Szlenk indices of convex hulls

joint work with Gilles Lancien and Matías Raja

Tony Procházka

Université de Franche-Comté

Luminy, December 2015

The Coauthors

Figure: Gilles

Figure: Matías

X ... a Banach space, $K \subset X^*$... w*-compact, $\varepsilon > 0$. Define

$$s'_{\varepsilon}(K) := \{x^* \in K : \ \forall \ \mathbf{w}^* - \text{neighborhood } U \text{ of } x^*, \\ \operatorname{diam}(K \cap U) \geq \varepsilon \} \ \dots \text{ Szlenk derivation of } K$$

X ... a Banach space, $K \subset X^*$... \mathbf{w}^* -compact, $\varepsilon > 0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

$$s_{\varepsilon}^0(K) := K,$$

X ... a Banach space, $K \subset X^*$... w*-compact, $\varepsilon > 0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

- $s_{\varepsilon}^{0}(K) := K,$
- $s_{\varepsilon}^{\alpha+1}(K) := s_{\varepsilon}'(s_{\varepsilon}^{\alpha}(K)),$

X ... a Banach space, $K \subset X^*$... \mathbf{w}^* -compact, $\varepsilon > 0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

- $s_{\varepsilon}^0(K) := K,$
- $s_{\varepsilon}^{\alpha+1}(K) := s_{\varepsilon}'(s_{\varepsilon}^{\alpha}(K)),$
- $s_{\varepsilon}^{\alpha}(K):=\bigcap_{\beta<\alpha}s_{\varepsilon}^{\beta}(K)$ if α is a limit ordinal.

X ... a Banach space, $K \subset X^*$... \mathbf{w}^* -compact, $\varepsilon > 0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

- $s_{\varepsilon}^0(K) := K,$
- $s_{\varepsilon}^{\alpha+1}(K) := s_{\varepsilon}'(s_{\varepsilon}^{\alpha}(K)),$
- $s^{\alpha}_{\varepsilon}(K):=\bigcap_{\beta<\alpha}s^{\beta}_{\varepsilon}(K)$ if α is a limit ordinal.

Then $Sz(X,\varepsilon):=\inf\{\alpha:\ s_{\varepsilon}^{\alpha}(B_{X^{*}})=\emptyset\}$ with $\inf\emptyset=+\infty.$

X ... a Banach space, $K \subset X^*$... w*-compact, $\varepsilon > 0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

- $s_{\varepsilon}^0(K) := K$,
- $s_{\varepsilon}^{\alpha+1}(K) := s_{\varepsilon}'(s_{\varepsilon}^{\alpha}(K)),$
- $s_{\varepsilon}^{\alpha}(K):=\bigcap_{\beta<\alpha}s_{\varepsilon}^{\beta}(K)$ if α is a limit ordinal.

Then $Sz(X,\varepsilon):=\inf\{\alpha:\ s_{\varepsilon}^{\alpha}(B_{X^*})=\emptyset\}$ with $\inf\emptyset=+\infty.$

Finally the Szlenk index of X is $Sz(X) = \sup_{\varepsilon>0} Sz(X,\varepsilon)$.

X ... a Banach space, $K \subset X^*$... \mathbf{w}^* -compact, $\varepsilon > 0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

- $s_{\varepsilon}^0(K) := K$,
- $s_{\varepsilon}^{\alpha+1}(K) := s_{\varepsilon}'(s_{\varepsilon}^{\alpha}(K)),$
- $s^{\alpha}_{\varepsilon}(K):=\bigcap_{\beta<\alpha}s^{\beta}_{\varepsilon}(K)$ if α is a limit ordinal.

Then $Sz(X,\varepsilon):=\inf\{\alpha:\ s_{\varepsilon}^{\alpha}(B_{X^*})=\emptyset\}$ with $\inf\emptyset=+\infty.$

Finally the Szlenk index of X is $Sz(X) = \sup_{\varepsilon>0} Sz(X,\varepsilon)$.

Fact

$$Sz(X) = 1$$
 iff dim $X < \infty$

X ... a Banach space, $K\subset X^*$... w*-compact, $\varepsilon>0$. Define

$$s_\varepsilon'(K):=\{x^*\in K:\ \forall\ \mathbf{w}^*-\text{neighborhood}\ U\ \text{of}\ x^*,\\ \dim(K\cap U)\geq\varepsilon\}\ \dots\ \text{Szlenk derivation of}\ K$$

Define $s_{\varepsilon}^{\alpha}(K)$ for α ordinal as follows:

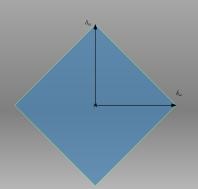
- $s_{\varepsilon}^0(K) := K$,
- $s_{\varepsilon}^{\alpha+1}(K) := s_{\varepsilon}'(s_{\varepsilon}^{\alpha}(K)),$
- $s_{\varepsilon}^{\alpha}(K):=\bigcap_{\beta<\alpha}s_{\varepsilon}^{\beta}(K)$ if α is a limit ordinal.

