Lacunary Fourier series for compact quantum groups

Simeng Wang

Université de Franche-Comté (Besançon) / IM PAN (Warsaw)

Acknowledgments:

Q. Xu, A. Skalski; M. Bożejko, M. Junge

Luminy, December 2015

Outline

Introduction to Fourier analysis on CQGs

2 Sidon sets and $\Lambda(p)$ -sets

Outline

Introduction to Fourier analysis on CQGs

2 Sidon sets and $\Lambda(p)$ -sets

Woronowicz's compact quantum groups

- ▶ *G* a compact group \leadsto comultiplication on C(G): $\Delta_G : C(G) \to C(G \times G), \quad \Delta_G(f)(s,t) = f(st), \quad s,t \in G.$ $(C(G), \Delta_G)$ determines *G*.
- G compact abelian \Rightarrow dual \hat{G} discrete. $C(G) = C_r^*(\hat{G})$; $G = \hat{\hat{G}}$.
- ▶ Γ a discrete group \leadsto comultiplication on $C_r^*(\Gamma)$ $\Delta_{C_r^*(\Gamma)}: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma), \quad \lambda(\gamma) \mapsto \lambda(\gamma) \otimes \lambda(\gamma), \quad \gamma \in \Gamma.$ $(C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)})$ determines Γ . (View $\hat{\Gamma} = (C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)}).$)

Woronowicz's compact quantum groups

- ▶ G a compact group \leadsto comultiplication on C(G): $\Delta_G : C(G) \to C(G \times G), \quad \Delta_G(f)(s,t) = f(st), \quad s,t \in G.$ $(C(G),\Delta_G)$ determines G.
- G compact abelian \Rightarrow dual \hat{G} discrete. $C(G) = C_r^*(\hat{G})$; $G = \hat{\hat{G}}$.
- ▶ Γ a discrete group \leadsto comultiplication on $C_r^*(\Gamma)$ $\Delta_{C_r^*(\Gamma)}: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma), \quad \lambda(\gamma) \mapsto \lambda(\gamma) \otimes \lambda(\gamma), \quad \gamma \in \Gamma.$ $(C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)})$ determines Γ . (View $\hat{\Gamma} = (C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)})$.)
- ▶ A compact quantum group is a pair $\mathbb{G} = (A, \Delta)$, where:

 $A: a \ unital \ C^*-algebra, \quad \Delta: A o A \otimes A \quad a \ ^*-homomorphism \ s.t.$

$$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta,$$

$$\overline{\operatorname{span}}((1 \otimes A)\Delta(A)) = \overline{\operatorname{span}}((A \otimes 1)\Delta(A)) = A \otimes A.$$

 $A := C(\mathbb{G})$ is called the algebra of "continuous functions" on \mathbb{G} .

Woronowicz's compact quantum groups

- ▶ G a compact group \leadsto comultiplication on C(G): $\Delta_G : C(G) \to C(G \times G), \quad \Delta_G(f)(s,t) = f(st), \quad s,t \in G.$ $(C(G),\Delta_G)$ determines G.
- G compact abelian \Rightarrow dual \hat{G} discrete. $C(G) = C_r^*(\hat{G})$; $G = \hat{\hat{G}}$.
- ▶ Γ a discrete group \leadsto comultiplication on $C_r^*(\Gamma)$ $\Delta_{C_r^*(\Gamma)}: C_r^*(\Gamma) \to C_r^*(\Gamma) \otimes C_r^*(\Gamma), \quad \lambda(\gamma) \mapsto \lambda(\gamma) \otimes \lambda(\gamma), \quad \gamma \in \Gamma.$ $(C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)})$ determines Γ . (View $\hat{\Gamma} = (C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)}).$)
- ▶ A compact quantum group is a pair $\mathbb{G} = (A, \Delta)$, where:

$$A$$
: a unital C*-algebra, $\Delta: A \to A \otimes A$ a *-homomorphism s.t.

$$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta,$$

$$\overline{\operatorname{span}}((1 \otimes A)\Delta(A)) = \overline{\operatorname{span}}((A \otimes 1)\Delta(A)) = A \otimes A.$$

 $A := C(\mathbb{G})$ is called the algebra of "continuous functions" on \mathbb{G} .

