Ewens-like distributions and Analysis of Algorithms

Nicolas Auger, Mathilde Bouvel, Cyril Nicaud, Carine Pivoteau

March 9, 2016

Notion of presortedness

- In practice, data are often presorted.
 - No reasons to be uniformly distributed.
 - Few alterations in databases.
- First intuition in [Knuth73] and formalized in [Mannila86].

• In practice :

- Used in standard libraries
- Oracle's benchmarks, using spies
- TimSort

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- **③** If Y is a subsequence of X, then $m(Y) \leq m(X)$.
- **5** For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0 if X is sorted.$
- **③** If Y is a subsequence of X, then $m(Y) \leq m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0 if X is sorted.$
- **③** If Y is a subsequence of X, then $m(Y) \leq m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- 2 If $n = \ell$ and $x_i < x_i \iff y_i < y_j$, then m(X) = m(Y).
- **3** If Y is a subsequence of X, then $m(Y) \leq m(X)$.
- **5** For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- **1** If Y is a subsequence of X, then $m(Y) \leq m(X)$.
- **5** For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- **1** If Y is a subsequence of X, then $m(Y) \leq m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- **③** If Y is a subsequence of X, then $m(Y) \leq m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- **③** If Y is a subsequence of X, then $m(Y) \leq m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Definition

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences; m is a **measure of presortedness** iff

- $\mathbf{0} m(X) = 0$ if X is sorted.
- 2 If $n = \ell$ and $x_i < x_i \iff y_i < y_j$, then m(X) = m(Y).
- **3** If Y is a subsequence of X, then $m(Y) \leq m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Adaptiveness of sorting algorithms

Theorem

Let X be a sequence s.t. m(X) = k. Any algorithm uses at least C(n, k) comparisons to sort X, with $C(n, k) \in \Theta(n + \log(\|below_m(n, k)\|)$ and $below_m(n, k) = \{\sigma \in \mathfrak{S}_n : m(\sigma) \leq k\}$.

Definition

A sorting algorithm is **m-optimal** if it reaches this bound.

- Natural Merge Sort [Knuth73]
- $\mathcal{O}(n \log r)$, where r is the number of runs
- Runs-optimal

Records as a measure of presortedness

Let $X = (x_1, ..., x_n)$ be a sequence; x_i is a **record** iff $x_j < x_i$ whenever j < i.

Lemma

For any sequence X of size n, $m_{rec}(X) = n - \operatorname{record}(X)$ is a measure of presortedness.

Example : For X = 32418567, record(X) = 3 and $m_{rec}(X) = 5$.

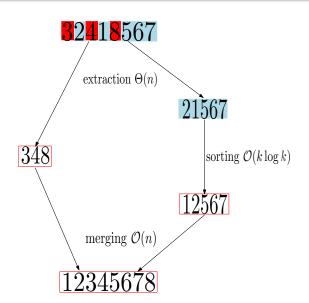
Proof.

If Y is a subsequence of X, then $m_{rec}(Y) \leq m_{rec}(X)$. Two cases :

- Remove a non-record (if we remove 2, Y = 3418567, rec(Y) = 3 and $m_{rec} = 4$).
- Remove a record (if we remove 8, Y = 3241567, rec(Y) = 5 and $m_{rec}(Y) = 2$).

The other properties are trivial.

A m_{rec} -optimal sorting algorithm



 $||below_{m_{rec}}(n,k)|| \geq k!$

Overall complexity $\mathcal{O}(n + k \log k)$

Analysis of algorithms on average

Under the uniform distribution, for most measures m:

- $\|below_m(n, \mathbb{E}[m])\| = \Theta(n!)$.
- $\mathcal{O}(n \log n)$ in average.

Questions

- How to define a probabilistic framework well-suited for presortedness measures?
- Analysis of algorithms ?

The classical Ewens distribution

Any permutation can be seen as a composition of cycles.

Example: 145263 is composed of 3 cycles: (1), (563) and (42).

We denote $cycle(\sigma)$ the number of cycles of σ .