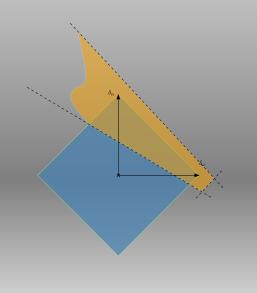
Then $Sz(X,\varepsilon) := \inf\{\alpha: s_{\varepsilon}^{\alpha}(B_{X^*}) = \emptyset\}$ with $\inf \emptyset = +\infty$.

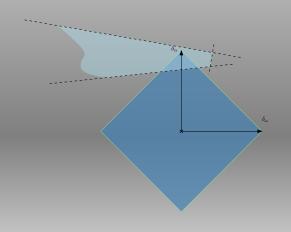
Finally the Szlenk index of X is $Sz(X) = \sup_{\varepsilon>0} Sz(X,\varepsilon)$.

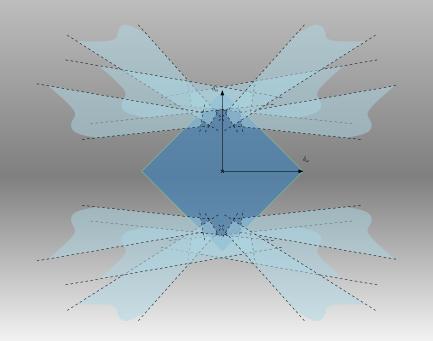
Fact

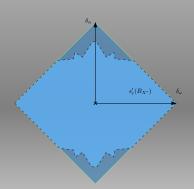
Sz(X) = 1 iff dim $X < \infty$ iff $Sz(X) < \omega$.

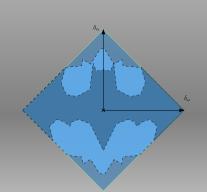


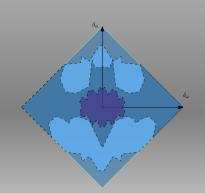












• If $X \simeq Y$, then Sz(X) = Sz(Y).

- If $X \simeq Y$, then Sz(X) = Sz(Y).
- More generally, if $X \subseteq Y$, then $Sz(X) \leq Sz(Y)$.

- If $X \simeq Y$, then Sz(X) = Sz(Y).
- More generally, if $X \subseteq Y$, then $Sz(X) \leq Sz(Y)$.
- $Sz(X) < +\infty$ iff X is Asplund.

- If $X \simeq Y$, then Sz(X) = Sz(Y).
- More generally, if $X \subseteq Y$, then $Sz(X) \leq Sz(Y)$.
- $Sz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Sz(X) < +\infty$ iff $Sz(X) < \omega_1$.

- If $X \simeq Y$, then Sz(X) = Sz(Y).
- More generally, if $X \subseteq Y$, then $Sz(X) \leq Sz(Y)$.
- $Sz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Sz(X) < +\infty$ iff $Sz(X) < \omega_1$.
- $\sup\{Sz(X): X \text{ separable reflexive }\} = \omega_1 \text{ (Szlenk '68)}$

- If $X \simeq Y$, then Sz(X) = Sz(Y).
- More generally, if $X \subseteq Y$, then $Sz(X) \leq Sz(Y)$.
- $Sz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Sz(X) < +\infty$ iff $Sz(X) < \omega_1$.
- $\sup\{Sz(X): X \text{ separable reflexive }\} = \omega_1 \text{ (Szlenk '68)}$
- $\forall~X$ Banach $\exists~\alpha$ ordinal such that $Sz(X) = \omega^\alpha$ (Lancien '96)

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \varepsilon > 0 \exists \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1 - \delta)B_{X^*}$.

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

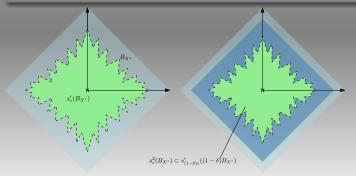
If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X)=\omega.$



Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

is the case for uniformly smooth spaces.

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

- is the case for uniformly smooth spaces.
- is the case for c_0 .

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

- is the case for uniformly smooth spaces.
- is the case for c_0 .(In fact X^* is UKK* iff X is AUS.)

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

- is the case for uniformly smooth spaces.
- is the case for c_0 .(In fact X^* is UKK* iff X is AUS.)

Theorem (Knaust-Odell-Schlumprecht '99, Godefroy-Kalton-Lancien '01)

If $Sz(X) \leq \omega$, then X admits a norm whose dual norm is UKK*.

