Inner Functions and Inverse Spectral theory

Rishika Rupam (joint work with Mishko Mitkovski)

Labex CEMPI, Université Lille 1

December 1st, 2015

Rishika Rupam (joint work with Mishko Mitke Inner Functions and Inverse Spectral theory

1 / 12

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}.$$

Rishika Rupam (joint work with Mishko Mitk Inner Functions and Inverse Spectral theory December 1st, 2015 DQC

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda}$$

Rishika Rupam (joint work with Mishko Mitk Inner Functions and Inverse Spectral theory December 1st, 2015

990

2 / 12

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

990

2 / 12

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_n t}dt = 0$$

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_n t}dt = 0 = \hat{f}(\lambda_n)$$
.

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_{n}t}dt = 0 = \hat{f}(\lambda_{n}).$$

 $\hat{f}|_{\Lambda} = 0$

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_{n}t}dt = 0 = \hat{f}(\lambda_{n})$$
.
 $\hat{f}|_{\Lambda} = 0$. Is Λ a uniqueness set in PW_{a} ?
(Uniqueness set: $F, G \in PW_{a}$ and $F = G$ on $\Lambda \Rightarrow F \equiv G$.)

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_{n}t}dt = 0 = \hat{f}(\lambda_{n})$$
.
 $\hat{f}|_{\Lambda} = 0$. Is Λ a uniqueness set in PW_{a} ?
(Uniqueness set: $F, G \in PW_{a}$ and $F = G$ on $\Lambda \Rightarrow F \equiv G$.)

Solved by Beurling & Malliavin in 1967.

3

2 / 12

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_{n}t}dt = 0 = \hat{f}(\lambda_{n})$$
.
 $\hat{f}|_{\Lambda} = 0$. Is Λ a uniqueness set in PW_{a} ?
(Uniqueness set: $F, G \in PW_{a}$ and $F = G$ on $\Lambda \Rightarrow F \equiv G$.)

Solved by Beurling & Malliavin in 1967.

 $R(\Lambda) = d^*_{BM}(\Lambda)$

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_{n}t}dt = 0 = \hat{f}(\lambda_{n})$$
.
 $\hat{f}|_{\Lambda} = 0$. Is Λ a uniqueness set in PW_{a} ?
(Uniqueness set: $F, G \in PW_{a}$ and $F = G$ on $\Lambda \Rightarrow F \equiv G$.)

Solved by Beurling & Malliavin in 1967.

$$R(\Lambda) = d^*_{BM}(\Lambda)$$

In 2010, Makarov and Poltoratski reformulated their results, using Model Spaces and Toeplitz kernels.

Problem

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}. \text{ Is } \{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda} \text{ complete in } L^2(0,a)?$$

Restatement

If not, then
$$\int_{-a}^{a} f(t)e^{-i\lambda_{n}t}dt = 0 = \hat{f}(\lambda_{n})$$
.
 $\hat{f}|_{\Lambda} = 0$. Is Λ a uniqueness set in PW_{a} ?
(Uniqueness set: $F, G \in PW_{a}$ and $F = G$ on $\Lambda \Rightarrow F \equiv G$.)

Solved by Beurling & Malliavin in 1967.

$$R(\Lambda) = d^*_{BM}(\Lambda)$$

In 2010, Makarov and Poltoratski reformulated their results, using Model Spaces and Toeplitz kernels.

$$R(\Lambda) = \sup\{a : KerT_{\bar{S}^a J_{\Lambda}} = 0\},\$$

 $S(z) = e^{iz}$ and J_{Λ} is an MIF with $\sigma(J) = \Lambda$.

Model Spaces

Paley Wiener Space

$$\mathcal{PW}_{a}=S^{-a}[\mathcal{H}^{2}\ominus S^{2a}\mathcal{H}^{2}],$$
 where $S(z)=e^{iz}$

Model Spaces

Paley Wiener Space

$$\mathcal{PW}_{a}=S^{-a}[\mathcal{H}^{2}\ominus S^{2a}\mathcal{H}^{2}],$$
 where $S(z)=e^{iz}$

Model Spaces

$$K_{S^{2a}} = \mathcal{H}^2 \ominus S^{2a} \mathcal{H}^2$$

Rishika Rupam (joint work with Mishko Mitk(Inner Functions and Inverse Spectral theory Decem

F

Paley Wiener Space

$$\mathcal{PW}_{a}=S^{-a}[\mathcal{H}^{2}\ominus S^{2a}\mathcal{H}^{2}],$$
 where $S(z)=e^{iz}$

