Operator-valued local Hardy spaces

Runlian XIA

Université de Franche-Comté, Besançon

(Great thanks to : Q. Xu)

GDR AFHP-CIRM, December 2015

Background

• **Motivation**: Pseudo-differential operators are not bounded on Hardy space $H_1(\mathbb{R}^d)$. So we want to introduce a larger space on which pseudo-differential operators are bounded.

Let Γ be the truncated cone $\left\{(t,arepsilon)\in\mathbb{R}_+^{d+1}:|t|<arepsilon<1
ight\}$, define

$$s(f)(s) = \left(\int_{\Gamma} |\nabla P_{\varepsilon} * f(s+t,\varepsilon)|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}}\right)^{\frac{1}{2}}$$
$$g(f)(s) = \left(\int_{0}^{1} \varepsilon |\nabla P_{\varepsilon} * f(s,\varepsilon)|^{2} d\varepsilon\right)^{\frac{1}{2}},$$

where P_{ε} is the Poisson kernel on the strip $\{(s,\varepsilon):s\in\mathbb{R}^d,\varepsilon\in(0,1)\}.$

• D. Goldberg (1979): If p > (n-1)/n then $f \in h_p$ if only if $s(f) \in L_p$.

And if $\psi \in \mathcal{S}$ with $\int \psi \neq 0$, then the L_p -norms of the following functions are equivalent: s(f), g(f), $\sup_{(t,\varepsilon)\in\Gamma(s)} |\psi_{\varepsilon}*f(t)|$ and $\sup_{0 \le s \le 1} |\psi_{\varepsilon}*f(s)|$.

Preliminaries

Move to the noncommutative setting:

- Motivated by Goldberg, we want to define the operator-valued local Hardy spaces, and also get the boundedness of Pseudo-differential operators on them.
- Let $\mathcal M$ be a von Neumann algebra equipped with a normal semifinite faithful trace τ .

For $1 \leq p \leq \infty$, let $L_p(\mathcal{M})$ be the noncommutative L_p -space associated to (\mathcal{M}, τ) . The norm of $L_p(\mathcal{M})$, $1 \leq p < \infty$ is given by

$$||x||_p = \tau(|x|^p)^{\frac{1}{p}}$$
 with $|x| = (x^*x)^{1/2}$.

Set $L_{\infty}(\mathcal{M}) = \mathcal{M}$.

Lusin area square function and Littlewood-Paley g-function

Operator-valued Hardy spaces

$$S^{c}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f)(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$S^{r}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f^{*})(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$\left(\Gamma = \left\{ (t,\varepsilon) \in \mathbb{R}_{+}^{d+1} : |t| < \varepsilon \right\} \right)$$

Operator-valued local Hardy spaces

$$s^{c}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f)(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$s^{r}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f^{*})(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$\left(\Gamma = \left\{ (t, \varepsilon) \in \mathbb{R}^{d+1}_{+} : |t| < \varepsilon < 1 \right\} \right)$$

Lusin area square function and Littlewood-Paley g-function

Operator-valued Hardy spaces

$$S^{c}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f)(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$S^{r}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f^{*})(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$\left(\Gamma = \left\{ (t,\varepsilon) \in \mathbb{R}^{d+1}_{+} : |t| < \varepsilon \right\} \right)$$

$$G^{c}(f)(s) = \left(\int_{0}^{\infty} \varepsilon \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f)(s) \right|^{2} d\varepsilon \right)^{\frac{1}{2}}$$

$$G^{r}(f)(s) = \left(\int_{0}^{\infty} \varepsilon \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f^{*})(s) \right|^{2} d\varepsilon \right)^{\frac{1}{2}}$$