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

- is the case for uniformly smooth spaces.
- is the case for c_0 .(In fact X^* is UKK* iff X is AUS.)

Theorem (Knaust-Odell-Schlumprecht '99, Godefroy-Kalton-Lancien '01)

If $Sz(X) \leq \omega$, then X admits a norm whose dual norm is UKK*.

• An important tool for showing that $Sz(X) \le \omega$ is invariant under uniform homeomorphisms (G-K-L).

Definition

The dual norm on X^* is w^* -uniformly Kadets-Klee (UKK*) if $\forall \ \varepsilon > 0 \ \exists \ \delta > 0$ such that $s'_{\varepsilon}(B_{X^*}) \subset (1-\delta)B_{X^*}$.

Fact

If the dual norm on X^* is UKK* then $Sz(X) = \omega$.

- is the case for uniformly smooth spaces.
- is the case for c_0 .(In fact X^* is UKK* iff X is AUS.)

Theorem (Knaust-Odell-Schlumprecht '99, Godefroy-Kalton-Lancien '01)

If $Sz(X) \leq \omega$, then X admits a norm whose dual norm is UKK*.

- An important tool for showing that $Sz(X) \le \omega$ is invariant under uniform homeomorphisms (G-K-L).
- It is still open whether $Sz(X) \leq \omega^{\alpha}$ is Lipschitz invariant.

Let $\alpha \in [0, \omega_1)$ be an ordinal. The dual norm on X^* is ω^{α} -w*-uniformly Kadets-Klee (ω^{α} -UKK*) if

 $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \text{such that} \ s_{\varepsilon}^{\omega^{\alpha}}(B_{X^*}) \subset (1 - \delta)B_{X^*}.$

Let $\alpha \in [0,\omega_1)$ be an ordinal. The dual norm on X^* is ω^{α} -w*-uniformly Kadets-Klee (ω^{α} -UKK*) if

 $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \text{such that} \ s_{\varepsilon}^{\omega^{\alpha}}(B_{X^*}) \subset (1 - \delta)B_{X^*}.$

Theorem (Lancien-P-Raja '15)

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm whose dual norm is ω^{α} -UKK*.

Let $\alpha \in [0,\omega_1)$ be an ordinal. The dual norm on X^* is ω^{α} - w^* -uniformly Kadets-Klee (ω^{α} -UKK*) if

 $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \text{such that} \ s_{\varepsilon}^{\omega^{\alpha}}(B_{X^*}) \subset (1 - \delta)B_{X^*}.$

Theorem (Lancien-P-Raja '15)

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm whose dual norm is ω^{α} -UKK*.

Remark

There are Banach spaces with $Sz(X) = \omega^{\alpha}$, α limit (Causey '15) \rightsquigarrow No result for such spaces.

The convex Szlenk index

Definition

Let $K \subset X^*$ be a w*-compact convex set.

Definition

Let $K\subset X^*$ be a w*-compact convex set. Define K_ε^α for α ordinal as follows:

• $K_{\varepsilon}^0 := K$,

Definition

Let $K \subset X^*$ be a w*-compact convex set. Define K_ε^α for α ordinal as follows:

- $K_{\varepsilon}^0 := K$,
- $K_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}(s_{\varepsilon}'(K_{\varepsilon}^{\alpha})),$

Definition

Let $K \subset X^*$ be a w*-compact convex set. Define K_{ε}^{α} for α ordinal as follows:

- $K_{\varepsilon}^0 := K$,
- $K_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}(s_{\varepsilon}'(K_{\varepsilon}^{\alpha})),$
- $K_{\varepsilon}^{\alpha}:=\bigcap_{\beta<\alpha}K_{\varepsilon}^{\beta}$ if α is a limit ordinal.

Definition

Let $K \subset X^*$ be a w*-compact convex set. Define K_ε^α for α ordinal as follows:

- $K_{\varepsilon}^0 := K$,
- $K_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}(s_{\varepsilon}'(K_{\varepsilon}^{\alpha})),$
- $K_{\varepsilon}^{\alpha}:=\bigcap_{\beta<\alpha}K_{\varepsilon}^{\beta}$ if α is a limit ordinal.

Then $Cz(K,\varepsilon):=\inf\{\alpha:\ K_\varepsilon^\alpha=\emptyset\}$ with $\inf\emptyset=+\infty.$

Definition

Let $K \subset X^*$ be a w*-compact convex set. Define K_{ε}^{α} for α ordinal as follows:

- $K_{\varepsilon}^0 := K$,
- $K_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}(s_{\varepsilon}'(K_{\varepsilon}^{\alpha})),$
- $K_{\varepsilon}^{\alpha}:=\bigcap_{\beta<\alpha}K_{\varepsilon}^{\beta}$ if α is a limit ordinal.

