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Eulerian triangulations

The generating function

Let E s(y) be the generating function of simple Eulerian triangulations

E s(y) can be expressed as E s(y) = C (y)− C (y)2

where C (y) is the unique formal power series solution of the equation

C (y) = y
(1 + 2C (y))2

(1 + C (y)− C (y)2)3
.

the �rst terms of E s(y) are

E s(y) = y + y4 + 3y6 + 7y7 + 15y8 + 63y9 + O(y10)
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Corner triangulation

oriented simple Eulerian

triangulation

the only clockwise

triangles are the

boundaries of the white

inner faces.

Theorem (Eppstein and Mumford (2014))

A rooted planar map is the skeleton of some corner polyhedron if and only

if its dual map is a corner triangulation.



Enumeration of corner triangulations

Let E c(z) be the generating function of corner triangulations.

Theorem (D., Poulalhon, Schae�er (2015))

E c(z) satis�es the following equation :
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(
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2 We want an algebraic decomposition

3 We need more families of planar maps for intermediate

decompositions

4 They have some properties in common
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length `+ 3
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Gluing two almonds : no double edge



Almond triangulations

Let A(z) be the generating function of the almonds.

Theorem

A(z) is the unique formal power series solution of the equation :

A(z) = 1 + zA(z)2
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b to t, of length `



Slices

a b

t

A slice of height ` ≥ 1

a root edge (a, b)

an apex t

The boundary is divided into :

the root edge

a left boundary, shortest path from a to t

a right boundary, unique shortest path from

b to t, of length `



Slices

a b

t

A slice of height ` ≥ 1

a root edge (a, b)

an apex t

The boundary is divided into :

the root edge

a left boundary, shortest path from a to t

a right boundary, unique shortest path from

b to t, of length `



Slices

a b

t

A slice of height ` ≥ 1

a root edge (a, b)

an apex t

The boundary is divided into :

the root edge

a left boundary, shortest path from a to t

a right boundary, unique shortest path from

b to t, of length `



Slices

a b

t

A slice of height ` ≥ 1

a root edge (a, b)

an apex t

The boundary is divided into :

the root edge

a left boundary, shortest path from a to t

a right boundary, unique shortest path from

b to t, of length `



Slices

a b

t

A slice of height ` ≥ 1

a root edge (a, b)

an apex t

The boundary is divided into :

the root edge

a left boundary, shortest path from a to t

a right boundary, unique shortest path from

b to t, of length `



Cutting a slice

a b

u = q

t

`− 1

`+ 2

∈ A



Cutting a slice

a

u = q

t

`− 1

`+ 2

∈ A



Cutting a slice

a

u = q

t

∈ A



Cutting a slice

a

u = q

t

∈ A

a b

u
q r

t

∈ A

∈ A



Cutting a slice

a

u = q

t

∈ A

a b

u
q r

t

∈ A

∈ A



Cutting a slice

a

u = q

t

∈ A

a b

u
q r

t

∈ A

∈ A



Cutting a slice

a

u = q

t

∈ A

a b

u
q r

t

∈ A

∈ A



Slices or not slices

ba

t



Slices or not slices

ba

t



Slices

Let S(z) be the generating function of the slices.

Theorem

S(z) satis�es the following equation :

(1 + z)S(z) = zA(z) + z2A(z)2
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Slices of height at least 2

Let S+(z) be the generating function of the slices of height at least 2.

Theorem

S+(z) satis�es the following equation :

(1 + z)2S+(z) = z2A(z)2(1 + 2zA(z))
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A corner triangulation with a marked inner white triangle

The lift of c is its preimage under

Ψ : z → exp(2iπz).
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right

a right boundary, identical to the left boundary

an upper boundary of length 3, with vertices p, q, r , p′, towards the
left

and with no edges (b, c), (a, b′), (r , p), (p′, q).
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Let E c
M be the generating function of corner triangulations with a marked
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Theorem

The generating functions satisfy the following equation :

E c
M(z) = 3F (z)

Theorem

The generating functions satisfy the following equation :

(1 + z)2F (z) = zS+(z).
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Bijective proof

We conclude the bijective proof with the formula :

Formula

(1 + z)2
∂

∂z

E c(z)

z
= 3zS+(z).
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Merci pour votre attention !


