with no part 1,4 or 1,», satisfying the difference conditions given
by the matrix A, such that u equals the number of parts a or ab
plus twice the number of parts a®> and v equals the number of
parts b or ab plus twice the number of parts b”.

Then for all u,v,n € N,

> D(u,v,n)a"b"q" =[] (1 +aq") (1 + bg").

n>1

The dilation g — ¢*,a — ag3, b — bg~! gives a refinement of
Siladi¢’s theorem.



If we keep the same order and difference conditions but do the
dilation ¢ — ¢*,a — ag~ !, b — bg—3, we obtain a companion of
Siladic's theorem.

Companion of Siladi¢'s theorem (D. 2016)

The number of partitions of n into k distinct odd parts equals the
number of partitions of n, where 2 is not a part, such that k equals
the number of odd part plus twice the number of even parts, s.t.

=56,8,90r >11if \;=0 mod 8,
=2or >5ifA\;=1 mod 8,
=1lor >13if \; =2 mod 8,
>7ifA=3 mod 8§,

=50r >7ifA\;=4 mod 8,
=2,3,56or >8if \;=5 mod 8,
=3,4,6,70r >9if \; =6 mod 8,
=8or >10if \; =7 mod 8.

Ai — Ait1
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Back to Schur's theorem

The infinite product in the non-dilated version of Siladi¢'s theorem
is the same as the one in the non-dilated version of Schur's
theorem.

With the dilations ¢ — q3,a — ag—2, b — bg~!, the ordering of
integers

1op <1< 1y <1p <2, <2,<3,<2p<3p <3< 32 <0
becomes
0<1l<l<2<3<4<hghcoTI<TI< >

So the integers congruent to +1 mod 6 can appear in two colours.
We obtain a new companion of Schur's theorem.
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Back to Schur's theorem

Companion of Schur’s theorem (D. 2016)

Let A(n) denote the number of partitions of n into distinct parts
congruent to 1 modulo 3 and v distinct parts congruent to 2
modulo 3. Let C(n) denote the number of overpartitions

A1+ -+ -+ As of n such that only parts congruent to +1 mod 6
can be overlined, 1 is not a part, and such that

4+ X()‘H—l) if \;=1,2,3,5 mod 6,
Ai—Aiy1 > 45+ X()‘H—l) if \;=0,4 mod 6,
6+ x(Aix1) if A; =1,5 mod 6 and is overlined,

where

= 1if A\jy1 is overlined,

\; =
X(Ai+1) = 0 otherwise.

—

Then A(n) = C(n).




Thank you!



	Introduction
	Schur's theorem and the method of weighted words
	Siladic's theorem