Then $Cz(K,\varepsilon):=\inf\{\alpha:\ K_\varepsilon^\alpha=\emptyset\}$ with $\inf\emptyset=+\infty.$ $Cz(K):=\sup_{\varepsilon>0}Cz(K,\varepsilon).$

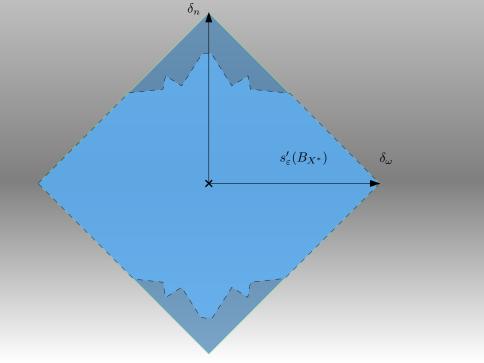
Definition

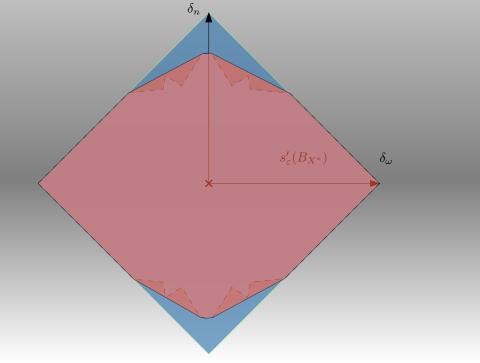
Let $K \subset X^*$ be a w*-compact convex set. Define K_{ε}^{α} for α ordinal as follows:

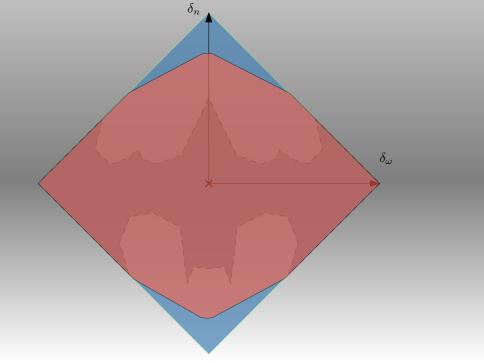
- $K_{\varepsilon}^0 := K$,
- $K_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}(s_{\varepsilon}'(K_{\varepsilon}^{\alpha})),$
- $K_{\varepsilon}^{\alpha}:=\bigcap_{\beta<\alpha}K_{\varepsilon}^{\beta}$ if α is a limit ordinal.

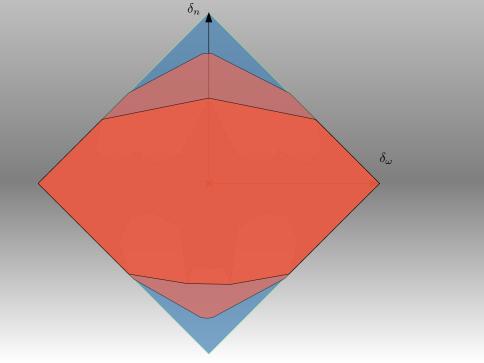
Then $Cz(K,\varepsilon) := \inf\{\alpha: K_{\varepsilon}^{\alpha} = \emptyset\}$ with $\inf \emptyset = +\infty$. $Cz(K) := \sup_{\varepsilon>0} Cz(K,\varepsilon)$.

Finally the convex Szlenk index of X is $Cz(B_{X^*})$.









• If $X \simeq Y$, then Cz(X) = Cz(Y).

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \leq Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Cz(X) < +\infty$ iff $Cz(X) < \omega_1$.

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Cz(X) < +\infty$ iff $Cz(X) < \omega_1$.
- \forall X Banach \exists α ordinal such that $Cz(X) = \omega^{\alpha}$ (Lancien '96)

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Cz(X) < +\infty$ iff $Cz(X) < \omega_1$.
- \forall X Banach \exists α ordinal such that $Cz(X) = \omega^{\alpha}$ (Lancien '96)
- $Sz(X) \le Cz(X)$

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Cz(X) < +\infty$ iff $Cz(X) < \omega_1$.
- \forall X Banach \exists α ordinal such that $Cz(X) = \omega^{\alpha}$ (Lancien '96)
- $Sz(X) \leq Cz(X)$
- If $Sz(X)=\omega \Rightarrow X^*$ admits a dual UKK* norm \Rightarrow $Cz(X)=\omega.$

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Cz(X) < +\infty$ iff $Cz(X) < \omega_1$.
- $\forall~X$ Banach $\exists~\alpha$ ordinal such that $Cz(X) = \omega^\alpha$ (Lancien '96)
- $Sz(X) \leq Cz(X)$
- If $Sz(X) = \omega \Rightarrow X^*$ admits a dual UKK* norm \Rightarrow $Cz(X) = \omega.$

Theorem (Hájek-Schlumprecht '13)

If $Sz(X) < \omega_1$ then $Cz(X) \le \omega \cdot Sz(X)$. In particular, if $\omega^{\omega} \le Sz(X) \le \omega_1$, then Cz(X) = Sz(X).