▶ There exists a Haar state h on $C(\mathbb{G})$ which is "translate invariant".

Recall the Fourier transform on a compact abelian group G,

 \mathcal{F} : functions on $G \to \text{functions}$ on Pontryagin dual \hat{G} .

- G cpt non-abelian: replace \hat{G} by Irr(G) (irreducible representations)
- For a compact quantum group \mathbb{G} : $Irr(\mathbb{G})$?

Recall the Fourier transform on a compact abelian group G,

 \mathcal{F} : functions on $G \to \text{functions on Pontryagin dual } \hat{G}$.

- G cpt non-abelian: replace \hat{G} by Irr(G) (irreducible representations)
- For a compact quantum group \mathbb{G} : $\mathrm{Irr}(\mathbb{G})$?
 - ▶ Unitary representation of \mathbb{G} : $u = [u_{ij}]_{i,j=1}^n \in \mathbb{M}_n(C(\mathbb{G}))$ unitary s.t.

$$\forall 1 \leq j, k \leq n, \ \Delta(u_{jk}) = \sum_{p=1}^{n} u_{jp} \otimes u_{pk}.$$

 $\operatorname{Irr}(\mathbb{G})$: equivalent class of all such irreducible representations u. For each $\pi \in \operatorname{Irr}(\mathbb{G})$ choose a representative $u^{(\pi)}$.

Recall the Fourier transform on a compact abelian group G,

 \mathcal{F} : functions on G o functions on Pontryagin dual \hat{G} .

- G cpt non-abelian: replace \hat{G} by Irr(G) (irreducible representations)
- For a compact quantum group \mathbb{G} : $Irr(\mathbb{G})$?
 - ▶ Unitary representation of \mathbb{G} : $u = [u_{ij}]_{i,j=1}^n \in \mathbb{M}_n(C(\mathbb{G}))$ unitary s.t.

$$\forall 1 \leq j, k \leq n, \ \Delta(u_{jk}) = \sum_{p=1}^{n} u_{jp} \otimes u_{pk}.$$

 $\operatorname{Irr}(\mathbb{G})$: equivalent class of all such irreducible representations u. For each $\pi \in \operatorname{Irr}(\mathbb{G})$ choose a representative $u^{(\pi)}$.

▶ All such matrix coefficients $u_{ij}^{(\pi)}$ ($\pi \in Irr(\mathbb{G})$) spans a **dense** algebra of "polynomials" $Pol(\mathbb{G}) \subset C(\mathbb{G})$. Completions of $Pol(\mathbb{G})$ (wrt different topologies) \Rightarrow :

$$L^2(\mathbb{G}), C_r(\mathbb{G})(\subset B(L^2(\mathbb{G}))), L^{\infty}(\mathbb{G})(\subset B(L^2(\mathbb{G}))).$$

h extends to a normal faithful state on $L^{\infty}(\mathbb{G})$ (maybe NON-tracial).

In the framework of locally compact quantum groups, there is a "dual" discrete quantum group, denoted $\hat{\mathbb{G}}$, subject to the following *-algebra

$$c_c(\hat{\mathbb{G}}) \coloneqq \bigoplus_{\pi \in \mathrm{Irr}(\mathbb{G})} \mathbb{M}_{n_\pi}(\mathbb{C}).$$

We may define the Fourier transform

$$\mathcal{F}: \operatorname{Pol}(\mathbb{G}) \to c_c(\hat{\mathbb{G}}), \quad x \mapsto \hat{x},$$

where

$$\hat{x}(\pi) = (h \otimes \mathrm{id})((u^{(\pi)})^*(x \otimes 1)) = [h(u_{ji}^{(\pi)^*}x)]_{i,j=1}^{n_{\pi}}, \quad \pi \in \mathrm{Irr}(\mathbb{G}).$$

(Recall: for a compact group G, $f \in C(G)$,

$$\hat{f}(\pi) = \int_G u^{(\pi)}(g)^* f(g) dm(g) = \left[\int_G u_{ji}^{(\pi)^*} f dm \right]_{i,j=1}^{n_{\pi}}.)$$

Briefly, we obtain the Fourier transform

$$\mathcal{F}: \operatorname{Pol}(\mathbb{G}) \to c_c(\hat{\mathbb{G}}) := \bigoplus_{\pi \in \operatorname{Irr}(\mathbb{G})} \mathbb{M}_{n_{\pi}}(\mathbb{C}), \quad x \mapsto \hat{x}.$$

The map can be extended to L^p -spaces. (Note h on $L^\infty(\mathbb{G})$ may be not tracial!)