Operator-valued local Hardy spaces

$$s^{c}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f)(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$s^{r}(f)(s) = \left(\int_{\Gamma} \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f^{*})(s+t) \right|^{2} \frac{dt d\varepsilon}{\varepsilon^{d-1}} \right)^{\frac{1}{2}}$$

$$\left(\Gamma = \left\{ (t,\varepsilon) \in \mathbb{R}^{d+1}_{+} : |t| < \varepsilon < 1 \right\} \right)$$

$$g^{c}(f)(s) = \left(\int_{0}^{1} \varepsilon \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f)(s) \right|^{2} d\varepsilon \right)^{\frac{1}{2}}$$

$$g^{r}(f)(s) = \left(\int_{0}^{1} \varepsilon \left| \frac{\partial}{\partial \varepsilon} P_{\varepsilon}(f^{*})(s) \right|^{2} d\varepsilon \right)^{\frac{1}{2}}$$

where $P_{\varepsilon}(f)$ denotes $P_{\varepsilon} * f$.

Operator-valued local Hardy spaces

For any
$$f \in L_1\left(\mathcal{M}; L_c^2\left(\mathbb{R}^d, \frac{dt}{1+|t|^{d+1}}\right)\right) + L_\infty\left(\mathcal{M}; L_c^2\left(\mathbb{R}^d, \frac{dt}{1+|t|^{d+1}}\right)\right)$$
, let $\varphi \in \mathcal{S}$ with $\int \varphi = 1(\widehat{\varphi}(0) = 1)$, and $1 \le p < \infty$, we define

$$\|f\|_{h_{p}^{c}\left(\mathbb{R}^{d};\mathcal{M}\right)}=\|s^{c}\left(f\right)\|_{L_{p}\left(L_{\infty}\left(\mathbb{R}^{d}\right)\overline{\otimes}\mathcal{M}\right)}+\|\varphi\ast f\|_{L_{p}\left(L_{\infty}\left(\mathbb{R}^{d}\right)\overline{\otimes}\mathcal{M}\right)},$$

the column local Hardy spaces are defined by

$$h_p^c\left(\mathbb{R}^d;\mathcal{M}\right) = \left\{f: \|f\|_{h_p^c} < \infty\right\},$$

and the row local Hardy spaces are defined by

$$h_p^r\left(\mathbb{R}^d;\mathcal{M}\right)=\left\{f:\|f^*\|_{h_p^c}<\infty\right\},$$

equipped with the norm $\|f\|_{h^r_p} = \|f^*\|_{h^c_p}$.

$$h_{p}\left(\mathbb{R}^{d};\mathcal{M}\right) = h_{p}^{c}\left(\mathbb{R}^{d};\mathcal{M}\right) + h_{p}^{r}\left(\mathbb{R}^{d};\mathcal{M}\right) \text{ for } 1 \leq p \leq 2,$$

$$h_{p}\left(\mathbb{R}^{d};\mathcal{M}\right) = h_{p}^{c}\left(\mathbb{R}^{d};\mathcal{M}\right) \cap h_{p}^{r}\left(\mathbb{R}^{d};\mathcal{M}\right) \text{ for } 2$$

Lemma

Let
$$\varphi \in \mathcal{S}$$
, $\int \varphi = 1$, then, for $1 \leq p < \infty$,
$$\|f - \varphi * f\|_{h_p^c\left(\mathbb{R}^d;\mathcal{M}\right)} \approx \|f - \varphi * f\|_{H_p^c\left(\mathbb{R}^d;\mathcal{M}\right)}.$$

The Fourier transform of $f - \varphi * f$ vanishes in a neighborhood of the origin.

the case when 1

Theorem

For 1 , we have the equivalence

$$h_{p}^{c}\left(\mathbb{R}^{d};\mathcal{M}\right) \approx H_{p}^{c}\left(\mathbb{R}^{d};\mathcal{M}\right),$$

 $h_{p}^{r}\left(\mathbb{R}^{d};\mathcal{M}\right) \approx H_{p}^{r}\left(\mathbb{R}^{d};\mathcal{M}\right).$

Theorem (Mei(2005))

Let 1 , then with equivalent norms

$$H_p\left(\mathbb{R}^d;\mathcal{M}\right)=L_p\left(L_\infty\left(\mathbb{R}^d\right)\overline{\otimes}\mathcal{M}\right).$$