- If $X \simeq Y$, then Cz(X) = Cz(Y).
- More generally, if $X \subseteq Y$, then $Cz(X) \le Cz(Y)$.
- $Cz(X) < +\infty$ iff X is Asplund.
- If X is separable, $Cz(X) < +\infty$ iff $Cz(X) < \omega_1$.
- $\forall~X$ Banach $\exists~\alpha$ ordinal such that $Cz(X) = \omega^\alpha$ (Lancien '96)
- $Sz(X) \leq Cz(X)$
- If $Sz(X) = \omega \Rightarrow X^*$ admits a dual UKK* norm \Rightarrow $Cz(X) = \omega$.

Theorem (Hájek-Schlumprecht '13)

If $Sz(X) < \omega_1$ then $Cz(X) \le \omega \cdot Sz(X)$. In particular, if $\omega^{\omega} \le Sz(X) \le \omega_1$, then Cz(X) = Sz(X).

Theorem (L-P-R '15)

If $Sz(X) < \omega_1$ then Cz(X) = Sz(X).

• if $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $||x_n^* - x^*|| \ge \varepsilon$, then $x^* \in s_\varepsilon'(K)$.

- if $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \varepsilon$, then $x^* \in s_\varepsilon'(K)$.
- if $x^* \in s_{\varepsilon}'(K)$ and $\varepsilon' < \varepsilon$, then $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \frac{\varepsilon'}{2}$

- if $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \varepsilon$, then $x^* \in s_\varepsilon'(K)$.
- if $x^* \in s_{\varepsilon}'(K)$ and $\varepsilon' < \varepsilon$, then $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \frac{\varepsilon'}{2}$

Definition (Family of trees \mathcal{T}_{α} , $\alpha < \omega_1$)

• $\mathcal{T}_0 := \{\{\emptyset\}\}$

- if $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $||x_n^* x^*|| \ge \varepsilon$, then $x^* \in s_\varepsilon'(K)$.
- if $x^* \in s_{\varepsilon}'(K)$ and $\varepsilon' < \varepsilon$, then $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \frac{\varepsilon'}{2}$

Definition (Family of trees \mathcal{T}_{α} , $\alpha < \omega_1$)

- $\mathcal{T}_0 := \{ \{\emptyset\} \}$
- $T \in \mathcal{T}_{\alpha}$ if there exists $(n_k) \subset \mathbb{N}$, $n_k \nearrow \infty$, such that

$$T = \{\emptyset\} \cup \bigcup_{k=0}^{\infty} (n_k)^{\hat{}} T_k,$$

where $T_k \in \mathcal{T}_{\alpha_k}$ for each $k \in \mathbb{N}$ and some α_k

- if $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $||x_n^* x^*|| \ge \varepsilon$, then $x^* \in s_\varepsilon'(K)$.
- if $x^* \in s_{\varepsilon}'(K)$ and $\varepsilon' < \varepsilon$, then $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \frac{\varepsilon'}{2}$

Definition (Family of trees \mathcal{T}_{α} , $\alpha < \omega_1$)

- $\mathcal{T}_0 := \{ \{ \emptyset \} \}$
- $T \in \mathcal{T}_{\alpha}$ if there exists $(n_k) \subset \mathbb{N}$, $n_k \nearrow \infty$, such that

$$T = \{\emptyset\} \cup \bigcup_{k=0}^{\infty} (n_k)^{\hat{}} T_k,$$

where $T_k \in \mathcal{T}_{\alpha_k}$ for each $k \in \mathbb{N}$ and some α_k if $\alpha = \beta + 1 \Longrightarrow \alpha_k = \beta$ for all k

- if $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $||x_n^* x^*|| \ge \varepsilon$, then $x^* \in s_{\varepsilon}'(K)$.
- if $x^* \in s_{\varepsilon}'(K)$ and $\varepsilon' < \varepsilon$, then $\exists (x_n^*) \subset K$ such that $x_n^* \xrightarrow{w^*} x^*$ and $\|x_n^* x^*\| \ge \frac{\varepsilon'}{2}$

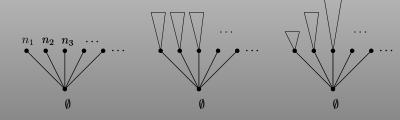
Definition (Family of trees \mathcal{T}_{α} , $\alpha < \omega_1$)

- $\mathcal{T}_0 := \{ \{ \emptyset \} \}$
- $T \in \mathcal{T}_{\alpha}$ if there exists $(n_k) \subset \mathbb{N}$, $n_k \nearrow \infty$, such that

$$T = \{\emptyset\} \cup \bigcup_{k=0}^{\infty} (n_k)^{\hat{}} T_k,$$

where $T_k \in \mathcal{T}_{\alpha_k}$ for each $k \in \mathbb{N}$ and some α_k

- if $\alpha = \beta + 1 \Longrightarrow \alpha_k = \beta$ for all k
- if α limit $\Longrightarrow \alpha_k \nearrow \alpha$.



