Framework

Results 00000000 Conclusion 0000

# Dispersive inequalities via heat semigroup

# Valentin Samoyeau,

Advisor: Frédéric Bernicot. Laboratoire de Mathématiques Jean Leray, Université de Nantes

## November 30, 2015







▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Framework 000000 Results 00000000 Conclusion 0000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

## Introduction

- Schrödinger's equation
- Strichartz estimates in various settings

# 2 Framework

- Space of homogeneous type
- Heat semigroup
- Hardy and BMO spaces
- 3 Results
  - Theorem 1
  - Theorem 2
- 4 Conclusion
  - Applications
  - Perspectives

Framework 000000 Results 00000000 Conclusion 0000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Introduction

- Schrödinger's equation
- Strichartz estimates in various settings
- 2 Framework
  - Space of homogeneous type
  - Heat semigroup
  - Hardy and BMO spaces
- 3 Results
  - Theorem 1
  - Theorem 2
- 4 Conclusion
  - Applications
  - Perspectives

| Introduction           | Framework | Results | Conclusion |
|------------------------|-----------|---------|------------|
| <b>0</b> 000           | 000000    | 0000000 | 0000       |
| Schrödinger's equation |           |         |            |

$$\begin{cases} i\partial_t u + \Delta u = F(u) \\ u(0, x) = u_0(x) \end{cases}, \quad t \in \mathbb{R}, \ x \in \mathbb{R}^d.$$
(NLS)

• Duhamel's formula:  

$$u(t,x) = e^{it\Delta}u_0(x) - i \int_0^t e^{i(t-s)\Delta}F(u(s,x))ds.$$

Existence, uniqueness: Contraction principle.
 Relies on Strichartz estimates: ∀ 2 ≤ p, q ≤ +∞

$$\frac{2}{p} + \frac{d}{q} = \frac{d}{2} \Rightarrow \|e^{it\Delta}u_0\|_{L^p_t L^q_x} \lesssim \|u_0\|_{L^2}.$$
 (1)

(ロ)、(型)、(E)、(E)、 E) の(の)

| Introduction           | Framework | Results | Conclusion |
|------------------------|-----------|---------|------------|
| 0000                   | 000000    | 0000000 | 0000       |
| Schrödinger's equation |           |         |            |

• Via a  $TT^*$  argument, interpolation with  $\|e^{it\Delta}\|_{L^2 \to L^2} \lesssim 1$ , and Hardy-Littlewood-Sobolev inequality (Keel-Tao), (1) reduces to  $L^1 - L^{\infty}$  dispersion inequality:

$$\|e^{it\Delta}\|_{L^1\to L^{+\infty}} \lesssim |t|^{-\frac{d}{2}}.$$
(2)

- (2) can be obtained by a complexification of the heat semigroup (e<sup>t∆</sup>)<sub>t≥0</sub>.
- In R<sup>d</sup> we have an explicit formulation of the heat semigroup kernel:

$$p_t(x,y) = rac{1}{(4\pi t)^{rac{d}{2}}}e^{-rac{|x-y|^2}{4t}}$$

| Introduction                             | Framework | Results | Conclusion |
|------------------------------------------|-----------|---------|------------|
| 0000                                     | 000000    | 0000000 | 0000       |
| Strichartz estimates in various settings |           |         |            |

### Question: What do we know in other settings ?

### Examples

- Outside of a smooth convex domain of ℝ<sup>d</sup> with Laplace-Beltrami operator: global-in-time estimates with loss of <sup>1</sup>/<sub>p</sub> derivatives [Burq-Gérard-Tzvetkov].
- Compact riemannian manifold: local-in-time estimates with loss of <sup>1</sup>/<sub>p</sub> derivatives [Burq-Gérard-Tzvetkov].
- Asymptotically hyperbolic manifolds: local-in-time estimates without loss [Bouclet].
- Laplacian with a smooth potential, infinite manifolds with boundary with one trapped orbit: local-in-time estimates with  $\frac{1}{p} + \varepsilon$  loss of derivatives [Christianson].

