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Woronowicz's compact quantum groups

» G a compact group ~» comultiplication on C(G):
Ag: C(G) = C(G x G), Ag(f)(s,t)="f(st), s,teG.
(C(G),Ag) determines G.

> G compact abelian = dual G discrete. C(G) = C/(G); G = G.

» I a discrete group ~» comultiplication on C;(I)
Ay G(N) = GO @M, A = A ©AY), vel.
(CF(T), Acs(ry) determines I'. (View I' = (CZ(T), Acx(r)-)
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» A compact quantum group is a pair G = (A, A), where:

A :a unital C*-algebra, A:A— A® A a *-homomorphism s.t.

(A ®id)A = (id ® A)A,
span((1 ® A)A(A)) =span((A® 1)A(A)) = A® A.

A = C(G) is called the algebra of “continuous functions” on G.
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» G a compact group ~» comultiplication on C(G):
Ag: C(G) = C(G x G), Ag(f)(s,t)="f(st), s,teG.
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Ay G(N) = GO @M, A = A ©AY), vel.
(CF(T), Acs(ry) determines I'. (View I' = (CZ(T), Acx(r)-)

» A compact quantum group is a pair G = (A, A), where:

A :a unital C*-algebra, A:A— A® A a *-homomorphism s.t.

(A ®id)A = (id ® A)A,
span((1 ® A)A(A)) =span((A® 1)A(A)) = A® A.

A = C(G) is called the algebra of “continuous functions” on G.

» There exists a Haar state h on C(G) which is “translate invariant”.

21



Towards Fourier analysis: the “dual group”
Recall the Fourier transform on a compact abelian group G,

F : functions on G — functions on Pontryagin dual G.

- G cpt non-abelian: replace G by Irr(G) (irreducible representations)
- For a compact quantum group G: Irr(G) ?
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> Unitary representation of G: v = [uj]7;_; € M,(C(G)) unitary s.t.

V1<jk<n Alup)=

p:lujp ® Upk-

Irr(G): equivalent class of all such irreducible representations u. For
each 7 € Irr(G) choose a representative u(™),
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Towards Fourier analysis: the “dual group”
Recall the Fourier transform on a compact abelian group G,

F : functions on G — functions on Pontryagin dual G.
- G cpt non-abelian: replace G by Irr(G) (irreducible representations)
- For a compact quantum group G: Irr(G) ?
> Unitary representation of G: v = [uj]7;_; € M,(C(G)) unitary s.t.

V1<jk<n Alup)= 1
p:

Ujp & Upk.

Irr(G): equivalent class of all such irreducible representations u. For

each 7 € Irr(G) choose a representative u(™),

» All such matrix coefficients uf-ﬂ) (7 € Irr(G)) spans a dense algebra
of “polynomials” Pol(G) C C(G).

Completions of Pol(G) (wrt different topologies) =
LG), G(G)(cC B(L*(G))), L¥(G)(c B(LX(G))).

h extends to a normal faithful state on L>°(G) (maybe NON-tracial).
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Towards Fourier analysis: the “dual group”

In the framework of locally compact quantum groups, there is a “dual”

discrete quantum group, denoted G, subject to the following x-algebra
¢e(G) = Bretrn(@)Ma, (C).
We may define the Fourier transform
F:Pol(G) = co(G), x~ %,
where
%(m) = (h@id) (™) (x ® 1)) = [h(u§ X5y, e (),

( Recall: for a compact group G, f € C(G),

Nx

) = [ ey F(eyante) = | [ o am| )

ij=1

6
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Fourier series

Briefly, we obtain the Fourier transform
F :Pol(G) = c.(G) = Oreter(@)Man, (C), x> X

The map can be extended to LP-spaces. (Note h on L°°(G) may be not
tracial!)
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Briefly, we obtain the Fourier transform
F :Pol(G) = c.(G) = Oreter(@)Man, (C), x> X

The map can be extended to LP-spaces. (Note h on L°°(G) may be not
traciall) Define ||x|[1 = [[A(-x)|| 1 (G)- for x € Pol(G), and let L}(G) be
the completion of (Pol(G), ||||1). Define LP(G) to be the complex
interpolation space

LP(G) = (L*(G), LY (G))1jp, 1< p < oo

Define £P(G) on c(G) similarly.
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Fourier series

Briefly, we obtain the Fourier transform
F :Pol(G) = c.(G) = Oreter(@)Man, (C), x> X

The map can be extended to LP-spaces. (Note h on L°°(G) may be not
traciall) Define ||x|[1 = [[A(-x)|| 1 (G)- for x € Pol(G), and let L}(G) be
the completion of (Pol(G), ||||1). Define LP(G) to be the complex
interpolation space

LP(G) = (L¥(G), LN(G))1/py 1< p <o
Define £P(G) on c(G) similarly.
» (Hausdorff-Young inequality) We have the extension

F : LP(G) — ¢9(G) contraction, 1/p+1/q=1.