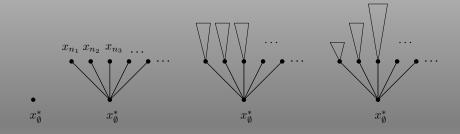
Definition (Family of trees \mathcal{T}_{α} , $\alpha < \omega_1$)

- $\mathcal{T}_0 := \{\{\emptyset\}\}$
- $T \in \mathcal{T}_{\alpha}$ if there exists $(n_k) \subset \mathbb{N}$, $n_k \nearrow \infty$, such that

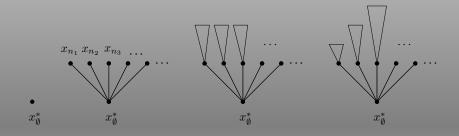
$$T = \{\emptyset\} \cup \bigcup_{k=0}^{\infty} (n_k)^{\hat{}} T_k,$$

where $T_k \in \mathcal{T}_{\alpha_k}$ for each $k \in \mathbb{N}$ and some α_k

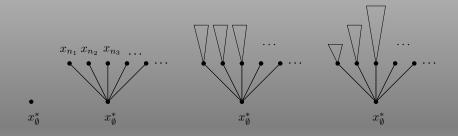
- if $\alpha = \beta + 1 \Longrightarrow \alpha_k = \beta$ for all k
- if α limit $\Longrightarrow \alpha_k \nearrow \alpha$.



• if $T \in \mathcal{T}_{\alpha}$ and $\exists (x_s^*)_{s \in T} \subset K$ such that $x_{s ^\smallfrown n}^* \xrightarrow{w^*} x_s^*$ and $\left\|x_{s ^\smallfrown n}^* - x_s^*\right\| \geq \varepsilon$, then $x_\emptyset^* \in s_\varepsilon^\alpha(K)$.



• if $T \in \mathcal{T}_{\alpha}$ and $\exists \ (x_s^*)_{s \in T} \subset K$ such that $x_{s ^\smallfrown n}^* \xrightarrow{w^*} x_s^*$ and $\|x_{s ^\smallfrown n}^* - x_s^*\| \ge \varepsilon$, then $x_\emptyset^* \in s_\varepsilon^\alpha(K)$. Say that $(x_s^*)_{s \in T}$ is w*-continuous and ε -separated.



- if $T \in \mathcal{T}_{\alpha}$ and $\exists \ (x_s^*)_{s \in T} \subset K$ such that $x_{s \smallfrown n}^* \xrightarrow{w^*} x_s^*$ and $\|x_{s \smallfrown n}^* x_s^*\| \geq \varepsilon$, then $x_\emptyset^* \in s_\varepsilon^\alpha(K)$. Say that $(x_s^*)_{s \in T}$ is w*-continuous and ε -separated.
- if $x^* \in s_{\varepsilon}^{\alpha}(K)$ and $\varepsilon' < \varepsilon$, then $\exists T \in \mathcal{T}_{\alpha}$ and \exists w*-continuous $\frac{\varepsilon'}{2}$ -separated $(x_s^*)_{s \in T} \subset K$ such that $x_{\emptyset}^* = x^*$.

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

"⇐" Homogeneity argument as before in the UKK* case.

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "⇐" Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "⇐" Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.
 - Fix $k \in \mathbb{N}$. Inductively for $n \in \mathbb{N}$:

$$A_0^k := B_{X^*}, \ A_{n+1}^k := \overline{\text{conv}}^* (s_{2^{-k}}^{\omega^{\alpha}} (A_n^k)).$$

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "⇐" Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.
 - Fix $k \in \mathbb{N}$. Inductively for $n \in \mathbb{N}$:

$$A_0^k := B_{X^*}, \ A_{n+1}^k := \overline{\text{conv}}^* (s_{2^{-k}}^{\omega^{\alpha}} (A_n^k)).$$

• $Cz(X) = Sz(X) \le \omega^{\alpha+1} \Rightarrow \exists n \in \mathbb{N} : A_n^k = \emptyset$. Denote $N_k := \min\{n \in \mathbb{N} : A_n^k = \emptyset\} - 1$.

