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Quantum tori
Let θ ∈ R. Let U and V be two unitary operators on a Hilbert
space H satisfying the following commutation relation:

UV = e2πiθVU.

Example. H = L2(T) with T the unit circle; U and V are given:

Uf (z) = zf (z) and Vf (z) = f (e−2πiθz), f ∈ L2(T), z ∈ T.

Let Aθ be the universal C*-subalgebra generated by U and V .
This is the quantum (or noncommutative) 2-torus associated to
θ. If θ is irrational, Aθ is an irrational rotation C*-algebra. These
algebras are fundamental examples in operator algebra theory
and noncommutative geometry.

Objective: The algebraic and geometric structures of these
objects have been well understood. Our objective is to study
their analytic aspect in view to applications to noncom
geometry and PDE.
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More generally, let d ≥ 2 and θ = (θkj) be a d × d real
skew-symmetric matrix, i.e., θt = −θ. Let U1, · · · ,Ud be d
unitary operators on H satisfying

UkUj = e2πiθkj UjUk , j , k = 1, · · · ,d .

Let Aθ be the universal C*-algebra generated by U1, · · · ,Ud .
This is the noncommutative d-torus associated to θ.
In this talk, Aθ and U = (U1, · · · ,Ud ) will be fixed as above.

Notation. Elements of Zd are denoted by m = (m1, · · · ,md ).
We denote the usual d-torus by

Td =
{

(z1, . . . , zd ) : |zj | = 1, zj ∈ C
}
,

equipped with normalized Haar measure. For m ∈ Zd and
z = (z1, . . . , zd ) ∈ Td let

zm = zm1
1 · · · z

md
d and Um = Um1

1 · · ·U
md
d .
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Trace and noncommutative Lp-spaces
A polynomial in U = (U1, · · · ,Ud ) is a finite sum

x =
∑

m∈Zd

αmUm ∈ Aθ with αm ∈ C.

Let Pθ denote the subalgebra of polynomials. The functional τ
on Pθ defined by x 7→ α0 extends to a faithful tracial state on
Aθ.

Let Td
θ be the w*-closure of Aθ in the GNS representation of τ .

Then τ becomes a normal faithful tracial state on Td
θ . Thus

(Td
θ , τ) is a tracial noncommutative probability space.

Noncommutative Lp. For 1 ≤ p <∞ and x ∈ Td
θ let

‖x‖p =
(
τ(|x |p)

) 1
p with |x | = (x∗x)

1
2 .

This is a norm on Td
θ . The corresponding completion is denoted

by Lp(Td
θ ), the noncommutative Lp-space associated to (Td

θ , τ).
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Fourier coefficients

The trace τ extends to a contractive functional on L1(Td
θ ). Thus

for any x ∈ Lp(Td
θ ) we can define

x̂(m) = τ((Um)∗x) = αm, m ∈ Zd .

These are the Fourier coefficients of x . Like in the classical
case we write formally:

x ∼
∑

m∈Zd

x̂(m)Um.

x is uniquely determined by its Fourier series.

In a previous work joint with Zeqian Chen and Zhi Yin, we have
studied Fourier analysis on Td

θ . We now consider function
spaces. In this talk, we will discuss only Sobolev and Besov
spaces.



Distributions

Let
S(Td

θ ) =
{∑

m

αmUm : αm rapidly decreasing
}
.

This is the Schwartz class of Td
θ .

Define the following partial derivations on S(Td
θ ):

∂j(Uj) = 2πiUj , and ∂k (Uj) = 0, for k 6= j .

More generally, for m = (m1, · · · ,md ) ∈ Nd
0 , let

Dmx =
∏

1≤j≤d

∂
mj
j x ; order of Dm is |m|1 = m1 + · · ·+ md .

S(Td
θ ) carries a natural locally convex space topology. The

resulting dual space S ′(Td
θ ) is the space of distributions on Td

θ .
As in the classical case, the derivations and Fourier transform
extend to distributions too.
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Sobolev spaces
Definition. Let 1 ≤ p ≤ ∞, k ∈ N and α ∈ R.

I The Sobolev space W k
p (Td

θ ) is

W k
p (Td

θ ) =
{

x ∈ S ′(Td
θ ) : Dmx ∈ Lp(Td

θ ), ∀m ∈ Nd
0 , |m|1 ≤ k

}
equipped with the norm

‖x‖W k
p

=
( ∑

0≤|m|1≤k

‖Dmx‖pp
) 1

p .

I The potential Sobolev space Hα
p (Td

θ ) is

Hα
p (Td

θ ) =
{

x ∈ S ′(Td
θ ) : ‖(I + ∆)

α
2 x‖p <∞

}
equipped with the norm

‖x‖Hαp = ‖(I + ∆)
α
2 x‖p.

Here ∆ = −
∑

1≤j≤d ∂
2
j , the Laplacian.



Besov spaces
Let ϕ ∈ C∞(Rd ) be a nonnegative function such that

suppϕ = {ξ ∈ Rd : 2−1 ≤ |ξ| ≤ 2},
∑
k∈Z

ϕ(2−kξ) = 1, ξ 6= 0.

Define ϕk by: ϕ̂k (ξ) = ϕ(2−kξ), k ≥ 0. For x ∈ S ′(Td
θ ) define

ϕk ∗ x =
∑

m∈Zd

ϕ̂k (m)x̂(m)Um.