Definition (Ewens distribution)

[Ewens72]

- To any $\sigma \in \mathfrak{S}_n$, we associate a weight $w(\sigma) = \theta^{\operatorname{cycle}(\sigma)}$, where θ is an arbitrary positive real number.
- Total weight : $\sum_{\sigma \in \mathfrak{S}_n} \mathsf{w}(\sigma) = \theta^{(n)}$.
- $\mathbb{P}(\sigma) = \frac{\theta^{\operatorname{cycle}(\sigma)}}{\theta^{(n)}}$.

Notation : $\theta^{(n)} = \theta(\theta+1) \dots (\theta+n-1)$

Generalizing the distribution

Definition (Ewens-like distribution)

- Let χ be any statistic on $\sigma \in \mathfrak{S}_n$.
- To any $\sigma \in \mathfrak{S}_n$, we associate a weight $w(\sigma) = \theta^{\chi(\sigma)}$.
- Let $W_n = \sum_{\sigma \in \mathfrak{S}_n} w(\sigma)$ and $\mathbb{P}(\sigma) = \frac{w(\sigma)}{W_n}$.

Generalizing the distribution

Definition (Ewens-like distribution)

- Let χ be any statistic on $\sigma \in \mathfrak{S}_n$.
- To any $\sigma \in \mathfrak{S}_n$, we associate a weight $w(\sigma) = \theta^{\chi(\sigma)}$.
- Let $W_n = \sum_{\sigma \in \mathfrak{S}_n} w(\sigma)$ and $\mathbb{P}(\sigma) = \frac{w(\sigma)}{W_n}$.

Analytic combinatorics

Let $F(z, u) = \sum f_{n,k} z^n u^k$, where $f_{n,k} = \|\{\sigma \in \mathfrak{S}_n : \chi(\sigma) = k\}\|$.

$$W_n = n![z^n]F(z,\theta)$$
 and $\mathbb{E}_n[\chi] = \frac{\theta[z^n] \frac{\mathrm{d}F(z,u)}{\mathrm{d}u}\Big|_{u=\theta}}{[z^n]F(z,\theta)}$

But difficult when θ depends on n.

Ewens-like distributions for records

Recall

For any sequence X of size n, $m_{rec}(X) = n - \operatorname{record}(X)$ is a measure of presortedness.

Definition (Ewens-like distribution for records)

- To any $\sigma \in \mathfrak{S}_n$, we associate a weight $w(\sigma) = \theta^{\mathsf{record}(\sigma)}$.
- Let $W_n = \sum_{\sigma \in \mathfrak{S}_n} \mathsf{w}(\sigma) = \theta^{(n)}$ and $\mathbb{P}(\sigma) = \frac{\theta^{\mathsf{record}(\sigma)}}{\theta^{(n)}}$.

In the following, we focus on this distribution.

Linear random samplers

$$\theta = \frac{\theta}{2} = \frac{\theta}{1} = \frac{\theta}{2} = \frac{\theta}{3} =$$

- $\mathcal{O}(n)$, following one path in the tree.
- Keep σ and σ^{-1} .
- Choosing a position in a cycle in $\mathcal{O}(1)$.
- Insertion in $\mathcal{O}(1)$.

Sampler for records in $\mathcal{O}(n)$:

- Fundamental bijection : $145263 \rightarrow (1)(635)(42) \rightarrow 142635$.
- Records are already sorted and we read σ^{-1} in reverse order.

Asymptotic equivalents

Results									
	$\theta = 1$	fixed $\theta > 0$	$\theta:=n^{\epsilon}$,	$\theta := \lambda n$,	$\theta := n^\delta$				
	(uniform)		$0<\epsilon<1$	$\lambda > 0$	$\delta > 1$				
$\mathbb{E}_n[\text{record}]$	log n	$\theta \cdot \log n$	$(1-\epsilon)\cdot n^\epsilon \log n$	$\lambda \log(1+1/\lambda) \cdot n$	n				
$\mathbb{E}_n[desc]$	n/2	n/2	n/2	$n/2(\lambda+1)$	$n^{2-\delta}/2$				
$\mathbb{E}_n[\sigma(1)]$	n/2	$n/(\theta+1)$	$n^{1-\epsilon}$	$(\lambda+1)/\lambda$	1				
$\mathbb{E}_n[inv]$	$n^2/4$	$n^2/4$	$n^2/4$	$n^2/4 \cdot f(\lambda)$	$n^{3-\delta}/6$				

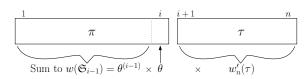
With $f(\lambda) = 1 - 2\lambda + 2\lambda^2 \log(1 + 1/\lambda)$.