Theorem

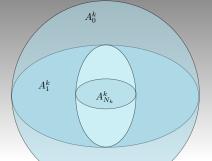
Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "

 " Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.
 - Fix $k \in \mathbb{N}$. Inductively for $n \in \mathbb{N}$:

$$A_0^k := B_{X^*}, \ A_{n+1}^k := \overline{\text{conv}}^* (s_{2^{-k}}^{\omega^{\alpha}} (A_n^k)).$$

 $Cz(X)=Sz(X)\leq \omega^{\alpha+1}\Rightarrow \exists\ n\in\mathbb{N}:\ A_n^k=\emptyset.$ Denote $N_k:=\min\{n\in\mathbb{N}:A_n^k=\emptyset\}-1.$



Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "⇐" Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.
 - Fix $k \in \mathbb{N}$. Inductively for $n \in \mathbb{N}$:

$$A_0^k := B_{X^*}, \ A_{n+1}^k := \overline{\text{conv}}^* (s_{2^{-k}}^{\omega^{\alpha}} (A_n^k)).$$

- $Cz(X)=Sz(X)\leq \omega^{\alpha+1}\Rightarrow \exists\ n\in\mathbb{N}:\ A_n^k=\emptyset.$ Denote $N_k:=\min\{n\in\mathbb{N}:A_n^k=\emptyset\}-1.$
- Define

$$f(x^*) = ||x^*|| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x^*, A_n^k).$$

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "⇐" Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.
 - Fix $k \in \mathbb{N}$. Inductively for $n \in \mathbb{N}$:

$$A_0^k := B_{X^*}, \ A_{n+1}^k := \overline{\text{conv}}^* (s_{2^{-k}}^{\omega^{\alpha}} (A_n^k)).$$

- $Cz(X)=Sz(X)\leq \omega^{\alpha+1}\Rightarrow \exists\ n\in\mathbb{N}:\ A_n^k=\emptyset.$ Denote $N_k:=\min\{n\in\mathbb{N}:A_n^k=\emptyset\}-1.$
- Define

$$f(x^*) = ||x^*|| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x^*, A_n^k).$$

• Finally, $|\cdot|$ is the Minkowski functional of $\{x: f(x) \leq 1\}$.

Theorem

Let X be a separable Banach space. Then $Sz(X) \leq \omega^{\alpha+1}$ if and only if X admits an equivalent norm $|\cdot|$ whose dual norm is ω^{α} -UKK*.

- "⇐" Homogeneity argument as before in the UKK* case.
- " \Rightarrow " Assume $Sz(X) \leq \omega^{\alpha+1}$.
 - Fix $k \in \mathbb{N}$. Inductively for $n \in \mathbb{N}$:

$$A_0^k := B_{X^*}, \ A_{n+1}^k := \overline{\text{conv}}^* (s_{2^{-k}}^{\omega^{\alpha}} (A_n^k)).$$

- $Cz(X)=Sz(X)\leq \omega^{\alpha+1}\Rightarrow \exists \ n\in\mathbb{N}: A_n^k=\emptyset.$ Denote $N_k:=\min\{n\in\mathbb{N}: A_n^k=\emptyset\}-1.$
- Define

$$f(x^*) = ||x^*|| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x^*, A_n^k).$$

- Finally, $|\cdot|$ is the Minkowski functional of $\{x: f(x) \leq 1\}$.
- $|\cdot|$ is dual and satisfies $|\cdot| \le |\cdot| \le 2 |\cdot|$.

• Let $\varepsilon'>0$, it is enough to find $\delta>0$ such that $\forall\, x^*\in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*)\leq 1-\delta.$

- Let $\varepsilon' > 0$, it is enough to find $\delta > 0$ such that $\forall \, x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$.
- Let , let $\varepsilon < \varepsilon'$, $\varepsilon \sim \varepsilon'$.

- Let $\varepsilon' > 0$, it is enough to find $\delta > 0$ such that $\forall \, x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$.
- Let , let $\varepsilon < \varepsilon'$, $\varepsilon \sim \varepsilon'$.
- then $\exists T \in \mathcal{T}_{\alpha}$ and \exists w*-continuous $\frac{\varepsilon}{2}$ -separated $(x_s^*)_{s \in T} \subset K$ such that $x_{\emptyset}^* = x^*$.

- Let $\varepsilon' > 0$, it is enough to find $\delta > 0$ such that $\forall \, x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$.
- Let , let $\varepsilon < \varepsilon', \, \varepsilon \sim \varepsilon'$.
- then $\exists T \in \mathcal{T}_{\alpha}$ and \exists w*-continuous $\frac{\varepsilon}{2}$ -separated $(x_s^*)_{s \in T} \subset K$ such that $x_{\emptyset}^* = x^*$.