» (Plancherel theorem) F : [2(G) — (3(G) unitary.
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More remark on G: non-unimodularity

Recall: a discrete group is always unimodular.
But the discrete quantum group G can be non-unimodular.

There are different “left/right invariant” Haar weights on £>°(G), and a
modular element F linking them,

F= (FW)WEIrr(G)v Fr € an((c)

It is possible ||F|| = sup, ||Fx| = +o.
In fact, F is trivial iff h on L>°(G) is tracial. Woronowicz used this F to
implement the modular property of non-tracial Haar state h on G.
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Fourier multipliers
> Multipliers: Each a = (ar)rcnn(G) € [renm(c) Mn, induces a map
m, : Pol(G) — Pol(G), m,x = F *(aX).

We say a is a left bounded multiplier on LP(G) if m, extends to a
bdd map on LP(G). (similar def. for right multipliers)
M(LP(G)) ={left & right bdd multipliers on LP(G)} C B(LP(G)).
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Fourier multipliers

> Multipliers: Each a = (ar)rcnn(G) € [renm(c) Mn, induces a map
m, : Pol(G) — Pol(G), m,x = F *(aX).

We say a is a left bounded multiplier on LP(G) if m, extends to a

bdd map on LP(G). (similar def. for right multipliers)

M(LP(G)) ={left & right bdd multipliers on LP(G)} C B(LP(G)).
» Daws, Neufang, Junge, Ruan (09'-12'): study completely bounded

multiplier on L>°(G). Easy to establish
lallyo &) < llall ML (c))-

Proposition (Partially communicated by M. Junge)

F%_% /:—%JF% N <
|F3 5 aF 445 | ) < llallmusey,
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Sidon sets: classical settings

Definition Let G be a compact abelian group and I = G be the dual
group. A subset E C T is called a Sidon set if

V(ay) CC, Z ay| ~ | Zav’YHC(G)~

yCE YEE
» Various characterizations: interpolation of bounded measures,

multipliers, A(p)-estimations, unconditional bases...

» Typical examples: Rademacher functions; lacunarity in Z...
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Sidon sets: classical settings

Definition Let G be a compact abelian group and I = G be the dual
group. A subset E C T is called a Sidon set if

V(ay) CC, Z ay| ~ | Z O"y’YHC(G)

yCE YEE

» Various characterizations: interpolation of bounded measures,
multipliers, A(p)-estimations, unconditional bases...

» Typical examples: Rademacher functions; lacunarity in Z...

Noncommutative generalizations:
» G ~~» compact non-abelian group, I ~ Irr(G
(

);
» [~ discrete non-abelian group, C(G) ~ C(") := C*(I') group

C*-algebra. (Recall the quantum group I)
Irr(F) = T, Pol(T) = CT, G(I) = C*(T), L=(T) = VN(T).
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Sidon sets: classical settings

Let G be a compact group.
For f € L(G) and 7 € Irr(G), recall (= = [ f(g)u™(g)*dm(g).
The /2-norm on f is explicitly given by

1Flli="Y dTx([f(n))).

welrr(G)

Theorem (Figa-Talamanca) Consider E C Irr(G). TFAE:
1. E is a Sidon set, i.e.,

supp(f) C E = [|F]l ~ [Ifloc;

2. BreeMp, = {file - p € M(G)};
3. @9 M, = {fle: f e LY(G)}.
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Sidon sets: quantum group setting

A

Let G be a compact quantum group. F the modular element for G.

For x € L°(G) and 7 € Irr(G), recall X(7) = (h® id)((u()*(x @ 1)).

The norm on El(@) is explicitly given by

IR =Y deTx(IR(n)Fal). (dr = Tr(Fx))
w€lrr(G)

Theorem (W.) Consider E C Irr(G). TFAE:
1. E is a Sidon set, i.e.,

supp(8) C E = [IX][1 ~ [Ix[|oo;

2. ®reeM,, = {Qle - ¢ € G(G)*};

3. @ M, = {&]e : x € L}G)}.
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Sidon sets: classical settings revisited
If G =T for a discrete group I, recall

Ir(F) =T and x=>_ %(v)A(y) € VN(T).