Corollary

Let 1 , then with equivalent norms

$$h_{\mathcal{D}}\left(\mathbb{R}^d;\mathcal{M}\right) = L_{\mathcal{D}}\left(L_{\infty}\left(\mathbb{R}^d\right)\overline{\otimes}\mathcal{M}\right).$$

Operator-valued local Hardy spaces

Operator-valued bmo spaces

Let $\varphi \in L^{\infty}\left(\mathcal{M}; L_{c}^{2}\left(\mathbb{R}^{d}, \frac{dt}{1+|t|^{d+1}}\right)\right)$, the mean value of φ over cube Q is denoted by $\varphi_{Q} := \frac{1}{|Q|} \int_{Q} \varphi\left(s\right) ds$. Set

$$\begin{split} \|\varphi\|_{bmo^c} &= \max \left\{ \sup_{|Q| < 1} \left\| \left(\frac{1}{|Q|} \int_{Q} |\varphi - \varphi_Q|^2 \, d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{M}}, \right. \\ &\left. \sup_{|Q| > 1} \left\| \left(\frac{1}{|Q|} \int_{Q} |\varphi|^2 \, d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{M}} \right\}. \end{split}$$

Operator-valued bmo spaces

Let $\varphi \in L^{\infty}\left(\mathcal{M}; L_c^2\left(\mathbb{R}^d, \frac{dt}{1+|t|^{d+1}}\right)\right)$, the mean value of φ over cube Q is denoted by $\varphi_Q:=\frac{1}{|Q|}\int_Q \varphi\left(s\right)ds$. Set

$$\begin{split} \|\varphi\|_{bmo^c} &= \max \left\{ \sup_{|Q| < 1} \left\| \left(\frac{1}{|Q|} \int_Q |\varphi - \varphi_Q|^2 \, d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{M}}, \right. \\ & \sup_{|Q| > 1} \left\| \left(\frac{1}{|Q|} \int_Q |\varphi|^2 \, d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{M}} \right\}. \end{split}$$

Set $bmo^c\left(\mathbb{R}^d;\mathcal{M}\right)$ be the space of all $\varphi\in L^\infty\left(\mathcal{M};L^2_c\left(\mathbb{R}^d,\frac{dt}{1+|t|^{d+1}}\right)\right)$ such that $\|\varphi\|_{bmo^c}<\infty$. $bmo^r\left(\mathbb{R}^d;\mathcal{M}\right)$ be the space of all $\varphi\in L^\infty\left(\mathcal{M};L^2_c\left(\mathbb{R}^d,\frac{dt}{1+|t|^{d+1}}\right)\right)$ such that $\|\varphi^*\|_{bmo^c}<\infty$.

$$\textit{bmo}\left(\mathbb{R}^{\textit{d}};\mathcal{M}\right) = \textit{bmo}^{\textit{c}}\left(\mathbb{R}^{\textit{d}};\mathcal{M}\right) \cap \textit{bmo}^{\textit{r}}\left(\mathbb{R}^{\textit{d}};\mathcal{M}\right).$$

The duality between h_1 and bmo

It is easy to see from the definitions of $h_1^c\left(\mathbb{R}^d;\mathcal{M}\right)$ and $bmo^c\left(\mathbb{R}^d;\mathcal{M}\right)$, that

$$H_1^c\left(\mathbb{R}^d;\mathcal{M}\right)\subset h_1^c\left(\mathbb{R}^d;\mathcal{M}\right),$$
 $BMO^c\left(\mathbb{R}^d;\mathcal{M}\right)\supset bmo^c\left(\mathbb{R}^d;\mathcal{M}\right).$

And by following the steps in Mei's paper, similarly, we can also prove the duality in the local case that

$$\left(\mathit{h}_{1}^{\mathit{c}}\left(\mathbb{R}^{\mathit{d}};\mathcal{M}\right)\right)^{*}=\mathit{bmo}^{\mathit{c}}\left(\mathbb{R}^{\mathit{d}};\mathcal{M}\right).$$