Briefly, we obtain the Fourier transform

$$\mathcal{F}:\operatorname{Pol}(\mathbb{G})\to c_c(\hat{\mathbb{G}})\coloneqq \oplus_{\pi\in\operatorname{Irr}(\mathbb{G})}\mathbb{M}_{n_\pi}(\mathbb{C}),\quad x\mapsto \hat{x}.$$

The map can be extended to L^p -spaces. (Note h on $L^\infty(\mathbb{G})$ may be not tracial!) Define $\|x\|_1 = \|h(\cdot x)\|_{L^\infty(\mathbb{G})^*}$ for $x \in \operatorname{Pol}(\mathbb{G})$, and let $L^1(\mathbb{G})$ be the completion of $(\operatorname{Pol}(\mathbb{G}), \|\|_1)$. Define $L^p(\mathbb{G})$ to be the complex interpolation space

$$L^p(\mathbb{G}) = (L^\infty(\mathbb{G}), L^1(\mathbb{G}))_{1/p}, \quad 1 \le p \le \infty.$$

Define $\ell^p(\hat{\mathbb{G}})$ on $c_c(\hat{\mathbb{G}})$ similarly.

Briefly, we obtain the Fourier transform

$$\mathcal{F}: \operatorname{Pol}(\mathbb{G}) \to c_c(\hat{\mathbb{G}}) := \bigoplus_{\pi \in \operatorname{Irr}(\mathbb{G})} \mathbb{M}_{n_{\pi}}(\mathbb{C}), \quad x \mapsto \hat{x}.$$

The map can be extended to L^p -spaces. (Note h on $L^\infty(\mathbb{G})$ may be not tracial!) Define $\|x\|_1 = \|h(\cdot x)\|_{L^\infty(\mathbb{G})^*}$ for $x \in \operatorname{Pol}(\mathbb{G})$, and let $L^1(\mathbb{G})$ be the completion of $(\operatorname{Pol}(\mathbb{G}), \|\|_1)$. Define $L^p(\mathbb{G})$ to be the complex interpolation space

$$L^p(\mathbb{G}) = (L^{\infty}(\mathbb{G}), L^1(\mathbb{G}))_{1/p}, \quad 1 \le p \le \infty.$$

Define $\ell^p(\hat{\mathbb{G}})$ on $c_c(\hat{\mathbb{G}})$ similarly.

► (Hausdorff-Young inequality) We have the extension

$$\mathcal{F}: L^p(\mathbb{G}) o \ell^q(\hat{\mathbb{G}}) ext{ contraction}, \quad 1/p + 1/q = 1.$$

Briefly, we obtain the Fourier transform

$$\mathcal{F}: \operatorname{Pol}(\mathbb{G}) \to c_c(\hat{\mathbb{G}}) \coloneqq \bigoplus_{\pi \in \operatorname{Irr}(\mathbb{G})} \mathbb{M}_{n_{\pi}}(\mathbb{C}), \quad x \mapsto \hat{x}.$$

The map can be extended to L^p -spaces. (Note h on $L^\infty(\mathbb{G})$ may be not tracial!) Define $\|x\|_1 = \|h(\cdot x)\|_{L^\infty(\mathbb{G})^*}$ for $x \in \operatorname{Pol}(\mathbb{G})$, and let $L^1(\mathbb{G})$ be the completion of $(\operatorname{Pol}(\mathbb{G}), \|\|_1)$. Define $L^p(\mathbb{G})$ to be the complex interpolation space

$$L^p(\mathbb{G}) = (L^{\infty}(\mathbb{G}), L^1(\mathbb{G}))_{1/p}, \quad 1 \le p \le \infty.$$

Define $\ell^p(\hat{\mathbb{G}})$ on $c_c(\hat{\mathbb{G}})$ similarly.

