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Let them eat cake!

“S’ils n’ont pas de pain, qu’ils mangent de la brioche!”
–Marie Antoinette d’Autriche (1755–1793)



Pyramid partitions

Figure: Piles of 2 × 2 × 1 boxes, each viewed as a pair of dominoes in the 2D projection looking downwards. On the left, the empty

pyramid partition.



More pictures

Figure: Pyramid partitions in 2D, LEGO coloring.



LEGO

Figure: Pyramid partitions in 3D, natural light coloring.



Flips and the volume

I pyramid partition = what’s left after a finite number of box removals from the
empty configuration (introduced by Kenyon and Szendröi)

I removal = flip (adjacent vertical dominoes ↔ adjacent horizontal dominoes)

I Volume = Number of flips

Theorem (Young 2010)

∑
Λ

qVolume(Λ) =
∏
n≥1

(1 + q2n−1)2n−1

(1− q2n)2n
.

This is a consequence of RSK for supersymmetric Schur functions (BCC 2014).



How do large pyramid partitions look like?
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Partitions

Figure: Partition (2, 2, 2, 1, 1) in English, French and Russian notation, with associated Maya diagram (particle-hole representation).



Horizontal and vertical strips

Given partitions µ ⊆ λ, we can form skew diagram λ/µ, which we call a

I horizontal strip, and write µ ≺ λ if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 . . .

******** / ***** -----***

***** / *** ---**

*** / *** = ---

* / *

I vertical strip, and write µ ≺′ λ, if λ′ ≺ µ′ (′ = conjugate) or

λi − µi ∈ {0, 1}

******** / ******* -------*

***** / ***** -----

***** / **** ----*

***** / **** = ----*

* / * -

* / *

* / *



The Schur process

Let ω = (ω1, ω2, . . . , ωn) ∈ {≺,�,≺′,�′}n be a word. We say a sequence of partitions
Λ = (∅ = λ(0), λ(1), . . . , λ(n) = ∅) is ω-interlaced if λ(i − 1)ωi λ(i), for i = 1, . . . , n.
The Schur process of word ω with parameters Z = (z1, . . . , zn) is the measure on the set
of ω-interlaced sequences of partitions

Λ = (∅ = λ(0), λ(1), . . . , λ(n) = ∅)

given by

Prob(Λ) ∝
n∏

i=1

z
||λ(i)|−|λ(i−1)||
i .

Remark
For a more general definition, see the original work of Okounkov–Reshetikhin 2003, or
Borodin–Rains 2006.



The Schur process is a determinantal point process

Theorem (OR 2003; BR 2006)

Prob(λ(is) contains a particle at position ks , 1 ≤ s ≤ n) = det
1≤u,v≤n

K(iu , ku ; iv , kv )

where

K(i , k; i ′, k ′) =


[

zk

wk′

]
Φ(z;Z ,ω;i)

Φ(w ;Z ,ω;i′)

√
zw

z−w
, i ≤ i ′,

−
[

zk

wk′

]
Φ(z;Z ,ω;i′)
Φ(w ;Z ,ω;i)

√
zw

w−z
, i > i ′

with

Φ(z;Z , ω; i) =
∏

j : j≤i, ωj∈{≺,≺′}

εj=

{
1, ωj =≺′,
−1, ωj =≺ .

(1 + εjzjz)εj
∏

j : j>i, ωj∈{�,�′}

εj=

{
1, ωj =�′,
−1, ωj =� .

(
1 + εj

zj

z

)−εj
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Pyramid partitions as Schur processes, pictorially
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Figure: A pyramid partition of width 5 corresponding to the sequence

∅ ≺ (1) ≺′ (2) ≺ (2, 2) ≺′ (3, 3) ≺ (3, 3, 2) �′ (2, 2, 1) � (2, 1) �′ (1, 1) � (1) �′ ∅.