| Introduction                             | Framework |
|------------------------------------------|-----------|
| 0000                                     | 000000    |
| Strichartz estimates in various settings |           |

Results 00000000 Conclusion 0000

**Remark:** One cannot expect global-in-time estimates in a compact setting.

### Theorem [Burq-Gérard-Tzvetkov, '04]

Let  $\mathcal{M}$  be a compact riemannian manifold of dimension d. If  $\varphi \in C_0^{\infty}(\mathbb{R}_+)$  then for all  $h \in ]0, 1]$ :

$$\|e^{it\Delta}\varphi(h^2\Delta)\|_{L^1\to L^\infty}\lesssim |t|^{-rac{d}{2}}, \quad |t|\lesssim h.$$

 $C_0^{\infty}$  are not adapted to our problem. We substitute them by a familly of  $C^{\infty}$  functions well suited to the semigroup setting:

$$\psi_m(x) = x^m e^{-x}, \ m \in \mathbb{N}.$$

| Framework |
|-----------|
| 000000    |

Results 00000000 Conclusion 0000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

### Introduction

- Schrödinger's equation
- Strichartz estimates in various settings

# 2 Framework

- Space of homogeneous type
- Heat semigroup
- Hardy and BMO spaces
- 3 Results
  - Theorem 1
  - Theorem 2
- 4 Conclusion
  - Applications
  - Perspectives

| Introduction              | Framework | Results | Conclusion |
|---------------------------|-----------|---------|------------|
| 0000                      | ●00000    | 0000000 | 0000       |
| Space of homogeneous type |           |         |            |

### The space:

 $(X, d, \mu)$  is a metric measured space with  $\mu$  satisfying a doubling property:

$$\forall x \in X, \ \forall r > 0, \ \mu(B(x,2r)) \le C\mu(B(x,r)). \tag{3}$$

Then there exists a homogeneous dimension d such that:

$$\forall x \in X, \forall r > 0, \forall \lambda \ge 1, \mu(B(x, \lambda r)) \lesssim \lambda^d \mu(B(x, r)).$$

### Examples

Euclidean space  $\mathbb{R}^d$ , open sets of  $\mathbb{R}^d$ , smooth manifolds of dimension d, some fractals sets, Lie groups, Heisenberg group,...

| Introduction   | Framework | Results  | Conclusion |
|----------------|-----------|----------|------------|
| 0000           | 00000     | 00000000 | 0000       |
| Heat semigroup |           |          |            |

## The operator:

- *H* is a self-adjoint nonnegative operator, densely defined on  $L^2(X)$ .
- *H* generates a  $L^2$ -holomorphic semigroup  $(e^{-tH})_{t\geq 0}$  (Davies).
- Davies-Gaffney estimates:

$$\forall t > 0, \ \forall E, F \subset X, \ \|e^{-tH}\|_{L^2(E) \to L^2(F)} \lesssim e^{-\frac{d(E,F)^2}{4t}} \quad (\mathsf{DG})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

| Introduction   | Framework | Results | Conclusion |
|----------------|-----------|---------|------------|
| 0000           | 00000     | 0000000 | 0000       |
| Heat semigroup |           |         |            |

• Typical on-diagonal upper estimates:

$$\forall t > 0, \ \forall x \in X, \ 0 \leq p_t(x,x) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}$$
 (DUE)

• Self-improve (Coulhon-Sikora) into full gaussian estimates:

$$\forall t > 0, \ \forall x, y \in X, \ 0 \le \rho_t(x, y) \lesssim \frac{1}{\mu(B(x, \sqrt{t}))} e^{-\frac{d(x, y)^2}{4t}}.$$
(UE)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Remark:

$$(\mathsf{DUE}) \Rightarrow (\mathsf{UE}) \Rightarrow (\mathsf{DG}).$$

| Introduction   |  |
|----------------|--|
| 0000           |  |
| Heat semigroup |  |

Framework

Results 00000000 Conclusion 0000

Some cases where the previous estimates hold:

### Examples

- (DUE): Δ on a domain with boundary conditions, semigroup generated by a self-adjoint operator of divergence form
   H = −div(A∇) with A a real bounded elliptic matrix on ℝ<sup>d</sup>;
- (UE): H = −∑<sub>i=1</sub><sup>d</sup> X<sub>i</sub><sup>2</sup> where X<sub>i</sub> are vector fields satisfying Hörmander condition on a Lie group or a riemannian manifold with bounded geometry;
- (DG): most second order self-adjoint differential operators, Laplace-Beltrami on a riemannian manifold, Schrödinger operator with potential...

| Introduction         | Framework | Results | Conclusion |
|----------------------|-----------|---------|------------|
| 0000                 | 000000    | 0000000 | 0000       |
| Hardy and BMO spaces |           |         |            |

## The function spaces:

- $L^1 L^\infty$  estimate seems out of reach.
- We prove instead  $H^1 BMO$  dispersion.
- *H*<sup>1</sup> and BMO adapted to the semigroup (equivalent to the classical *H*<sup>1</sup> of Coifman-Weiss, and BMO of John-Nirenberg).
- Atomic decomposition (Bernicot-Zhao).
- Interpolate with Lebesgue spaces, and the intermediate spaces are corresponding Lebesgue spaces.

| Introduction         | Framework | Results | Conclusion |
|----------------------|-----------|---------|------------|
| 0000                 | 00000     | 0000000 | 0000       |
| Hardy and BMO spaces |           |         |            |

The question we investigate is how to prove an  $H^1 - BMO$  dispersive estimate:

$$\|e^{itH}\psi_m(h^2H)\|_{H^1\to BMO} \lesssim |t|^{-\frac{d}{2}}.$$

**Remark:** Write  $e^{itH}\psi_m(h^2H) = (h^2H)^m e^{-zH}$  with  $z = h^2 - it$ .

- $|t| \leq 1$  (i.e. t independent of h) is difficult.
- |t| ≤ h<sup>2</sup> is straightforward by analytic continuation of (UE) (since Re(z) ≃ |z| ≥ |t|).
- h<sup>2</sup> ≤ |t| ≤ h is dealt by Burq-Gérard-Tzvetkov ('04) in the compact riemannian manifold setting (using pseudo-differential tools).

• We will treat the case  $h^2 \leq |t| \leq h^{1+\varepsilon}$  (for all  $\varepsilon > 0$ ).

#### Framework 000000

Results

Conclusion 0000

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Introduction
  - Schrödinger's equation
  - Strichartz estimates in various settings
- 2 Framework
  - Space of homogeneous type
  - Heat semigroup
  - Hardy and BMO spaces
- 3 Results
  - Theorem 1
  - Theorem 2
- 4 Conclusion
  - Applications
  - Perspectives

| Introduction | Framework | Results | Conclusion |
|--------------|-----------|---------|------------|
| 0000         | 000000    | ••••••  | 0000       |
| Theorem 1    |           |         |            |

# Hypothesis $(H_m(A))$

An operator T satisfies Hypothesis  $(H_m(A))$  if:

$$\forall r > 0, \ \|T\psi_m(r^2H)\|_{L^2(B_r) \to L^2(\widetilde{B_r})} \lesssim A\mu(B_r)^{\frac{1}{2}}\mu(\widetilde{B_r})^{\frac{1}{2}}, \ (H_m(A))$$

for any two balls  $B_r$ ,  $B_r$  of radius r.

## **Remarks:**

- We intend to use hypothesis  $(H_m(A))$  for  $T = e^{itH}\psi_{m'}(h^2H)$ and  $A = |t|^{-\frac{d}{2}}$ .
- Hypothesis  $(H_m(A))$  is weaker than the  $L^1 L^{\infty}$  estimate by Cauchy-Schwarz inequality.

| Introduction | Framework | Results | Conclusion |
|--------------|-----------|---------|------------|
| 0000         | 000000    | 0000000 | 0000       |
| Theorem 1    |           |         |            |

