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Schrédinger’s equation

{ i0ru + Au = F(u) FeR. xR

u(0, x) = up(x)

@ Duhamel’s formula:
u(t,x) = e Bug(x) — i Ot e(t=5)AF(u(s,x))ds.
@ Existence, uniqueness: Contraction principle.
Relies on Strichartz estimates: V 2 < p,qg < +00
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Schrédinger’s equation

e Via a TT* argument, interpolation with ||e2| 2,2 < 1, and
Hardy-Littlewood-Sobolev inequality (Keel-Tao), (1) reduces
to L1 — L> dispersion inequality:

i _d
™| oo S 1872 (2)

@ (2) can be obtained by a complexification of the heat
semigroup (e2)>0.
o In RY we have an explicit formulation of the heat semigroup

kernel:
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Strichartz estimates in various settings

Question: What do we know in other settings ?

o Outside of a smooth convex domain of RY with
Laplace-Beltrami operator: global-in-time estimates with loss
of % derivatives [Burg-Gérard-Tzvetkov].

@ Compact riemannian manifold: local-in-time estimates with
loss of % derivatives [Burg-Gérard-Tzvetkov].

@ Asymptotically hyperbolic manifolds: local-in-time estimates
without loss [Bouclet].

@ Laplacian with a smooth potential, infinite manifolds with

boundary with one trapped orbit: local-in-time estimates with
% + ¢ loss of derivatives [Christianson].
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Strichartz estimates in various settings

Remark: One cannot expect global-in-time estimates in a
compact setting.

Theorem [Burg-Gérard-Tzvetkov, '04]

Let M be a compact riemannian manifold of dimension d. If
¢ € C3°(R4) then for all h €]0,1]:

i _d
le™ (PP A) i~ S 1t172, |t| S h.

~

o° are not adapted to our problem. We substitute them by a

familly of C°° functions well suited to the semigroup setting:

Ym(x) =x"e ™™, meN.
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Space of homogeneous type

The space:
(X, d, ) is a metric measured space with p satisfying a doubling
property:

Vx € X, Vr >0, u(B(x,2r)) < Cu(B(x,r)). (3)

Then there exists a homogeneous dimension d such that:

Vx € X,¥r > 0,YA > 1, u(B(x, Ar)) < A u(B(x, r)).

Euclidean space RY, open sets of R?, smooth manifolds of
dimension d, some fractals sets, Lie groups, Heisenberg group,...
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Heat semigroup

The operator:
@ H is a self-adjoint nonnegative operator, densely defined on

L2(X).
o H generates a L2-holomorphic semigroup (e *"),~¢ (Davies).
@ Davies-Gaffney estimates:

d(E,F)2

ar (DG)

Vt >0, VE,F C X, lle”" | 2gymizry S €™
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Heat semigroup

@ Typical on-diagonal upper estimates:

1
u(B(x, V1))

@ Self-improve (Coulhon-Sikora) into full gaussian estimates:

Vt >0, Vx € X, 0 < pe(x,x) < (DUE)

1 _dxy)?
Vt>0, Vx,y € X, 0< pe(x,y) S ——F~=€ #

n(B(x, V1))
(UE)

Remark:
(DUE) = (UE) = (DG).
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Heat semigroup

Some cases where the previous estimates hold:

o (DUE): A on a domain with boundary conditions, semigroup
generated by a self-adjoint operator of divergence form
H = —div(AV) with A a real bounded elliptic matrix on R¥;
e (UE): H=— Zf’zl X2 where X; are vector fields satisfying
Hormander condition on a Lie group or a riemannian manifold
with bounded geometry;

@ (DG): most second order self-adjoint differential operators,
Laplace-Beltrami on a riemannian manifold, Schrodinger
operator with potential...
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Hardy and BMO spaces

The function spaces:
o L' — [ estimate seems out of reach.
@ We prove instead H' — BMO dispersion.

e H! and BMO adapted to the semigroup (equivalent to the
classical H! of Coifman-Weiss, and BMO of John-Nirenberg).

@ Atomic decomposition (Bernicot-Zhao).

@ Interpolate with Lebesgue spaces, and the intermediate spaces
are corresponding Lebesgue spaces.
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Hardy and BMO spaces

The question we investigate is how to prove an H! — BMO
dispersive estimate:

i _d
le™ (b H)ll 1 myio S 18172

Remark: Write e4,,(h?H) = (h*H)™e~?" with z = h? — it.
e |t| <1 (i.e. t independant of h) is difficult.
e |t| < h? is straightforward by analytic continuation of (UE)
(since Re(z) =~ |z| > |t]).
o h? < |t| < his dealt by Burg-Gérard-Tzvetkov ('04) in the
compact riemannian manifold setting (using
pseudo-differential tools).

o We will treat the case h* < |t| < h'T= (for all € > 0).
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Theorem 1

Hypothesis (Hm,(A))
An operator T satisfies Hypothesis (Hp(A)) if:

Vr > 0, [ Tom(PH)l| 25,25y S ARB) (B, (Hm(A))

for any two balls B,, E: of radius r.