► (Hausdorff-Young inequality) We have the extension

$$\mathcal{F}: L^p(\mathbb{G}) \to \ell^q(\hat{\mathbb{G}}) \text{ contraction}, \quad 1/p + 1/q = 1.$$

▶ (Plancherel theorem) $\mathcal{F}: L^2(\mathbb{G}) \to \ell^2(\hat{\mathbb{G}})$ unitary.

More remark on $\hat{\mathbb{G}}$: non-unimodularity

Recall: a discrete group is always unimodular.

But the discrete quantum group $\hat{\mathbb{G}}$ can be non-unimodular.

There are different "left/right invariant" Haar weights on $\ell^{\infty}(\hat{\mathbb{G}})$, and a modular element F linking them,

$$F = (F_{\pi})_{\pi \in \operatorname{Irr}(\mathbb{G})}, \quad F_{\pi} \in \mathbb{M}_{n_{\pi}}(\mathbb{C}).$$

It is possible $||F|| = \sup_{\pi} ||F_{\pi}|| = +\infty$.

In fact, F is trivial iff h on $L^{\infty}(\mathbb{G})$ is tracial. Woronowicz used this F to implement the modular property of non-tracial Haar state h on \mathbb{G} .

Fourier multipliers

▶ Multipliers: Each $a=(a_\pi)_{\pi\in {\mathrm{Irr}}(\mathbb{G})}\in \prod_{\pi\in {\mathrm{Irr}}(\mathbb{G})}\mathbb{M}_{n_\pi}$ induces a map

$$m_a: \operatorname{Pol}(\mathbb{G}) \to \operatorname{Pol}(\mathbb{G}), \quad m_a x = \mathcal{F}^{-1}(a\hat{x}).$$

We say a is a left bounded multiplier on $L^p(\mathbb{G})$ if m_a extends to a bdd map on $L^p(\mathbb{G})$. (similar def. for right multipliers) $M(L^p(\mathbb{G})) = \{\text{left \& right bdd multipliers on } L^p(\mathbb{G})\} \subset B(L^p(\mathbb{G})).$

Fourier multipliers

▶ Multipliers: Each $a=(a_\pi)_{\pi\in {\mathrm{Irr}}(\mathbb{G})}\in \prod_{\pi\in {\mathrm{Irr}}(\mathbb{G})}\mathbb{M}_{n_\pi}$ induces a map

$$m_a: \operatorname{Pol}(\mathbb{G}) \to \operatorname{Pol}(\mathbb{G}), \quad m_a x = \mathcal{F}^{-1}(a\hat{x}).$$

We say a is a left bounded multiplier on $L^p(\mathbb{G})$ if m_a extends to a bdd map on $L^p(\mathbb{G})$. (similar def. for right multipliers) $M(L^p(\mathbb{G})) = \{\text{left \& right bdd multipliers on } L^p(\mathbb{G})\} \subset B(L^p(\mathbb{G})).$

▶ Daws, Neufang, Junge, Ruan (09'-12'): study completely bounded multiplier on $L^{\infty}(\mathbb{G})$. Easy to establish

$$\|a\|_{\ell^{\infty}(\hat{\mathbb{G}})} \leq \|a\|_{M_{cb}(L^{\infty}(\mathbb{G}))}.$$

Fourier multipliers

▶ Multipliers: Each $a=(a_\pi)_{\pi\in {\rm Irr}(\mathbb{G})}\in \prod_{\pi\in {\rm Irr}(\mathbb{G})}\mathbb{M}_{n_\pi}$ induces a map

$$m_a: \operatorname{Pol}(\mathbb{G}) \to \operatorname{Pol}(\mathbb{G}), \quad m_a x = \mathcal{F}^{-1}(a\hat{x}).$$

We say a is a left bounded multiplier on $L^p(\mathbb{G})$ if m_a extends to a bdd map on $L^p(\mathbb{G})$. (similar def. for right multipliers) $M(L^p(\mathbb{G})) = \{\text{left \& right bdd multipliers on } L^p(\mathbb{G})\} \subset B(L^p(\mathbb{G})).$