### Theorem 1 [Bernicot, S., '14]

Let T be a self-adjoint operator commuting with H and satisfying  $||T||_{L^2 \to L^2} \lesssim 1$ . If T satisfies  $(H_m(A))$  for  $m \ge \frac{d}{2}$ , then for all  $p \in (1, 2)$ :

$$\|T\|_{H^1\to \text{BMO}} \lesssim A \quad \text{thus} \quad \|T\|_{L^p\to L^{p'}} \lesssim A^{\frac{1}{p}-\frac{1}{p'}}$$

That theorem reduces the  $H^1$  – BMO and  $L^p - L^{p'}$  estimates to a microlocalized  $L^2(B_r) - L^2(\widetilde{B_r})$  one.

| Introduction | Framework | Results | Conclusion |
|--------------|-----------|---------|------------|
| 0000         | 000000    | 0000000 | 0000       |
| Theorem 1    |           |         |            |

# Ideas of the proof:

- Use the atomic structure of  $H^1$ .
- Use an approximation of the identity well suited to our setting  $(e^{-sH})_{s>0}$

• Interpolate between  $H^1 - BMO$  and  $L^2 - L^2$ .

### Summary of theorem 1

 $H_m(A) \Rightarrow H^1 \to BMO$  and  $L^p \to L^{p'}$  dispersive estimates.

| Introduction<br>0000 | Framework<br>000000 | Results | Conclusion |
|----------------------|---------------------|---------|------------|
| Theorem 2            |                     |         |            |
|                      |                     |         |            |

### Wave propagator

For  $f \in L^2$ , we note  $\cos(t\sqrt{H})f$  the unique solution at time t of the wave problem:

$$\partial_t^2 u + Hu = 0$$
$$u_{|t=0} = f$$
$$\partial_t u_{|t=0} = 0$$

The wave propagator is the map  $f \mapsto \cos(t\sqrt{H})f$ .

| Introduction |
|--------------|
| 0000         |
| Theorem 2    |

Framework 000000 Results

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Finite speed propagation

For any disjoint open sets  $U_1, U_2 \subset X$ , and any  $f_1 \in L^2(U_1)$ ,  $f_2 \in L^2(U_2)$ , we have:

$$\forall 0 < t < d(U_1, U_2), < \cos(t\sqrt{H})f_1, f_2 >= 0.$$
 (4)

We have the equivalence (Coulhon-Sikora '06):

 $(DG) \Leftrightarrow (4).$ 

**Remark:** If  $cos(t\sqrt{H})$  has a kernel  $K_t$ , (4) means that  $K_t$  is supported in the "light cone":

supp 
$$K_t \subset \{(x,y) \in X^2, d(x,y) \leq t\}.$$

| Introduction<br>0000 | Framework<br>000000 | Results | Conclusion |
|----------------------|---------------------|---------|------------|
| Theorem 2            |                     |         |            |

### Assumption on the wave propagator

There exists  $\kappa \in (0, \infty]$  and an integer  $\ell$  such that for all  $s \in (0, \kappa)$ , for all r > 0 and any two balls  $B_r$ ,  $\widetilde{B_r}$  of radius r, we have:

$$\|\cos(s\sqrt{H})\psi_{\ell}(r^{2}H)\|_{L^{2}(B_{r})\to L^{2}(\widetilde{B_{r}})} \lesssim \left(\frac{r}{r+s}\right)^{\frac{d-1}{2}} \left(\frac{r}{r+|L-s|}\right)^{\frac{d+1}{2}}$$
  
where  $L = d(B_{r}, \widetilde{B_{r}}).$ 

**Remark:**  $\kappa$  is linked to the geometry of the space X (its injectivity radius for example).

| Introduction |
|--------------|
| 0000         |
| Theorem 2    |

Framework 000000 Results

Conclusion 0000

## Theorem 2 [Bernicot, S. '14]

Under the previous assumption on the wave propagator, for all m ≥ max{d/2, l + [d-1/2]}:
If κ = +∞: e<sup>itH</sup> satisfies (H<sub>m</sub>(|t|<sup>-d/2</sup>)) for all t ∈ ℝ.
If κ < +∞: for all ε > 0 and h > 0 with |t| ≤ h<sup>1+ε</sup> and all integer m' ≥ 0, e<sup>itH</sup>ψ<sub>m'</sub>(h<sup>2</sup>H) satisfies (H<sub>m</sub>(|t|<sup>-d/2</sup>)).

