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Restatement

If not, then [?_ f(t)e~ntdt = 0= F(\,).
f|/\ =0 . Is A a uniqueness set in PW,?
(Uniqueness set: F,G € PW,and F=Gon A= F=G.)

Solved by Beurling & Malliavin in 1967.
R(A) = dgm(A)

In 2010, Makarov and Poltoratski reformulated their results, using Model
Spaces and Toeplitz kernels.

R(A) = sup{a: KerTz., =0},
S(z) = e and Jp is an MIF with o(J) = A.
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Model Spaces

Paley Wiener Space

PW, = 5—3[7_[2 o 5237_[2],

where S(z) = e?

v

Model Spaces

Ks2a = H?© S?H?
Ke = H?>cOH2

What about uniqueness sets of Kg?
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Problem Statement

Consider the Schrodinger operator
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Problem Statement

Consider the Schrodinger operator
u— —u"+ qu
on some L2(a, b).

cos(a)u(a) +sin(a)d'(a) =
cos(B)u(b) +sin(B)d'(b) = O.

Can we reconstruct potential uniquely from spectral data?
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Meromorphic Inner Functions (MIFs)

Definition

An MIF © is a bounded analytic function on C,, with a meromorphic
continuation on C such that |©] =1 on R.
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Meromorphic Inner Functions (MIFs)

Definition
An MIF © is a bounded analytic function on C,, with a meromorphic
continuation on C such that |©] =1 on R.

eg. By(z) = Z=%(w € C,), 2% (a > 0).

Also a spectrum

{x € R|O(x) = e/*}
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u(a) = 0 (i.e. @« =0, Dirichlet condition)
cos(B)u(b) +sin(B)d'(b) = O.

Weyl-Titchmarsh described the Weyl-m function in 1920s. Makarov and
Poltoratski introduced the natural notion of a Weyl inner function in 2010.
Spectral Relation

U(L7 D7 /8) = 0—(@)7
o(L,e®D,B) = o(e *0)

where © is the Weyl inner function.

The Weyl -m function (and hence the Weyl-inner function) determines the
potential uniquely.
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Use Clark measures.
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Use Clark measures.
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Krein's formula: % log (8“‘%) = Ku+ ic.
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® is a Weyl inner function of a Schrodinger operator with potential in
L2(0, b). A is a separated sequence on R.
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Lemma (Mitkovski, R.)

The sequence N uniquely defines ® if and only if the set AU {a} is a
uniqueness set for K2,, for all a € R\ A.
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® is a Weyl inner function of a Schrodinger operator with potential in
L2(0, b). A is a separated sequence on R.

Lemma (Mitkovski, R.)

The sequence N uniquely defines ® if and only if the set AU {a} is a
uniqueness set for K2,, for all a € R\ A.

Lemma (Mitkovski, R.)

If ® is a Weyl inner function, then \ does not uniquely defines ® iff for
some MIF © with o(©) = A, there is an non-zero f € ker%)2 and
f(a) =0 for some a€ R\ A .

©
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What it means: Schrédinger case

Let L be a Schrodinger operator, with potential g. Let A = {\,}, be a
sequence such that A\, € (L, ap, D). Then, this data uniquely identifies g
iff AU {a} is a uniqueness set for K2, for any point a € R\ A.

(Here, @ is the related Weyl inner function.)
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What it means: Schrédinger case

Let L be a Schrodinger operator, with potential g. Let A = {\,}, be a
sequence such that A\, € (L, ap, D). Then, this data uniquely identifies g
iff AU {a} is a uniqueness set for K2, for any point a € R\ A.

(Here, @ is the related Weyl inner function.)

Question: What can we say in the case of MIFs corresponding to a
different class of operators?
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Some more questions

Makarov and Poltoratski

If there is a non-constant G € Kg° such that G = G, then A is not
defining for ®.
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Some more questions

Makarov and Poltoratski

If there is a non-constant G € Kg° such that G = G, then A is not
defining for ®.

Mitkovski, R.

Suppose A is not defining for an MIF ®, then there is a non-constant
G e Kif such that G = G on A.
In fact the other MIF ®5 can be written as

i G
(DQ = e'CCDE,

where ¢ is some real constant.

Question: In which cases can we 'close the gap'?
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Thank you!
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