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Integer partitions

Definition

A partition of a positive integer n is a finite non-increasing
sequence of positive integers λ1, . . . , λm such that
λ1 + · · ·+ λm = n. The integers λ1, . . . , λm are called the parts of
the partition.

Example

There are 5 partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.
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Generating functions

Let n, k be positive integers. Let Q(n, k) denote the number of
partitions of n into k distinct parts. Then

1 +
∑
n≥1

∑
k≥1

Q(n, k)zkqn = (1 + zq)(1 + zq2)(1 + zq3)(1 + zq4) · · ·

=
∏
n≥1

(1 + zqn).

Let p(n, k) denote the number of partitions of n into k parts. Then

1 +
∑
n≥1

∑
k≥1

p(n, k)zkqn =
∏
n≥1

(
1 + zqn + z2q2n + · · ·

)
=
∏
n≥1

1

(1− zqn)
.
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Partition identities

Theorem (Euler 1748)

For every integer n, the number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.

Proof.

∏
n≥1

(1 + qn) =
∏
n≥1

(1 + qn)(1− qn)

1− qn

=
∏
n≥1

1− q2n

1− qn

=
∏
n≥1

1

1− q2n−1
.
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The Rogers-Ramanujan identities

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

∞∑
n=0

qn
2

(1− q)(1− q2) · · · (1− qn)
=
∞∏
k=0

1

(1− q5k+1)(1− q5k+4)
,

Theorem (Partition version)

For every positive integer n, the number of partitions of n such
that the difference between two consecutive parts is at least 2 is
equal to the number of partitions of n into parts congruent to 1 or
4 modulo 5.

Rogers-Ramanujan type identity: “for all n, the number of
partitions of n satisfying some difference conditions is equal to the
number of partitions of n satisfying some congruence conditions.”
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Schur’s theorem

Theorem (Schur 1926)

For any positive integer n, let A(n) denote the number of
partitions of n into distinct parts congruent to 1 or 2 modulo 3 and
B(n) denote the number of partitions λ1 + · · ·+ λm of n such that

λi − λi+1 ≥

{
3 if λi ≡ 1, 2 mod 3,

4 if λi ≡ 0 mod 3.

Then A(n) = B(n).

Example

The partitions counted by A(10) are 10, 8 + 2, 7 + 2 + 1 and
5 + 4 + 1.
The partitions counted by B(10) are 10, 9 + 1, 8 + 2 and 7 + 3.
There are 4 partitions in both cases.
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Some proofs of Schur’s theorem

Recurrences and q-difference equations : Andrews (1967,
1968, 1971)

1971 : Refinement
Let A(n, k) denote the number of partitions of n into k
distinct parts congruent to 1 or 2 modulo 3. Let B(n, k)
denote the number of partitions of n, satisfying the difference
conditions of Schur’s theorem, such that k = #{parts ≡ 1, 2
mod 3}+ 2#{parts ≡ 0 mod 3}. Then for all k , n ∈ N,
A(n, k) = B(n, k).

Bijections : Bressoud (1980), Bessenrodt (1991)

The method of weighted words : Alladi-Gordon (1993)
→ further refinement
→ generalisation
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The method of weighted words

The principle of method of weighted words is the following :

Assign a color to each part according to its value modulo 3 :
color c : 0 mod 3,
color a : 1 mod 3,
color b : 2 mod 3.

Order the colors
c < a < b,

such that the corresponding ordering of the positive integers
in three colors a, b, c,

1c < 1a < 1b < 2c < 2a < 2b < 3c < 3a < 3b < · · · ,
becomes the natural ordering of integers

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < · · · ,
under the transformations

kc 7→ 3k − 3, ka 7→ 3k − 2, kb 7→ 3k − 1.
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The method of weighted words

Find difference conditions on the non-dilated colored integers

λi −λi+1 ≥

{
2 if color(λi ) = c or color(λi ) < color(λi+1),

1 otherwise,

such that after the same transformations

kc 7→ 3k − 3, ka 7→ 3k − 2, kb 7→ 3k − 1,

they become the difference conditions of Schur’s theorem

λi − λi+1 ≥

{
3 if λi ≡ 1, 2 mod 3,

4 if λi ≡ 0 mod 3.