▶ Daws, Neufang, Junge, Ruan (09'-12'): study completely bounded multiplier on $L^{\infty}(\mathbb{G})$. Easy to establish

$$\|a\|_{\ell^{\infty}(\hat{\mathbb{G}})} \leq \|a\|_{M_{cb}(L^{\infty}(\mathbb{G}))}.$$

Proposition (Partially communicated by M. Junge)

$$\|F^{\frac{1}{4}-\frac{1}{2p}}aF^{-\frac{1}{4}+\frac{1}{2p}}\|_{\ell^{\infty}(\hat{\mathbb{G}})} \leq \|a\|_{M(L^{p}(\mathbb{G}))}.$$

Outline

1 Introduction to Fourier analysis on CQGs

2 Sidon sets and $\Lambda(p)$ -sets

Sidon sets: classical settings

Definition Let G be a compact abelian group and $\Gamma = \hat{G}$ be the dual group. A subset $E \subset \Gamma$ is called a Sidon set if

$$\forall (\alpha_{\gamma}) \subset \mathbb{C}, \quad \sum_{\gamma \subset E} |\alpha_{\gamma}| \sim \|\sum_{\gamma \in E} \alpha_{\gamma} \gamma\|_{\mathcal{C}(G)}.$$

- ▶ Various characterizations: interpolation of bounded measures, multipliers, $\Lambda(p)$ -estimations, unconditional bases...
- ▶ Typical examples: Rademacher functions; lacunarity in Z...

Sidon sets: classical settings

Definition Let G be a compact abelian group and $\Gamma = \hat{G}$ be the dual group. A subset $E \subset \Gamma$ is called a Sidon set if

$$\forall (\alpha_{\gamma}) \subset \mathbb{C}, \quad \sum_{\gamma \subset E} |\alpha_{\gamma}| \sim \|\sum_{\gamma \in E} \alpha_{\gamma} \gamma\|_{\mathcal{C}(G)}.$$

- ▶ Various characterizations: interpolation of bounded measures, multipliers, $\Lambda(p)$ -estimations, unconditional bases...
- ▶ Typical examples: Rademacher functions; lacunarity in Z...

Noncommutative generalizations:

- ▶ $G \rightsquigarrow \text{compact non-abelian group, } \Gamma \rightsquigarrow \text{Irr}(G);$
- ▶ $\Gamma \leadsto \text{discrete non-abelian group}$, $C(G) \leadsto C(\hat{\Gamma}) \coloneqq C_r^*(\Gamma)$ group C*-algebra. (Recall the quantum group $\hat{\Gamma}$)

$$\operatorname{Irr}(\hat{\Gamma}) = \Gamma, \operatorname{Pol}(\hat{\Gamma}) = \mathbb{C}\Gamma, C_r(\hat{\Gamma}) = C_r^*(\Gamma), L^{\infty}(\hat{\Gamma}) = VN(\Gamma).$$

Sidon sets: classical settings

Let G be a compact group.

For $f \in L^{\infty}(G)$ and $\pi \in Irr(G)$, recall $\hat{f}(\pi) = \int_{G} f(g)u^{(\pi)}(g)^*dm(g)$.

The ℓ^1 -norm on \hat{f} is explicitly given by

$$\|\hat{f}\|_1 = \sum_{\pi \in \operatorname{Irr}(G)} d_\pi \operatorname{Tr}(|\hat{f}(\pi)|).$$

Theorem (Figà-Talamanca) Consider $E \subset Irr(G)$. TFAE:

1. E is a Sidon set, i.e.,

$$\operatorname{supp}(\hat{f}) \subset E \Rightarrow \|\hat{f}\|_1 \sim \|f\|_{\infty};$$

- 2. $\bigoplus_{\pi\in E} \mathbb{M}_{n_{\pi}} = \{\hat{\mu}|_{E} : \mu\in M(G)\};$
- 3. $\bigoplus_{\pi\in E}^{c_0}\mathbb{M}_{n_\pi}=\{\hat{f}|_E: f\in L^1(G)\}.$

