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Introduction

Motivations
‚ Combinatorial study of concurrents programs (seen as discrete

structures)
‚ Quantitative study of the combinatorial explosion phenomena: the

large number of possible runs (seen as increasing labellings)

Approach: Analytic Combinatorics
‚ symbolic method to modelize (Greene’s “box” operators)
‚ singularity analysis to obtain asymptotics of the number of increasing

labellings
‚ based on previous work on increasing trees of

[F. Bergeron, P. Flajolet and B. Salvy ’92]
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Combinatorial specifications

‚

‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚

‚ ‚

‚

‚

Skeleton

S “ Z ` Z ¨ G pSq ¨ Z

Increasing labellings

I “ Z ` Z˝ ‹ G pIq ‹ Z‚

Differential equation
$

&

%

I 2 “ G pI q
I p0q “ 0
I 1p0q “ 1
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Easy case: non-plane diamonds

We start with the differential equation: A2pzq “ eApzq

We can solve it: A1pzq “ tan z ` sec z

The poles are the p2k ` 1
2qπ

Using the residue theorem we get:

an “
2n`1 pn ´ 1q!

πn

`8
ÿ

j“´8

1
p1` 4jqn

.

panqně1 “ t1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, . . . u

Known in OEIS to count the number of number of increasing unary-binary
trees on n vertices.
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Bijection

Non-plane diamonds Increasing unary-binary trees

A “ Z ` Z˝ ‹ SetpAq ‹ Z‚ T “ Z ` Z˝ ‹ pT ` Set“2pT qq

N3pzq “ N 1pzq ¨ N2pzq T 2pzq “ p1` T pzqq ¨ T 1pzq

1

2

n

N 1
N2 “ eN

1

2

T 1 1` T

Thanks to A. Bacher, G. Collet and C. Mailler (and ALEA Network)
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Elliptic cases

Weierstrass’s case
F 2 “ PpF q where P is a polynomial of degree 2, then:

F pzq “ K℘pz ´ ρ;ω1, ω2q

with ρ “
ż 8

0

dt
b

1` 2
şt
0 Ppvqdv

and K a constant.

Weierstrass’s elliptic function
℘ is defined periodically over a lattice that contains one double pole in a
corner of each cell:

℘pz ;ω1, ω2q “
1
z2 `

ÿ

pk,lqPZ2ztp0,0qu

ˆ

1
pz ` kω1 ` lω2q2

´
1

pkω1 ` lω2q
2

˙
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Elliptic cases

Jacobi’s case
F 2 “ PpF q where P is a polynomial of degree 3, then

let g2 “
β ´ δ

α´ δ
¨
F ´

?
2 α

F ´
?
2 β

with α, β and δ well chosen then

g 1pzq “ M
a

p1´ z2qp1´ `2z2q and so

gpzq “ snpMz ; `q

Jacobi’s elliptic sinus function
sn is defined periodically over a lattice that contains two simple poles in
each cell and a zero in a corner.
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Elliptic cases: binary and ternary diamonds

Weierstrass case: binary diamonds

B “ Z ` Z˝ ‹ pE ` B ‹ Bq ‹ Z‚ B2 “ 1` B2

bn “ 6
pn ` 1q!
ρn`2

ÿ

pk,lqPZ2

1
´

1` kω1
ρ ` lω2

ρ

¯n`2 „
nÑ8

6
pn ` 1q!
ρn`2

Jacobi’s case: ternary diamonds

T “ Z˝ ‹ pE ` T ‹ T ‹ T q ‹ Z‚ T 2 “ 1` T 3

tn “
?
2 n!

ρn`1

ÿ

pk,lqPZ2

1
`

1` Ck,l
˘n`1 ´

1
`

2` Ck,l
˘n`1 „

nÑ8
6
?
2
pn ` 1q!
ρn`1

with Ck,l “
3k
2 ` i

?
3

2 pk ` 2lq
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More general cases

Asymptotics results
‚ Diamonds of fixed arity (G P ZrX s and degpG q “ m):

fn “ n!

˜

a

2pm ` 1q
pm ´ 1q

?
bm

¸
2

m´1 n´
m´3
m´1

Γp 2
m´1q

ρ´n´ 2
m´1

´

1`O
´

n´
4

m´1

¯¯

‚ Plane general diamonds (G “ Seq):

fn “
n!ρ1´n

n2
a

2 log n

˜

ÿ

0ďkăK

Pkplog log nq
plog nqk

`O
ˆ

plog log nqK

plog nqK

˙

¸

Sequence A032035 in OEIS which also enumerates increasing rooted
(2,3)-cacti with n ´ 1 nodes
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Random Generation of the skeletons

Boltzmann method
‚ Straightforward use of standard techniques

[P. Duchon, P. Flajolet, G. Louchard & G. Schaeffer ’04]
‚ a bit of tricks to draw an object from F from ΓF2

[O. Bodini, O. Roussel & M. Soria ’12] and [O. Bodini ’10]

ñ Boltzmann generator using only uniform random variable to draw
object such that F2 “ φpFq
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Random Generation of the increasing labellings

B “ • | B
•

•

•

•

B
•

•

Average complexity
‚ The average complexity of draw_inc_lbl in memory writings is
Opn

?
nq

‚ The average number of random bits needed during the generation is
Opn3{2 log nq
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Random Generation of the increasing labellings

diamond ñ increasing labelling

B1

•

•

•

•

B2

•

•

ñ

x :“ draw_inc_lblpB1q

y :“ draw_inc_lblpB2q

t :“ shufflepx, yq |t| “ |x| ` |y|
return p1, t` 1, |t| ` 1q
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Current work
‚ study of the average of some parameters (width, depth, root’s degree

...) of the increasingly labelled structures
‚ study of a bit more realistic model, from a concurrency point of view:

FJ “ • | FJ

•

•

•

| FJ

•

•

•

•

FJ

•

•

FJ

•

‚ more efficient algorithms for the random generation of increasing
labellings

Open question
‚ for the elliptic cases, how to do for showing the periodicity of the

solutions directly from the differential equation ?
‚ is this periodic behaviour still present for higher degree of polynomial ?
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