Find conditions on the colors such that the generating
function for partitions with difference conditions equals∏

k≥1

(1 + aqk)(1 + bqk).
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Let S(u, v ,w , n) denote the number of partitions of n with u parts
colored a, v parts colored b and w parts colored c , satisfying the
difference conditions

λi − λi+1 ≥

{
2 if color(λi ) = c or color(λi ) < color(λi+1),

1 otherwise,

with no part 1c .
Its generating function is

∑
u,v ,w ,n≥0

S(u, v ,w , n)aubvcwqn =
∑

r ,s,t≥0

q(r+s+t
2 ) a

rqr

(q)r

bsqs

(q)s

(c)tqtq(t+1
2 )

(q)t
.

partition into r parts of color a,
partition into s parts of color b,
partition into t distinct parts ≥ 2 of color c,

q(r+s+t
2 ) : staircase of size r + s + t.
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The non-dilated theorem

By q-series calculations (q-binomial identity, q-Chu-Vandermonde
identity), one sees that the generating function for S(u, v ,w , n) is
an infinite product if and only if c = ab, and in that case it equals
indeed

∏
n≥1 (1 + aqn) (1 + bqn).

Non-dilated version of Schur’s theorem (Alladi-Gordon 1993)

Let S(u, v , n) denote the number of partitions of n with u parts
colored a or ab and v parts colored b or ab such that there is no
part 1ab, satisfying the difference conditions. Then we have∑

S(u, v , n)aubvqn =
∏
n≥1

(1 + aqn) (1 + bqn) .

The dilation q → q3, a→ aq−2, b → bq−1 gives Schur’s theorem.
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The theorem

Theorem (Siladić 2005)

The number of partitions of an integer n into distinct odd parts
equals the number of partitions λ1 + · · ·+ λs of n into parts
different from 2 such that the difference between two consecutive
parts is at least 5 (ie. λi − λi+1 ≥ 5) and

λi − λi+1 = 5⇒ λi + λi+1 6≡ ±1,±5,±7 mod 16,

λi − λi+1 = 6⇒ λi + λi+1 6≡ ±2,±6 mod 16,

λi − λi+1 = 7⇒ λi + λi+1 6≡ ±3 mod 16,

λi − λi+1 = 8⇒ λi + λi+1 6≡ ±4 mod 16.

Originally proved by studying representations of the twisted affine

Lie algebra A
(2)
2 .
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Refinement of Siladić’s theorem (D. 2013)

For k, n ∈ N, let C (k , n) denote the number of partitions of n into
k distinct odd parts. For n ∈ N and k ∈ N∗, let D(k , n) denote the
number of partitions λ1 + · · ·+ λs of n such that k equals the
number of odd part plus twice the number of even parts, satisfying
the following conditions:

1 ∀i ≥ 1, λi 6= 2,

2 ∀i ≥ 1, λi − λi+1 ≥ 5,

3 ∀i ≥ 1,

λi − λi+1 = 5⇒ λi ≡ 1, 4 mod 8,

λi − λi+1 = 6⇒ λi ≡ 1, 3, 5, 7 mod 8,

λi − λi+1 = 7⇒ λi ≡ 0, 1, 3, 4, 6, 7 mod 8,

λi − λi+1 = 8⇒ λi ≡ 0, 1, 3, 4, 5, 7 mod 8.

Then for all k , n ∈ N, C (k, n) = D(k , n).
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Idea of the proof

Show that the two formulations are equivalent

The generating function for C (k, n) is
∏∞

k=0

(
1 + tq2k+1

)
.

We need to show that the generating function for D(k, n) is
the same:

I Let dN(k , n) denote the number of partitions λ1 + · · ·+ λs
counted by D(k, n) such that the largest part λ1 is at most N,
and

GN(t, q) = 1 +
∞∑
k=1

∞∑
n=1

dN(k, n)tkqn.

By a combinatorial reasoning, we establish eight q-difference
equations satisfied by GN(t, q).

I By induction, we show that for all m ∈ N∗,

G2m(t, q) = (1 + tq)G2m−3(tq2, q).

I Letting m→∞ and iterating leads to

lim
N→∞

GN(t, q) =
∞∏
k=0

(
1 + tq2k+1

)
.
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The q-difference equations

For all N ∈ N∗,

G8N(t, q) = G8N−1(t, q) + t2q8NG8N−7(t, q),

G8N+1(t, q) = G8N(t, q) + tq8N+1G8N−4(t, q),

G8N+2(t, q) = G8N+1(t, q) + t2q8N+2G8N−7(t, q),

G8N+3(t, q) = G8N+2(t, q) + tq8N+3G8N−3(t, q),

G8N+4(t, q) = G8N+3(t, q)+t2q8N+4G8N−3(t, q)+t3q16N+3G8N−7(t, q),

G8N+5(t, q) = G8N+4(t, q)+tq8N+5G8N−3(t, q)+t2q16N+4G8N−7(t, q),

G8N+6(t, q) = G8N+5(t, q)+t2q8N+6G8N−3(t, q)+t3q16N+5G8N−7(t, q),

G8N+7(t, q) = G8N+6(t, q) + tq8N+7G8N+1(t, q).
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The method of weighted words

We associate 8 different colors to integers depending on their
value modulo 8, which adds eight parameters to the
q-difference equations.