Sidon sets: quantum group setting

Let $\mathbb G$ be a compact quantum group. F the modular element for $\hat{\mathbb G}$. For $x\in L^\infty(\mathbb G)$ and $\pi\in\mathrm{Irr}(\mathbb G)$, recall $\hat{x}(\pi)=(h\otimes\mathrm{id})((u^{(\pi)})^*(x\otimes 1))$. The norm on $\ell^1(\hat{\mathbb G})$ is explicitly given by

$$\|\hat{x}\|_1 = \sum_{\pi \in \operatorname{Irr}(\mathbb{G})} d_{\pi} \operatorname{Tr}(|\hat{x}(\pi) F_{\pi}|). \quad (d_{\pi} = \operatorname{Tr}(F_{\pi}))$$

Theorem (W.) Consider $E \subset Irr(\mathbb{G})$. TFAE:

1. E is a Sidon set, i.e.,

$$\operatorname{supp}(\hat{x}) \subset E \Rightarrow \|\hat{x}\|_1 \sim \|x\|_{\infty};$$

- 2. $\bigoplus_{\pi \in E} \mathbb{M}_{n_{\pi}} = \{ \hat{\varphi}|_{E} : \varphi \in C_{r}(\mathbb{G})^{*} \};$
- 3. $\bigoplus_{\pi \in E}^{c_0} \mathbb{M}_{n_{\pi}} = \{\hat{x}|_E : x \in L^1(\mathbb{G})\}.$

Sidon sets: classical settings revisited

If $\mathbb{G} = \hat{\Gamma}$ for a discrete group Γ , recall

$$\operatorname{Irr}(\hat{\Gamma}) = \Gamma \quad \text{and} \quad x = \sum_{\gamma} \hat{x}(\gamma) \lambda(\gamma) \in \mathit{VN}(\Gamma).$$

The previous theorem improves a result of Picardello: (Picardello proved in the special case that Γ is amenable)

Corollary Let Γ be a discrete group (not necessarily amenable). TFAE:

1. $E \subset \Gamma$ is a Sidon set, i.e.,

$$\forall (\alpha_{\gamma}) \subset \mathbb{C}, \quad \sum_{\gamma \in E} |\alpha_{\gamma}| \sim \|\sum_{\gamma \in E} \alpha_{\gamma} \lambda(\gamma)\|_{\mathit{VN}(\Gamma)};$$

2. $E \subset \Gamma$ is a strong Sidon set, i.e.,

$$c_0(E) = \{f|_E : f \in A(\Gamma)(\cong L^1(\widehat{\Gamma}))\}.$$

Remark: various generalizations vs amenability

- ▶ \mathbb{G} is called coamenable if $\epsilon: u_{ij}^{(\pi)} \mapsto \delta_{ij}$ is bdd on $C_r(\mathbb{G})$. Recall our convention: $\hat{\Gamma} = (C_r^*(\Gamma), \Delta_{C_r^*(\Gamma)})$ being a compact quantum group. $\hat{\Gamma}$ is coamenable iff Γ is amenable.
- If $\mathbb G$ is not coamenable, there are various (non-equivalent) analogue of Sidon sets: weak Sidon sets, interpolation sets of multipliers, unconditional Sidon sets, Leinert sets, etc. (For $\hat{\Gamma}$: Pisier 95')

Sidon sets $\Rightarrow \Lambda(p)$ -sets

Definition $E \subset Irr(\mathbb{G})$ is a $\Lambda(p)$ -set if

$$||x||_p \sim ||x||_1$$
, supp $(\hat{x}) \subset E$.

- ► Case for compact groups: Hewitt-Ross, Marcus-Pisier;
- ► Case for (dual of) discrete groups: Picardello, Harcharras...
- ▶ Case for compact quantum groups: more delicate Theorem (Blendek-Michaliček 13') Let \mathbb{G} be a CQG s.t. the Haar state h is tracial on $C(\mathbb{G})$. Denote

$$\chi_{\pi} = \sum_{i=1}^{n_{\pi}} u_{ii}^{(\pi)}, \quad \pi \in \operatorname{Irr}(\mathbb{G}).$$

If $E \subset \operatorname{Irr}(\mathbb{G})$ is a Helgason-Sidon set $(\subsetneq E)$ Sidon set), then for all $(c_{\pi})_{\pi \in E} \subset \mathbb{C}$ and $x = \sum_{\pi \in E} c_{\pi} \chi_{\pi}$,

$$||x||_2 \sim ||x||_1$$
.