The previous theorem improves a result of Picardello: (Picardello proved
in the special case that I is amenable)

Corollary Let I be a discrete group (not necessarily amenable). TFAE:
1. E C T isa Sidon set, i.e.,

V() C C, Z vy ~ || Zav Mvw(ry:

YyeEE YyeEE

2. E C T is a strong Sidon set, i.e.,
(E) = {flg : f € A(T)(= L}(M))}.
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Remark: various generalizations vs amenability

» G is called coamenable if € : ufjﬂ) + 0jj is bdd on C,(G).
Recall our convention: [ = (CH(T), Acs(r)) being a compact
quantum group. [ is coamenable iff I is amenable.

» If G is not coamenable, there are various (non-equivalent) analogue
of Sidon sets: weak Sidon sets, interpolation sets of multipliers,
unconditional Sidon sets, Leinert sets, etc.

(For [: Pisier 95")
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Sidon sets = A(p)-sets
Definition E C Irr(G) is a A(p)-set if

Ixllp ~ IIx]l1,  supp(X) C E.
» Case for compact groups: Hewitt-Ross, Marcus-Pisier;

» Case for (dual of) discrete groups: Picardello, Harcharras...
» Case for compact quantum groups: more delicate —

Theorem (Blendek-Michalicek 13’) Let G be a CQG s.t. the
Haar state h is tracial on C(G). Denote

Xr = Z u,(,-ﬂ), m € Irr(G).
i=1

If E C Trr(G) is a Helgason-Sidon set (& Sidon set),
then for all (¢r)ree CCand x =3 ¢ CoXa,

[Ixl2 ~ ]l
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Sidon sets = A(p)-sets, Fourier multipliers

Theorem (W.) Let2 < p < ooand E C Irr(G). Then:
Ixllp ~ [Ix]l1,  supp(X) C E,
if and only if

Vae @ﬂeEMnﬁ, db e M(LP(G)), b‘E = a.

Remark: the completely bdd version of above thm is not established yet.
(For G =T dual of discrete group: Harcharras 99';
For G = G compact group: Hare-Mohanty 15'.)

Corollary Any Sidon set for G is a A(p)-set for 1 < p < cc.
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Observations on non-modularity |

Recall that we have a modular element F for G.

Proposition Let E C Irr(G) a A(p)-set for 2 < p < co. Then

sup || Fr|| < +o0.
TeE

Drinfeld-Jimbo deformation: a compact semi-simple Lie group G ~ a
compact quantum group Gg (0 < g < 1), with Gg non-unimodular.

Corollary SU(2)4 does not admit A(p)-set for any 2 < p < cc.
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Observations on non-modularity Il

More words on noncommutative LP:
Let h be non-tracial on G (equivalently G non-unimodular)

» According to Kosaki 84': For each 0 < § < 1, there is a complex
interpolation scale (Lfe)(((}))lgpgoo between L>(G) and L*(G).,
which are isometrically isomorphic but not equal.

In the previous slides we have indeed taken LP(G) = Lfo)(((}).

» Casper 13": The boundedness of Fourier transform depends on 6.

Proposition Our definition of A(p)-sets is independent of 6.
Thatis, let 2 < p<00,0<0,0 <1and E C Irt(G). Then:

Ixllee @) ~ IXllz (@), supp(X) C E,
©) ©)
if and only if
||X||L€’6,)(G) ~ HXHL%G,)(G)v supp(X) C E.

19/21



Existence of A(p)-sets

Theorem (Bozejko; W.) Let (M, ) be a vNa equipped with a
normal faithful state ¢. Let B = {x; € M : i > 1} be an orthogonal
system wrt @ s.t. sup; ||xi|lcoc < 00. Then for each 1 < p < oo, there
exists an infinite subset {x; : k > 1} C B

V(ek) C C, HZCkX’kHLp(M) (Z\CH)

k>1 k>1

NI

Corollary Let G be a CQG. Let E C Irr(G) be an infinite subset with
sup,cg dr < 00. Then for each 1 < p < oo, there exists an infinite
subset E' C E s.t.

IX[lp ~ lIxll1,  supp(%) € E'.
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Thank you very much!
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