Replacing the poisson kernel

Let $\Phi \in \mathcal{S}$ with $\int \Phi(s) ds = 0$. Assume that Φ is nondegenerate in the following sense:

$$\forall \xi \in \mathbb{R}^d \setminus \{0\}, \exists 0 < \varepsilon < 1 \text{ such that } \hat{\Phi}\left(\varepsilon\xi\right) \neq 0.$$

For any $f \in L_1\left(\mathcal{M}; L_c^2\left(\mathbb{R}^d, \frac{dt}{1+|t|^{d+1}}\right)\right) + L_\infty\left(\mathcal{M}; L_c^2\left(\mathbb{R}^d, \frac{dt}{1+|t|^{d+1}}\right)\right)$, we can define the radial and conic square function of f associated to Φ as follows

$$g_{\Phi}^{c}(f)(s) = \left(\int_{0}^{1} |\Phi_{\varepsilon} * f(s)|^{2} \frac{d\varepsilon}{\varepsilon}\right)^{\frac{1}{2}},$$

$$s_{\Phi}^{c}(f)(s) = \left(\int_{\Gamma} |\Phi_{\varepsilon} * f(s+t)|^{2} \frac{dt d\varepsilon}{\varepsilon^{d+1}}\right)^{\frac{1}{2}}, s \in \mathbb{R}^{d},$$

where
$$\Gamma = \left\{ (t,arepsilon) \in \mathbb{R}_+^{d+1} : |t| < arepsilon < 1
ight\}$$

If we take $\Phi_{\varepsilon} = 2\pi I \left(P_{\varepsilon}^{1} - P_{\varepsilon}^{0}\right)$, where I is Riesz potential, the square functions defined here coincide with the previous definitions with respect to the poisson kernels on the strip.

Theorem (Xu, Xiao, X. 2015)

Let $1 \le p < \infty$, we have

$$\|G_{\Phi}^{c}(f)(s)\|_{L_{p}} \approx \|S_{\Phi}^{c}(f)(s)\|_{L_{p}} \approx \|f\|_{H_{p}^{c}}.$$

The key is to view $\Phi.(s)(\Phi.(s))$ being the function $\varepsilon \mapsto \Phi_{\varepsilon}(s)$) as a H-valued kernel of Calderón-Zygmund operator, with $H = L_2((0,\infty),\frac{d\varepsilon}{\varepsilon})$ and $H = L_2(\Gamma,\frac{dtd\varepsilon}{cd+1})$.

Lemma

Let $k : \mathbb{R}^d \to H$ be a Hilbert-valued kernel, assume that

a)
$$\sup_{\xi\in\mathbb{R}^d}\left\|\widehat{k}\left(\xi\right)\right\|_{\mathcal{H}}<\infty;$$

b)
$$\|k(s-t)-k(s)\|_{H} \lesssim \frac{|t|}{|s-t|^{d+1}}, \forall |s| > 2|t| > 0.$$

Then the operator $k^c: f \mapsto (k \otimes 1_{\mathcal{M}}) * f$ is bounded

- i) from $bmo_0^{\alpha}(\mathbb{R}^d,\mathcal{M})$ to $bmo^{\alpha}(\mathbb{R}^d,B(H)\overline{\bigotimes}\mathcal{M})$, where $\alpha=c$, $\alpha=r$ or α is void;
- ii) and from $h_{1}^{c}\left(\mathbb{R}^{d},\mathcal{M}\right)$ to $h_{1}^{c}\left(\mathbb{R}^{d},B\left(H\right)\overline{\bigotimes}\mathcal{M}\right)$.

Corollary (X.)