Asymptotic equivalents

Results									
	$\theta = 1$	fixed $\theta > 0$	$\theta:=n^{\epsilon},$	$\theta := \lambda n$,	$\theta := n^{\delta}$				
	(uniform)		$0<\epsilon<1$	$\lambda > 0$	$\delta > 1$				
$\mathbb{E}_n[record]$	log n	$\theta \cdot \log n$	$(1-\epsilon)\cdot n^\epsilon\log n$	$\lambda \log(1+1/\lambda) \cdot n$	n				
$\mathbb{E}_n[desc]$	n/2	n/2	n/2	$n/2(\lambda+1)$	$n^{2-\delta}/2$				
$\mathbb{E}_n[\sigma(1)]$	n/2	$n/(\theta+1)$	$n^{1-\epsilon}$	$(\lambda + 1)/\lambda$	1				
$\mathbb{E}_n[inv]$	$n^2/4$	$n^2/4$	$n^2/4$	$n^2/4 \cdot f(\lambda)$	$n^{3-\delta}/6$				

With
$$f(\lambda) = 1 - 2\lambda + 2\lambda^2 \log(1 + 1/\lambda)$$
.

$$\mathbb{P}_n(\text{Record at position } i) = \frac{\theta^{(i-1)}\theta}{\theta^{(i)}} = \frac{\theta}{\theta+i-1}$$



• Adapts to the number of inversions.

With $f(\lambda) = 1 - 2\lambda + 2\lambda^2 \log(1 + 1/\lambda)$.

• Sorts a sequence X in $\Theta(Inv(X))$ comparisons.

Unless $\theta \gg n$, InsertSort remains in $\Theta(n^2)$ on average.

Introduction to min/max search

NAIVEMINMAX(T, n)

$$min \leftarrow T[1]$$
 $max \leftarrow T[1]$
for $i \leftarrow 2$ to n do

if $T[i] < min$ do

 $min \leftarrow T[i]$
if $T[i] > max$ do

 $max \leftarrow T[i]$

return min, max

2n comparisons

$$3/2$$
-MINMAX (T, n)

```
\begin{array}{c} \hline \textit{min, max} \leftarrow \textit{T}[n], \textit{T}[n] \\ \textbf{for} \quad \textit{i} \leftarrow \textit{2} \; \textbf{to} \; \textit{n} \; \textbf{by} \; \textbf{2} \; \textbf{do} \\ & | \quad \textbf{if} \quad \textit{T}[i-1] < \textit{T}[i] \; \textbf{do} \\ & | \quad \textit{pMin, pMax} \leftarrow \textit{T}[i-1], \textit{T}[i] \\ & \quad \textbf{else} \\ & | \quad \textit{pMin, pMax} \leftarrow \textit{T}[i], \textit{T}[i-1] \\ & \quad \textbf{if} \quad \textit{pMin} < \textit{min} \; \textbf{do} \; \textit{min} \leftarrow \textit{pMin} \\ & \quad \textbf{if} \quad \textit{pMax} > \textit{max} \; \textbf{do} \; \textit{max} \leftarrow \textit{pMax} \\ & \quad \textbf{return} \; \textit{min, max} \\ \end{array}
```

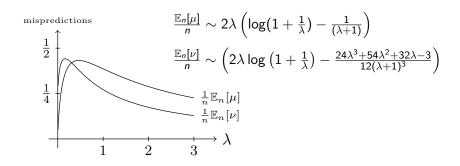
3n/2 comparisons

In practice, NAIVEMINMAX is faster than 3/2-MINMAX, when the data are uniformly distributed in [0,1].

Average analysis of the number of mispredictions

When $\theta = \lambda n$ for some real λ and for a 1-bit predictor, we have :

- μ number of mispredictions of NAIVEMINMAX.
- ν number of misprediction of 3/2-MINMAX.



Discussion

Questions

What's next?

- Ewens-like distribution for other statistics that take part in (sorting) algorithms.
- For example, the runs for the analysis of TimSort.
- Explain the asymptotic shape of the diagrams below.