Model Spaces

$$\begin{array}{rcl} \mathcal{K}_{S^{2a}} & = & \mathcal{H}^2 \ominus S^{2a} \mathcal{H}^2 \\ \mathcal{K}_{\Theta} & = & \mathcal{H}^2 \ominus \Theta \mathcal{H}^2. \end{array}$$

Rishika Rupam (joint work with Mishko Mitk Inner Functions and Inverse Spectral theory

Paley Wiener Space

$$\mathcal{PW}_{a}=S^{-a}[\mathcal{H}^{2}\ominus S^{2a}\mathcal{H}^{2}],$$
 where $S(z)=e^{iz}$

Model Spaces

$$\begin{array}{rcl} \mathcal{K}_{S^{2a}} & = & \mathcal{H}^2 \ominus S^{2a} \mathcal{H}^2 \\ \mathcal{K}_{\Theta} & = & \mathcal{H}^2 \ominus \Theta \mathcal{H}^2. \end{array}$$

What about uniqueness sets of K_{Θ} ?

э

Problem Statement

Consider the Schrödinger operator

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

$$cos(\alpha)u(a) + sin(\alpha)u'(a) = 0$$

$$cos(\beta)u(b) + sin(\beta)u'(b) = 0.$$

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

$$\cos(\alpha)u(a) + \sin(\alpha)u'(a) = 0$$

$$\cos(\beta)u(b) + \sin(\beta)u'(b) = 0.$$

Question

Can we reconstruct potential **uniquely** from spectral data?

Rishika Rupam (joint work with Mishko Mitk Inner Functions and Inverse Spectral theory December 1st, 2015 5 /

イロト イヨト イヨト イヨト

æ

Rishika Rupam (joint work with Mishko Mitk Inner Functions and Inverse Spectral theory December 1st, 2015 5 /

イロト イヨト イヨト イヨト

æ

Rishika Rupam (joint work with Mishko Mitke Inner Functions and Inverse Spectral theory December 1st, 2015 5 / 12

・ロト ・虚ト ・ モト

æ

Rishika Rupam (joint work with Mishko Mitk Inner Functions and Inverse Spectral theory December 1st, 2015

・ロト ・虚ト ・ モト

æ

900

5 / 12

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg. $B_W(z) = \frac{z-w}{z-\overline{w}} (w \in \mathbb{C}_+),$

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg. $B_W(z) = \frac{z-w}{z-\overline{w}} (w \in \mathbb{C}_+), e^{iaz} (a \ge 0).$

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg.
$$B_W(z) = \frac{z-w}{z-\overline{w}} (w \in \mathbb{C}_+), \ e^{iaz} \ (a \ge 0).$$

Spectrum

 $\sigma(\Theta) = \{ x \in \mathbb{R} | \Theta(x) = 1 \}.$

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg.
$$B_W(z) = \frac{z-w}{z-\overline{w}} (w \in \mathbb{C}_+), \ e^{iaz} \ (a \ge 0).$$

Spectrum

$$\sigma(\Theta) = \{ x \in \mathbb{R} | \Theta(x) = 1 \}.$$

Also a spectrum

$$\{x \in \mathbb{R} | \Theta(x) = e^{i\alpha}\}$$

6 / 12

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

DQC

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

u(a) = 0 (i.e. $\alpha = 0$, Dirichlet condition) $\cos(\beta)u(b) + \sin(\beta)u'(b) = 0.$

nac

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

u(a) = 0 (i.e. $\alpha = 0$, Dirichlet condition) $\cos(\beta)u(b) + \sin(\beta)u'(b) = 0.$

Weyl-Titchmarsh described the Weyl-m function in 1920s. Makarov and Poltoratski introduced the natural notion of a Weyl inner function in 2010.

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

$$u(a) = 0$$
 (i.e. $\alpha = 0$, Dirichlet condition)
 $\cos(\beta)u(b) + \sin(\beta)u'(b) = 0.$

Weyl-Titchmarsh described the Weyl-m function in 1920s. Makarov and Poltoratski introduced the natural notion of a Weyl inner function in 2010. **Spectral Relation**

 $\sigma(L,D,\beta) = \sigma(\Theta),$

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

$$u(a) = 0$$
 (i.e. $\alpha = 0$, Dirichlet condition)
 $\cos(\beta)u(b) + \sin(\beta)u'(b) = 0.$

Weyl-Titchmarsh described the Weyl-m function in 1920s. Makarov and Poltoratski introduced the natural notion of a Weyl inner function in 2010. **Spectral Relation**

$$\sigma(L, D, \beta) = \sigma(\Theta),$$

 $\sigma(L, e^{i\alpha}D, \beta) = \sigma(e^{-i\alpha}\Theta)$

where Θ is the Weyl inner function.

$$u \rightarrow -u'' + qu$$

on some $L^2(a, b)$.

$$u(a) = 0$$
 (i.e. $\alpha = 0$, Dirichlet condition)
 $\cos(\beta)u(b) + \sin(\beta)u'(b) = 0.$

Weyl-Titchmarsh described the Weyl-m function in 1920s. Makarov and Poltoratski introduced the natural notion of a Weyl inner function in 2010. **Spectral Relation**

$$\begin{aligned} \sigma(L,D,\beta) &= \sigma(\Theta), \\ \sigma(L,e^{i\alpha}D,\beta) &= \sigma(e^{-i\alpha}\Theta) \end{aligned}$$

where Θ is the Weyl inner function.