Sidon sets $\Rightarrow \Lambda(p)$ -sets, Fourier multipliers

Theorem (W.) Let $2 and <math>E \subset Irr(\mathbb{G})$. Then:

$$||x||_p \sim ||x||_1$$
, $\operatorname{supp}(\hat{x}) \subset E$,

if and only if

$$\forall a \in \bigoplus_{\pi \in E} \mathbb{M}_{n_{\pi}}, \quad \exists b \in M(L^{p}(\mathbb{G})), \quad b|_{E} = a.$$

Remark: the completely bdd version of above thm is not established yet. (For $\mathbb{G} = \hat{\Gamma}$ dual of discrete group: Harcharras 99';

For $\mathbb{G} = G$ compact group: Hare-Mohanty 15'.)

Corollary Any Sidon set for \mathbb{G} is a $\Lambda(p)$ -set for 1 .

Observations on non-modularity I

Recall that we have a modular element F for $\hat{\mathbb{G}}$.

Proposition Let $E \subset \operatorname{Irr}(\mathbb{G})$ a $\Lambda(p)$ -set for 2 . Then

$$\sup_{\pi\in E}\|F_{\pi}\|<+\infty.$$

Drinfeld-Jimbo deformation: a compact semi-simple Lie group $G \rightsquigarrow$ a compact quantum group G_q (0 < q < 1), with \hat{G}_q non-unimodular.

Corollary $SU(2)_q$ does not admit $\Lambda(p)$ -set for any 2 .

Observations on non-modularity II

More words on noncommutative L^p : Let h be non-tracial on \mathbb{G} (equivalently $\hat{\mathbb{G}}$ non-unimodular)

- According to Kosaki 84': For each $0 \le \theta \le 1$, there is a complex interpolation scale $(L^p_{(\theta)}(\mathbb{G}))_{1 \le p \le \infty}$ between $L^\infty(\mathbb{G})$ and $L^\infty(\mathbb{G})_*$, which are isometrically isomorphic but not equal.
 - In the previous slides we have indeed taken $L^p(\mathbb{G}) = L^p_{(0)}(\mathbb{G})$.
- ▶ Casper 13': The boundedness of Fourier transform depends on θ .

Proposition Our definition of $\Lambda(p)$ -sets is independent of θ . That is, let $2 , <math>0 \le \theta, \theta' \le 1$ and $E \subset Irr(\mathbb{G})$. Then:

$$\|x\|_{L^p_{(\theta)}(\mathbb{G})} \sim \|x\|_{L^1_{(\theta)}(\mathbb{G})}, \quad \operatorname{supp}(\hat{x}) \subset E,$$

if and only if

$$\|x\|_{L^p_{(\theta')}(\mathbb{G})} \sim \|x\|_{L^1_{(\theta')}(\mathbb{G})}, \quad \operatorname{supp}(\hat{x}) \subset E.$$

Existence of $\Lambda(p)$ -sets

Theorem (Bożejko; W.) Let (M, φ) be a vNa equipped with a normal faithful state φ . Let $B = \{x_i \in M : i \geq 1\}$ be an orthogonal system wrt φ s.t. $\sup_i \|x_i\|_{\infty} < \infty$. Then for each $1 \leq p < \infty$, there exists an infinite subset $\{x_{i_k} : k \geq 1\} \subset B$

$$orall (c_k) \subset \mathbb{C}, \quad \|\sum_{k\geq 1} c_k x_{i_k}\|_{L^p(M)} \sim \Big(\sum_{k\geq 1} |c_k|^2\Big)^{rac{1}{2}}.$$

Corollary Let $\mathbb G$ be a CQG. Let $E\subset \operatorname{Irr}(\mathbb G)$ be an infinite subset with $\sup_{\pi\in E}d_\pi<\infty$. Then for each $1\leq p<\infty$, there exists an infinite subset $E'\subset E$ s.t.

$$||x||_p \sim ||x||_1$$
, supp $(\hat{x}) \subset E'$.

Thank you very much!