These equations can only be solved if there are certain
relations between the variables representing the colors. One
obtains the infinite product∏

k≥0

(1 + aq4k+1)(1 + bq4k+3).

Only five different colors remain at the end:
color a : integers congruent to 1 mod 4,
color b: integers congruent to 3 mod 4,
color ab : integers congruent to 0 mod 4,
color a2 : integers congruent to 6 mod 8,
color b2 : integers congruent to 2 mod 8.
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color a2 : integers congruent to 6 mod 8,
color b2 : integers congruent to 2 mod 8.
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We consider the following order on colored integers:

1ab < 1a < 1b2 < 1b < 2ab < 2a < 3a2 < 2b < 3ab < 3a < 3b2 < · · ·

and difference conditions given by the matrix A (the entry (x , y)
gives the minimal difference between λi of color x and λi+1 of
color y):

A =



aodd b2 bodd abeven aeven a2 beven abodd

a 2 2 2 1 2 2 2 2
b 1 2 2 1 1 1 2 1
ab 2 3 3 2 2 2 2 2
a2 4 4 4 3 3 4 3 4
b2 2 4 4 3 3 2 3 2

.

Then the transformations

kab 7→ 4k − 4, ka 7→ 4k − 3, kb 7→ 4k − 1, kb2 7→ 4k − 2, ka2 7→ 4k − 6

give the conditions of Siladić’s theorem.
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The non-dilated theorem

Theorem (D. 2016)

Let D(u, v , n) denote the number of partitions λ1 + · · ·+ λs of n,
with no part 1ab or 1b2 , satisfying the difference conditions given
by the matrix A, such that u equals the number of parts a or ab
plus twice the number of parts a2 and v equals the number of
parts b or ab plus twice the number of parts b2.
Then for all u, v , n ∈ N,∑

D(u, v , n)aubvqn =
∏
n≥1

(1 + aqn) (1 + bqn) .

The dilation q → q4, a→ aq−3, b → bq−1 gives a refinement of
Siladić’s theorem.
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If we keep the same order and difference conditions but do the
dilation q → q4, a→ aq−1, b → bq−3, we obtain a companion of
Siladic’s theorem.

Companion of Siladić’s theorem (D. 2016)

The number of partitions of n into k distinct odd parts equals the
number of partitions of n, where 2 is not a part, such that k equals
the number of odd part plus twice the number of even parts, s.t.

λi − λi+1



= 5, 6, 8, 9 or ≥ 11 if λi ≡ 0 mod 8,

= 2 or ≥ 5 if λi ≡ 1 mod 8,

= 11 or ≥ 13 if λi ≡ 2 mod 8,

≥ 7 if λ ≡ 3 mod 8,

= 5 or ≥ 7 if λi ≡ 4 mod 8,

= 2, 3, 5, 6 or ≥ 8 if λi ≡ 5 mod 8,

= 3, 4, 6, 7 or ≥ 9 if λi ≡ 6 mod 8,

= 8 or ≥ 10 if λi ≡ 7 mod 8.

Then for all k, n ∈ N, C (k , n) = E (k , n).
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Back to Schur’s theorem

The infinite product in the non-dilated version of Siladić’s theorem
is the same as the one in the non-dilated version of Schur’s
theorem.
With the dilations q → q3, a→ aq−2, b → bq−1, the ordering of
integers

1ab < 1a < 1b2 < 1b < 2ab < 2a < 3a2 < 2b < 3ab < 3a < 3b2 < · · ·

becomes

0 < 1 < 1 < 2 < 3 < 4 < 5 < 5 < 6 < 7 < 7 < · · ·

So the integers congruent to ±1 mod 6 can appear in two colours.
We obtain a new companion of Schur’s theorem.
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Back to Schur’s theorem

Companion of Schur’s theorem (D. 2016)

Let A(n) denote the number of partitions of n into distinct parts
congruent to 1 modulo 3 and v distinct parts congruent to 2
modulo 3. Let C (n) denote the number of overpartitions
λ1 + · · ·+ λs of n such that only parts congruent to ±1 mod 6
can be overlined, 1 is not a part, and such that

λi − λi+1 ≥


4 + χ(λi+1) if λi ≡ 1, 2, 3, 5 mod 6,

5 + χ(λi+1) if λi ≡ 0, 4 mod 6,

6 + χ(λi+1) if λi ≡ 1, 5 mod 6 and is overlined,

where

χ(λi+1) =

{
= 1 if λi+1 is overlined,

= 0 otherwise.

Then A(n) = C (n).
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Thank you!
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