- In the first case we obtain global-in-time Strichartz estimates without loss of derivatives.
- In the second case we recover local-in-time Strichartz estimates with  $\frac{1}{p} + \varepsilon$  loss of derivatives.

| Introduction | Framework | Results | Conclusion |
|--------------|-----------|---------|------------|
| 0000         | 000000    |         | 0000       |
| Theorem 2    |           |         |            |

## Ideas of the proof:

- Cauchy formula  $\Rightarrow e^{-zH} = \int_0^{+\infty} \cos(s\sqrt{H}) e^{-\frac{s^2}{4z}} \frac{ds}{\sqrt{\pi z}}$  with  $z = h^2 it;$
- Integrate by parts when s is small;
- Use assumption on  $\cos(s\sqrt{H})$  when  $s < \kappa$ ;
- Use the exponential decay of  $e^{-\frac{s^2}{4z}}$  when s is large.

### Summary of theorem 2

 $L^2(B_r) o L^2(\widetilde{B_r})$  dispersion for the wave propagator  $\Rightarrow H_m(|t|^{-rac{d}{2}}).$ 

| Framework |
|-----------|
| 000000    |

Results 00000000 Conclusion

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduction
  - Schrödinger's equation
  - Strichartz estimates in various settings
- 2 Framework
  - Space of homogeneous type
  - Heat semigroup
  - Hardy and BMO spaces
- 3 Results
  - Theorem 1
  - Theorem 2
- 4 Conclusion
  - Applications
  - Perspectives

| Introduction<br>0000 | Framework | Results |
|----------------------|-----------|---------|
| Applications         |           |         |

Some cases where we can check  $L^2(B_r) \rightarrow L^2(B_r)$  dispersion for the wave propagator to apply Theorem 1 and 2 and recover Strichartz estimates:

### Examples

- $X = \mathbb{R}^d$  with  $H = -\Delta$   $(\kappa = +\infty)$ ;
- $X = \mathbb{R}^d$  with  $H = -\operatorname{div}(A \nabla)$  where  $A \in C^{1,1}$   $(\kappa < +\infty)$ ;
- Compact riemannian manifolds with Laplace-Beltrami operator (κ depends on the injectivity radius);
- Non-compact riemannian manifolds with bounded geometry (κ given by the geometry);
- Non-trapping asymptotically conic manifolds with  $H = -\Delta + V$  ([Hassel-Yang '15]).

Conclusion

| Introduction | Framework | Results |
|--------------|-----------|---------|
| 0000         | 000000    | 0000000 |
| Applications |           |         |

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

One thing to remember:

 $L^{2}(B_{r}) - L^{2}(\widetilde{B_{r}})$  dispersive estimates for the wave propagator  $\downarrow$   $H^{1} - BMO$  dispersive estimates for the Schrödinger operator  $\downarrow$  $L^{p}L^{q}$  Strichartz inequalities for the Schrödinger operator

| Introduction | Framework | Results  | Conclusion |
|--------------|-----------|----------|------------|
| 0000         | 000000    | 00000000 |            |
| Perspectives |           |          |            |

- A good understanding of the wave propagator in various settings will help to detect whereas the method can apply:
  - The proof of (DG)  $\Leftrightarrow$  (4) may allow us to show that gaussian upper bounds (UE) imply a dispersion for  $\cos(s\sqrt{H})$ ;
  - Weaken the assumption on  $\cos(s\sqrt{H})$ , in particular near the boundary of the light cone;
  - Klainerman's commuting vector fields method may give a suitable L<sup>1</sup> − L<sup>∞</sup> dispersive estimates for cos(s√H) in various settings (mild assumption on the geometry of X, or H = -div(A∇) with no/minimal regularity on A);

- Find new examples where we can apply our method to derive Strichartz estimates in general settings;
- Perturbation of H with a potential V with no regularity;

Framework 000000 Results 00000000 Conclusion

## Thank you for your attention !