Let $1 \le p < \infty$, we have

$$\|g_{\Phi}^{c}(f)(s)\|_{L_{p}} + \|\varphi * f\|_{L_{p}\left(L_{\infty}\left(\mathbb{R}^{d}\right)\overline{\otimes}\mathcal{M}\right)} \approx \|s_{\Phi}^{c}(f)(s)\|_{L_{p}} + \|\varphi * f\|_{L_{p}} \approx \|f\|_{h_{p}^{c}}.$$

Relation between h_1 and H_1

Theorem

Let
$$\varphi \in \mathcal{S}$$
, $\int \varphi = 1$, then $\|f - \varphi * f\|_{h_1^c} \le C \|f\|_{h_1^c}$, so $f \in h_1^c \Longrightarrow f - \varphi * f \in H_1^c$.

Application: Pseudo-differential operator

Definition

Pseudo-differential operator is a mapping $f \mapsto T(f)$ given by

$$T(f)(s) = \int \widehat{f}(\xi) \sigma(s,\xi) e^{2\pi i s \xi} d\xi,$$

 σ is called the **symbol** of T, and if σ satisfies

$$|D_s^{\alpha}D_{\xi}^{\beta}\sigma(s,\xi)| \leq C_{\alpha,\beta}(1+|\xi|)^{-|\beta|},$$

then we say the symbol σ is of **order zero**, this class of symbols is denoted by S^0 .

The general pseudo-differential operators have a parallel description in terms of their kernels,

$$T(f)(s) = \int_{\mathbb{R}^d} K(s, s - t) f(t) dt,$$

where $K(s,t) = (\sigma(s,\xi))^{\vee}$.

The boundedness of pseudo-differential operators on h_1^c

Lemma

Let T be a pseudo-differential operator with symbol in S^0 and let $\Phi \in \mathcal{S}$ with vanishing mean and nondegenerate. Then $T_{\varepsilon}(f) = \Phi_{\varepsilon} * T(f)$ admits a kernel $K_{\varepsilon}(s,t)$ and a symbol $\sigma_{\varepsilon}(s,\xi)$ which satisfy

$$(\int_0^1 |D_s^{\alpha} D_{\xi}^{\beta} K_{\varepsilon}(s,t)|^2 \frac{d\varepsilon}{\varepsilon})^{\frac{1}{2}} \leq C_{\alpha,\beta} |t|^{-d-|\beta|},$$

$$(\int_0^1 |D_s^{\alpha} D_{\xi}^{\beta} \sigma_{\varepsilon}(s,\xi)|^2 \frac{d\varepsilon}{\varepsilon})^{\frac{1}{2}} \leq c_{\alpha,\beta} (1+|\xi|)^{-|\beta|}.$$

The boundedness of pseudo-differential operators on h_1^c

Lemma

Let T be a pseudo-differential operator with symbol in S^0 and let $\Phi \in \mathcal{S}$ with vanishing mean and nondegenerate. Then $T_{\varepsilon}(f) = \Phi_{\varepsilon} * T(f)$ admits a kernel $K_{\varepsilon}(s,t)$ and a symbol $\sigma_{\varepsilon}(s,\xi)$ which satisfy

$$(\int_0^1 |D_s^{\alpha} D_{\xi}^{\beta} K_{\varepsilon}(s,t)|^2 \frac{d\varepsilon}{\varepsilon})^{\frac{1}{2}} \leq C_{\alpha,\beta} |t|^{-d-|\beta|},$$

$$(\int_0^1 |D_s^{\alpha} D_{\xi}^{\beta} \sigma_{\varepsilon}(s,\xi)|^2 \frac{d\varepsilon}{\varepsilon})^{\frac{1}{2}} \leq c_{\alpha,\beta} (1+|\xi|)^{-|\beta|}.$$

Theorem (X.)

Let $T(f)(s) = \int \widehat{f}(\xi) \, \sigma(s,\xi) \, e^{2\pi i s \xi} d\xi$ and $T \in S^0$, then for any $f \in h_1^c(\mathbb{R}^d, \mathcal{M})$, we have $||T(f)||_{h_1^c} \leq C \, ||f||_{h_1^c}$.

4 D > 4 D > 4 D > 4 D > 4 D > 9 Q

Thank you!