Definition. Let 1 ≤ p,q ≤ ∞, α ∈ R. The Besov space on Td
θ is

defined by

Bα
p,q(Td

θ ) =
{

x ∈ S ′(Td
θ ) : ‖x‖Bαp,q <∞

}
,

where

‖x‖Bαp,q =
(
|x̂(0)|q +

∑
k≥0

2qkα‖ϕk ∗ x‖qp
) 1

q
.



Properties
The previous spaces share many properties with their classical
counterparts. Below is a short list of examples:

I W k
p (Td

θ ) = Hk
p (Td

θ ) for 1 < p <∞.
I Poincaré inequality: ‖x − x̂(0)‖p . ‖x‖W 1

p
, 1 ≤ p ≤ ∞.

I Bα
p,min(2,p)(T

d
θ ) ⊂ Hα

p (Td
θ ) ⊂ Bα

p,max(2,p)(T
d
θ ).

I Embedding:
• W k

p (Td
θ ) ⊂W k1

p1 (Td
θ ) for

k , k1 ∈ N,1 < p ≤ p1 <∞, k − d
p = k1 − d

p1
;

• Bαp,q(Td
θ ) ⊂ Bα1

p1,q1 (Td
θ ) for

α, α1 ∈ R,1 ≤ p ≤ p1 <∞,1 ≤ q ≤ q1 <∞, α− d
p = α1− d

p1
.

A word on proof. Our proof of the embedding inequalities is
based on Varopolous’ famous semigroup approach which has
been transferred to the noncommutative case by Marius Junge
and Tao Mei in their study of Riesz transform on quantum
Markovian semigroups.
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Characterization by Poisson semigroup
Given a distribution x on Td

θ and k ∈ Z, let

Pr (x) =
∑

m∈Zd

x̂(m)r |m|Um , circular Poisson integral of x ,

and

J k
r Pr (x) =

∑
m∈Zd

Cm,k x̂(m)r |m|−kUm, 0 ≤ r < 1 ,

where | · | denotes the Euclidean norm of Rd and

Cm,k =


|m| · · · (|m| − k + 1) if k ≥ 0,

1
(|m|+ 1) · · · (|m| − k)

if k < 0.

Remark. J k
r is the k th derivation operator relative to r if k ≥ 0,

and the (−k)th integration operator if k < 0.



Theorem. Let 1 ≤ p,q ≤ ∞ and α ∈ R, k ∈ Z with k > α. Then
x ∈ Bα

p,q(Td
θ ) iff

(
max
|m|<k

|x̂(m)|q +

∫ 1

0
(1− r)(k−α)q

∥∥J k
r Pr (xk )

∥∥q
p

dr
1− r

) 1
q
<∞.

where xk = x −
∑
|m|<k x̂(m)Um.

Remark. 1) The use of the integration operator (corresponding
to negative k ) in the above statement is completely new even in
the case θ = 0 (the commutative case).
2) A similar result holds for Triebel-Lizorkin spaces too. For the
latter spaces, another improvement of our characterization over
the classical one lies on the assumption on k :

I k > d + max(α,0) in the classical case;
I k > α in our case.
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Characterization by differences

Difference operator: ∆ux = πz(x)− x associated to u ∈ Rd ,
where z = (e2πiu1 , · · · ,e2πiud ) and πz is the automorphism of
Td
θ determined by Uj 7→ zjUj for 1 ≤ j ≤ d . For k ∈ N, ∆k

u is the
k th difference operator associated to u.

k th Modulus of Lp-smoothness: ωk
p (x , ε) = sup0<|u|≤ε

∥∥∆k
ux
∥∥

p

for x ∈ Lp((Td
θ ).

Theorem. Let 1 ≤ p,q ≤ ∞, α ∈ R, k ∈ N,0 < α < k . Then

x ∈ Bα
p,q(Td

θ )⇔ ‖x‖Bα,ωp,q
=
(∫ 1

0
ε−αqωk

p (x , ε)q dε
ε

) 1
q
<∞ .

Corollary. For α > 0, Bα
∞,∞(Td

θ ) is the quantum analogue of
the classical Hölder class.
The case 0 < α < 1 was already studied by Weaver (1998).
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A quantum analogue of Bourgain-Brézis-Mironescu

Another consequence of the previous characterization by
differences is the following:

Theorem. Let 1 ≤ p ≤ ∞, 1 ≤ q <∞, k ∈ N,0 < α < k . Then

lim
α→k

(k − α)
1
q ‖x‖Bα,ωp,q

≈ q−
1
q

∑
m∈Nd

0 , |m|1=k

‖Dmx‖p ,

lim
α→0

α
1
q ‖x‖Bα,ωp,q

≈ q−
1
q ‖x‖p .

Remark. In the commutative case (and for k = 1), the first
equivalence is due to Bourgain-Brézis-Mironescu ( 2002), and
the second due to Maz’ya-Shaposhnikova (2002).



Interpolation

Theorem. The K-functional of the couple (Lp(Td
θ ),W k

p (Td
θ )) is

given by:

K (x , εk ; Lp(Td
θ ),W k

p (Td
θ )) ≈ εk |x̂(0)|+ ωk

p (x , ε), 0 < ε ≤ 1.

Remark. This is the extension to Td
θ of Johnen-Scherer’s

classical theorem.

Corollary. Suppose 1 ≤ p,q ≤ ∞ and k ∈ N. Then(
Lp(Td

θ ),W k
p (Td

θ )
)
η,q = Bkη

p,q(Td
θ ), 0 < η < 1.

Remark. Several problems remain open for the interpolation of
quantum Sobolev spaces.