Remarks:
o We intend to use hypothesis (Hp(A)) for T = e™4,(h*H)
and A= |t|”
@ Hypothesis (Hm(A)) is weaker than the L! — [* estimate by
Cauchy-Schwarz inequality.

N\n.
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Theorem 1

Theorem 1 [Bernicot, S., '14]

Let T be a self-adjoint operator commuting with H and satisfying
[ T|l2y2 S 1. If T satisfies (Hm(A)) for m > 4, then for all

p € (1,2):

LU=

1_
[Tl HoBMmo S A thus “THLP—)LP' S AP

4

That theorem reduces the H! — BMO and LP — LP’ estimates to a

microlocalized L2(B,) — L?(B,) one.
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Theorem 1

Ideas of the proof:
@ Use the atomic structure of H1.

@ Use an approximation of the identity well suited to our setting
(e_SH)s>0

o Interpolate between H' — BMO and L% — [2.

Summary of theorem 1

Hm(A) = H' — BMO and LP — LP dispersive estimates.
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Theorem 2

Wave propagator

For f € L2, we note cos(tv/H)f the unique solution at time t of
the wave problem:

O?u+ Hu=0
Ujt=0 = f
é)tth::O = C

The wave propagator is the map f — cos(tv/H)f.
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Theorem 2

Finite speed propagation

For any disjoint open sets Uy, U C X, and any f; € L?(U;),
f> € L2(Uy), we have:

Y0 < t < d(Uy, Uz), < cos(tVH)f,f >=0. (4)

We have the equivalence (Coulhon-Sikora '06):

(DG) & (4).

Remark: If cos(tv/H) has a kernel K;, (4) means that K; is
supported in the “light cone”:

supp K: C {(x,y) € X2, d(x,y) < t}.
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Theorem 2

Assumption on the wave propagator

There exists + € (0, 00] and an integer ¢ such that for all s € (0, k),
for all r > 0 and any two balls B,, B, of radius r, we have:

d—1 d+1

||COS(S\/ﬁ)¢E(r2H)HL2(B,)—>L2(§:)S’( r ) 2 (;> |

r+s r+|L—s|

where L = d(B,, B;).

Remark: & is linked to the geometry of the space X (its
injectivity radius for example).
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Theorem 2

Theorem 2 [Bernicot, S. '14]

Under the previous assumption on the wave propagator, for all
m > max{$,¢+ [451]}:
QO If Kk = +oo: e satisfies (Hm(|t\_g)) for all t € R.
Q If k < 4o0: forall € >0 and h > 0 with |t| < h'*€ and all
integer m" > 0, ™4, (h*H) satisfies (Hm(|t|_g)).

@ In the first case we obtain global-in-time Strichartz estimates
without loss of derivatives.

@ In the second case we recover local-in-time Strichartz
estimates with % + ¢ loss of derivatives.
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Theorem 2

Ideas of the proof:
2
o Cauchy formula = e=2H = f0+ cos(svVH)e &
z=~h>—

o Integrate by parts when s is small;

Wlth

@ Use assumption on cos(sv' H) when s < k;

52
@ Use the exponential decay of e™ 4 when s is large.

Summary of theorem 2

L2(B ) — LZ(B ) dispersion for the wave propagator = H,, (|t|—%)_
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Applications

Some cases where we can check L%(B,) — L?(B,) dispersion for
the wave propagator to apply Theorem 1 and 2 and recover
Strichartz estimates:

Examples
o X =R with H=—A (k = 4+00);
o X = R? with H = —div(AV) where A € C1! (k < +00);

@ Compact riemannian manifolds with Laplace-Beltrami
operator (x depends on the injectivity radius);

@ Non-compact riemannian manifolds with bounded geometry
(k given by the geometry);

@ Non-trapping asymptotically conic manifolds with
H = —A + V ([Hassel-Yang '15]).
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Applications

One thing to remember:

[%(B,) — Lz(E) dispersive estimates for the wave propagator

4
H! — BMO dispersive estimates for the Schrodinger operator

4

LP[9 Strichartz inequalities for the Schrodinger operator




Conclusion
°
Perspectives

@ A good understanding of the wave propagator in various
settings will help to detect whereas the method can apply:

o The proof of (DG) < (4) may allow us to show that gaussian
upper bounds (UE) imply a dispersion for cos(sv/H);

o Weaken the assumption on cos(sv/H), in particular near the
boundary of the light cone;

o Klainerman's commuting vector fields method may give a
suitable L! — L°° dispersive estimates for cos(sv/H) in various
settings (mild assumption on the geometry of X, or
H = —div(AV) with no/minimal regularity on A);

@ Find new examples where we can apply our method to derive
Strichartz estimates in general settings;

@ Perturbation of H with a potential V' with no regularity;
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Thank you for your attention !
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