Marchenko

The Weyl -m function (and hence the Weyl-inner function) determines the potential uniquely.

Rishika Rupam (joint work with Mishko Mitke Inner Functions and Inverse Spectral theory

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々で

Use Clark measures.

イロト イポト イヨト イヨト

990

₹

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

990

3. 3

DQR

Rishika Rupam (joint work with Mishko Mitki Inner Functions and Inverse Spectral theory December 1st, 2015 8 / 12

 Φ is a Weyl inner function of a Schrödinger operator with potential in $L^2(0, b)$. A is a separated sequence on \mathbb{R} .

 Φ is a Weyl inner function of a Schrödinger operator with potential in $L^2(0, b)$. Λ is a separated sequence on \mathbb{R} .

Lemma (Mitkovski, R.)

The sequence Λ uniquely defines Φ if and only if the set $\Lambda \cup \{a\}$ is a uniqueness set for $K^2_{\Phi^2}$, for all $a \in \mathbb{R} \setminus \Lambda$.

 Φ is a Weyl inner function of a Schrödinger operator with potential in $L^2(0, b)$. Λ is a separated sequence on \mathbb{R} .

Lemma (Mitkovski, R.)

The sequence Λ uniquely defines Φ if and only if the set $\Lambda \cup \{a\}$ is a uniqueness set for $K^2_{\Phi^2}$, for all $a \in \mathbb{R} \setminus \Lambda$.

Lemma (Mitkovski, R.)

If Φ is a Weyl inner function, then Λ does not uniquely defines Φ iff for some MIF Θ with $\sigma(\Theta) = \Lambda$, there is an non-zero $f \in \ker^2_{\Phi^2\Theta}$ and f(a) = 0 for some $a \in \mathbb{R} \setminus \Lambda$.

What it means: Schrödinger case

Let *L* be a Schrödinger operator, with potential *q*. Let $\Lambda = {\lambda_n}_n$ be a sequence such that $\lambda_n \in \sigma(L, \alpha_n, D)$. Then, this data uniquely identifies *q* iff $\Lambda \cup {a}$ is a uniqueness set for $K^2_{\Phi^2}$, for any point $a \in \mathbb{R} \setminus \Lambda$. (Here, Φ is the related Weyl inner function.)

What it means: Schrödinger case

Let *L* be a Schrödinger operator, with potential *q*. Let $\Lambda = \{\lambda_n\}_n$ be a sequence such that $\lambda_n \in \sigma(L, \alpha_n, D)$. Then, this data uniquely identifies *q* iff $\Lambda \cup \{a\}$ is a uniqueness set for $K^2_{\Phi^2}$, for any point $a \in \mathbb{R} \setminus \Lambda$. (Here, Φ is the related Weyl inner function.) Question: What can we say in the case of MIFs corresponding to a different class of operators?

Some more questions

Makarov and Poltoratski

If there is a non-constant $G \in K_{\Phi}^{\infty}$ such that $G = \overline{G}$, then Λ is not defining for Φ .

Some more questions

Makarov and Poltoratski

If there is a non-constant $G \in K_{\Phi}^{\infty}$ such that $G = \overline{G}$, then Λ is not defining for Φ .

Mitkovski, R.

Suppose Λ is not defining for an MIF Φ , then there is a non-constant $G \in K_{\Phi}^+$ such that $G = \overline{G}$ on Λ .

Some more questions

Makarov and Poltoratski

If there is a non-constant $G \in K_{\Phi}^{\infty}$ such that $G = \overline{G}$, then Λ is not defining for Φ .

Mitkovski, R.

Suppose Λ is not defining for an MIF Φ , then there is a non-constant $G \in K_{\Phi}^+$ such that $G = \overline{G}$ on Λ . In fact the other MIF Φ_2 can be written as

$$\Phi_2 = e^{ic} \Phi rac{ar{G}}{G}$$

where c is some real constant.

Question: In which cases can we 'close the gap'?

Thank you!

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

E

- ∢ ⊒ →