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Introduction

Motivations

o Combinatorial study of concurrents programs (seen as discrete
structures)

e Quantitative study of the combinatorial explosion phenomena: the
large number of possible runs (seen as increasing labellings)

Approach: Analytic Combinatorics
e symbolic method to modelize (Greene's “box" operators)

e singularity analysis to obtain asymptotics of the number of increasing
labellings

e based on previous work on increasing trees of
[F. Bergeron, P. Flajolet and B. Salvy '92]
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Combinatorial specifications

Skeleton
AN S=Z+2-G(S) 2
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Combinatorial specifications
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Skeleton
S=2Z2+2-G(S5) 2

Increasing labellings

I=Z+2"%xG(I)* 2"
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Combinatorial specifications

1 Skeleton
RN S—Z+Z-GS) 2
2 5 4
/1IN | /\ Increasing labellings
3 6 8 9 7 11
N | T=Z+2°+G(I)~2"
12 10 |
\13 Differential equation
4 = G()
14 1(0) = 0
I'0) =1
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Easy case: non-plane diamonds

We start with the differential equation: A”(z) = eA(®)
We can solve it: A'(z) =tanz +secz

The poles are the (2k + 3)m

Using the residue theorem we get:

2+l (p— 1)1 & 1
B " _Z_l (1+4j)"

an
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Easy case: non-plane diamonds

We start with the differential equation: A”(z) = eA(®)
We can solve it: A'(z) =tanz +secz

The poles are the (2k + 3)m

Using the residue theorem we get:

2+l (p— 1)1 & 1
B o E: (14 4j)n

j=—oo

an

(an)ns1 = {1,1,1,2,5,16, 61,272, 1385, 7936, 50521, 353792, . . . }

Known in OEIS to count the number of number of increasing unary-binary
trees on n vertices.
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Bijection

Non-plane diamonds Increasing unary-binary trees
A=Z 4 Z° % Set(A) » 2" T =2+ 2"+ (T + Set—»(T))
N"(z) = N'(2) - N (2) T'(2) = (1+ T(2))- T'(2)

1 ~
- S

AN

Thanks to A. Bacher, G. Collet and C. Mailler (and ALEA Network)
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Elliptic cases

Weierstrass's case
F" = P(F) where P is a polynomial of degree 2, then:

F(z) = Kp(z — piw1,w2)

: « dt
with p = J
0 4/1+2S(§P(v)dv

Weierstrass's elliptic function

and K a constant.

¢ is defined periodically over a lattice that contains one double pole in a
corner of each cell:

1 1
p(ziw,wr) =5+ D ( - 2)
2Tk DeZ2\{(0,0)) (z + kot + lw2)?  (kwy + Jwp)
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Elliptic cases

Jacobi's case

F” = P(F) where P is a polynomial of degree 3, then
6—-0 F— V2 a

T a-0 F—R25

g'(z) = My/(1 — 2z2)(1 — £222) and so

let g2

with «, 8 and § well chosen then

g(z) =sn(Mz; /)

Jacobi's elliptic sinus function

sn is defined periodically over a lattice that contains two simple poles in
each cell and a zero in a corner.
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Elliptic cases: binary and ternary diamonds

Weierstrass case: binary diamonds
B=Z+Z"*(E+B+«B)x2" B'=1+8?

bn=6(n+1)! Z 1 N 6(n+1)!

pn+2 n+2 50 p"+2

kwy | lwy
(k,)ez? <1+ o T p>

Jacobi's case: ternary diamonds

T=Z%(E+T+xT*T)*x2" T'=1+T3
|
V2 n! 1 1 R 6\f(

t, = —
n pn+1 K peze (1 + Ck,l)n+1 (2 + Ck,l)n+1 n—00

with Gy = 3 + i¥3(k + 21)

1!

n+1
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More general cases

Asymptotics results
o Diamonds of fixed arity (G € Z[X] and deg(G) = m):

_2

f, = nl <(,772_(,7;)1_/%) ) rn(";l) p T 2 ( —|—0(n m41>)

m—1

e Plane general diamonds (G = Seq):

. nlpt=n Z Py (log |o% n) Lo ((|og|og,Z<)K)
n?y/2logn \ o 52 « (log n) (log n)
Sequence A032035 in OEIS which also enumerates increasing rooted

(2,3)-cacti with n — 1 nodes

10/13



Random Generation of the skeletons

Boltzmann method

e Straightforward use of standard techniques
[P. Duchon, P. Flajolet, G. Louchard & G. Schaeffer '04]

e a bit of tricks to draw an object from F from [ F”
[O. Bodini, O. Roussel & M. Soria '12] and [O. Bodini '10]

= Boltzmann generator using only uniform random variable to draw
object such that " = ¢(F)

D
.

Al

e < ) A et i G UDD

11/13



Random Generation of the increasing labellings

Vs

. N
AN /

YAVAN
N\
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Random Generation of the increasing labellings

diamond = increasing labelling

. = return (1)
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Random Generation of the increasing labellings

diamond = increasing labelling

o x :=draw_inc_[bl(B)

y :=draw_inc_ Ibl(B>)

t := shuffle(x,y) t] = |x| + |y|
o return (1, t+ 1,[t| + 1)
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Random Generation of the increasing labellings

diamond = increasing labelling

<
N

o x :=draw_inc_[bl(B)

y :=draw_inc_ Ibl(B>)

t := shuffle(x,y) t] = |x| + |y|
o return (1, t+ 1,[t| + 1)

5> -
/

VA VN
AVAA

Average complexity

e The average complexity of draw_inc_1bl in memory writings is

O(nv/n)

e The average number of random bits needed during the generation is

O(n*?log n)
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Current work

e study of the average of some parameters (width, depth, root's degree
...) of the increasingly labelled structures
e study of a bit more realistic model, from a concurrency point of view:

I ./ \.
. VRN SN SN
77 | N ! N
N
RN
N4
e more efficient algorithms for the random generation of increasing

labellings

Open question

e for the elliptic cases, how to do for showing the periodicity of the
solutions directly from the differential equation ?

e is this periodic behaviour still present for higher degree of polynomial ?
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