Pyramid partitions as Schur processes II

Let n = 2n0 be an even integer. A pyramid partition is (bijectively) a sequence of 2n + 1
partitions

Λ = (∅ = λ(−n) ≺ λ(−n+1) ≺′ λ(−n+2) ≺ · · · ≺′ λ(0) � λ(1) �′ λ(2) � · · · �′ λ(n) = ∅).

It is this a Schur process for the word ωpyr = (≺,≺′)n0 (�,�′)n0 and parameters
Z = (z−n, . . . , z−1, z1, . . . , zn).

Remark
For volume weighting, z−i = zi = qi−

1
2 , 1 ≤ i ≤ n.



YMP

Figure: Pyramid partitions in 2D (LEGO coloring), with partitions as Maya diagrams on left: empty process top and

· · · ≺′ 0 ≺ (3) ≺′ (4, 1, 1) � (2) �′ (1) � (1) �′ (1) � (1) �′ 0 � . . . process bottom.



A simple word on asymptotics

Everything we’d like to know about asymptotics of large pyramid partitions can be
translated into asymptotics of large particle–hole systems associated to the

corresponding Schur process.



How to compute the limit shape

Let t = 2t0 < n, k ∈ Z + 1
2

. A weak Wick lemma shows that:

Lemma (db–Boutillier–Vuletić 2015)

Prob(λ(−t) contains a particle at position k) =

=

[
zk

wk

]
J(z; t0)

J(w ; t0)

√
zw

z − w

=

∫ ∫
J(z; t0)

J(w ; t0)

1

zk−
1
2 w−k− 1

2

1

z − w

dz

2πiz

dw

2πiw

where (with (u; q)m =
∏m−1

i=0 (1− qiu))

J(z; t0) =
(−q2t0+ 1

2 z; q2)n0−t0 ( q
1
2

z
; q2)n0

(q2t0+ 3
2 z; q2)n0−t0 (− q

3
2

z
; q2)n0

.



Asymptotics regime

We let the size of the partition grow with q → 1 as ε→ 0 like so:

q(ε) = exp(−γε),
n(ε) = a/ε,

t(ε) = x/ε,

k(ε) = y/ε.



A few limit formulas

If q = exp(−r) and r → 0+, we have

log(z; q)∞ ∼ −
Li2(z)

r

and furthermore,

log(z; q) A
r
∼

1

r
(Li2(e−Az)− Li2(z))

where

Li2(z) =
∑
n≥1

z2

n2
, |z| < 1

with analytic continuation given by

Li2(z) = −
∫ z

0

log(1− u)

u
du, z ∈ C\[1,∞).



Asymptotics of the kernel

Lemma (db–Boutillier–Vuletić 2015)
In the limit (x is rescaled t, y is rescaled k, a is rescaled system size n), for t < 0

Prob(λ(t) contains a particle at position k) ∼
∫ ∫

e
1
ε

(S(z;x,y)−S(w ;x,y)) dT
z − w

where

S(z; x , y) =
1

2γ

(
Li2(−

z

A
)− Li2(−Xz) + Li2(

1

Az
)− Li2(

1

z
)+

+Li2(Xz)− Li2(
z

A
) + Li2(−

1

z
)− Li2(−

−1

Az
)

)
− y log z

and X = exp(γx),A = exp(γa).



The arctic curve

To compute the arctic curve, one solves for (x , y) (or X = exp(γx),Y = exp(2γy))
corresponding to double critial points of S(z; x , y). That is,

Theorem (db–Boutillier–Vuletić 2015)
The arctic curve is the locus (x , y) satisfying:

f (z;X ) = Y ,

f ′(z;X ) = 0

where f (z;X ) = (z+1)(z−A)(z−1/A)(z+1/X )
(z−1)(z+A)(z+1/A)(z−1/X )

.

Remark
Alternatively, it can be seen as given by the algebraic equation

∆ [(z + 1)(z − A)(z − 1/A)(z + 1/X )− Y (z − 1)(z + A)(z + 1/A)(z − 1/X )] = 0

where ∆ represents taking the discriminant.



The arctic curve, pictorially

Notice the cusps (which correspond to the double critical points of S at z = 0,∞).



Arctic curve in the infinite regime

What happens when a0 →∞, or equivalently, A→ 0?

The cusps move to ∞ and the arctic curve becomes

(1 + Z + W − ZW )(1 + Z −W + ZW )(1− Z + W + ZW )(1− Z −W − ZW ) = 0

where (Z ,W ) = (
√
X ,
√
Y ) which is the boundary of the amoeba of the (square lattice

determined) polynomial
P(Z ,W ) = 1 + Z + W − ZW .



Arctic curve in the infinite regime, pictorially
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A large sample in the infinite regime



A large sample in the infinite regime, particles and rotated



A word on what happens on the arctic curve: fluctuations

Everywhere but at the cusps and tangency points, fluctuations are of Airy type (cf., for
example, Okounkov–Reshetikhin 2006).

At the turning (tangency) points, one has the GUE minors processes.

At the cusps, one would conjecture and expect Pearcey process fluctuations. Alas, in the
absence of a triple critical point and due to additional constraints, one gets the cusp Airy
process of Okounkov–Reshetikhin (2006) and Duse–Johansson–Metcalfe (2015) with
kernel:

K(x , k; x ′, k ′) =

∫ ∫
wk′

zk
e

z3

3
+xz

e
w3

3
+x′w

1

z − w
dT

where x is the continuous time direction, and k the discrete space direction.
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How to sample pyramid partitions – RSK


G(q4) B(q3) G(q2) B(q)
B(q5) G(q4) B(q3) G(q2)
G(q6) B(q5) G(q4) B(q3)
B(q7) G(q6) B(q5) G(q4)

 7→ (P,Q)

where P,Q are supersymmetric semi-standard Young tableau of the same shape on
1 < 1′ < 2 < 2′ < . . . (in P non-primed integers come in horizontal strips, primed come
in vertical strips; in Q the other way around). (P,Q) is the required pyramid partition
(view both as sequences of partitions).

B(x) and G(x) stand for Bernoulli on {0, 1} and geometric (on N) random variables
where Prob(1) (resp. Prob(k)) is proportional to x (resp. xk ).

This bijection is what some people call supersymmetric RSK (PP 1996, K 2006, BCC
2014, db–BBCCV 2015).
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Other stuff: “skew pyramid partitions” (Cusp Airy in the middle)

Figure: Skew pyramid partitions of symmetric word (≺,≺′)100(�,�′)100(≺,≺′)100(�,�′)100 (compare skew plane partitions

OR 2006).



Other stuff: “skew pyramid partitions”, particles

Figure: Skew pyramid partitions of symmetric word (≺,≺′)100(�,�′)100(≺,≺′)100(�,�′)100.



Other stuff: REALLY “skew pyramid partitions”

Figure: Skew pyramid partitions of nonsymmetric word (≺≺′)40(��′)20(≺≺′)110(��′)40.



Other stuff: REALLY “skew pyramid partitions”, particles

Figure: Skew pyramid partitions of nonsymmetric word (≺≺′)40(��′)20(≺≺′)110(��′)40.



Other stuff: steep tilings, Ramassamy words

Figure: Skew pyramid partitions of word (≺ �′ � ≺′)100(≺ �′), a domino equivalent of BMRT 2012.



Other stuff: steep tilings, Ramassamy words

Figure: Skew pyramid partitions of word (≺ ≺′ � �′)100 (pairs of supersymmetric oscillating tableaux). Same behavior as above

(universality).



Other stuff: symmetric “pyramid partitions”



Symmetric “pyramid partitions” as plane overpartitions

This limit shape seems to be the same that Vuletić 2009 analyzed in the context of strict
plane partitions and Pfaffian processes.



Thank you!