•

$$f(x^*) = \|x^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x^*, A_n^k)$$

$$\leq \underline{\lim}_{s \in T} \|x^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} \underline{\lim}_{s \in T} d(x^*, A_n^k)$$

$$\leq \liminf_{s \in T} \left(\|x_s^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x_s^*, A_n^k) \right) \leq 1$$

- Let $\varepsilon' > 0$, it is enough to find $\delta > 0$ such that $\forall x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$.
- $\forall \ x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$ • Let , let $\varepsilon < \varepsilon'$, $\varepsilon \sim \varepsilon'$.
 - then $\exists T \in \mathcal{T}_{\alpha}$ and \exists w*-continuous $\frac{\varepsilon}{2}$ -separated $(x_s^*)_{s \in T} \subset K$ such that $x_{\emptyset}^* = x^*$.

$$f(x^*) = \|x^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x^*, A_n^k)$$

$$\leq \underline{\lim}_{s \in T} \|x^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} \underline{\lim}_{s \in T} d(x^*, A_n^k)$$

$$\leq \underline{\lim}_{s \in T} \left(\|x_s^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} d(x_s^*, A_n^k) \right) \leq 1$$

• Let p such that $\frac{\varepsilon}{8} \leq 2^{-p} < \frac{\varepsilon}{4}$. We will show that for some $l \in \{1, \dots, N_p\}$ there is a jump $\operatorname{d}(x^*, A_l^p) + \gamma < \liminf_{s \in T} \operatorname{d}(x_s^*, A_l^p)$ of size $\gamma \sim \varepsilon$.

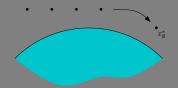
- Let $\varepsilon' > 0$, it is enough to find $\delta > 0$ such that $\forall x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$.
- $\forall x^* \in s'_{\varepsilon'}(B_{|\cdot|})$ (w.r.t. the original norm) $f(x^*) \leq 1 \delta$ • Let , let $\varepsilon < \varepsilon'$, $\varepsilon \sim \varepsilon'$.
 - then $\exists T \in \mathcal{T}_{\alpha}$ and \exists w*-continuous $\frac{\varepsilon}{2}$ -separated $(x_s^*)_{s \in T} \subset K$ such that $x_{\emptyset}^* = x^*$.

$$\begin{split} f(x^*) + \frac{\gamma}{2^p N_p} &= \frac{\gamma}{2^p N_p} + \|x^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} \mathrm{d}(x^*, A_n^k) \\ &\leq \varliminf_{s \in T} \|x^*\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} \varliminf_{s \in T} \mathrm{d}(x^*, A_n^k) \\ &\leq \liminf_{s \in T} \left(\|x^*_s\| + \sum_{k=1}^{\infty} \frac{1}{2^k N_k} \sum_{n=1}^{N_k} \mathrm{d}(x^*_s, A_n^k) \right) \leq 1 \end{split}$$

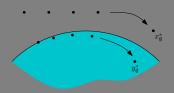
• Let p such that $\frac{\varepsilon}{8} \leq 2^{-p} < \frac{\varepsilon}{4}$. We will show that for some $l \in \{1,\ldots,N_p\}$ there is a jump $\operatorname{d}(x^*,A_l^p) + \gamma < \liminf_{s \in T} \operatorname{d}(x_s^*,A_l^p)$ of size $\gamma \sim \varepsilon$.

Lemma

Lemma

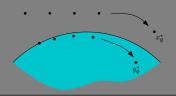


Lemma



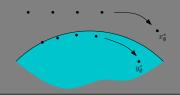
Lemma

Let $0 \le \alpha < \omega_1$, 0 < 2a < b and $T \in \mathcal{T}_\alpha$. Let $A \subset X^*$ w*-compact, $(x_s^*)_{s \in T} \subset X^*$ be b-separated, w*- c^2 such that $\sup_{s \in T} \operatorname{d}(x_s^*, A) \le a$. Then $\exists \ S \in \mathcal{T}_\alpha$, $S \subset T$ and w*- c^2 , (b-2a)-separated $(y_s^*)_{s \in S} \subset A$ such that $\|x_\emptyset^* - y_\emptyset^*\| \le a$.



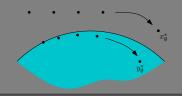
• Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} d(x_s^*, A_l^p) \ \forall \ l \le N_p$

Lemma



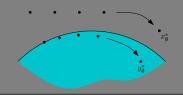
- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} (x_s^*, A_l^p) \ \forall \ l \le N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$

Lemma



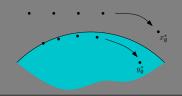
- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} (x_s^*, A_l^p) \ \forall \ l \le N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$

Lemma



- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} d(x_s^*, A_l^p) \ \forall \ l \le N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$
- $2\gamma > \gamma + d(x^*, A_2^p) > \liminf_s d(x_s^*, A_2^p)$

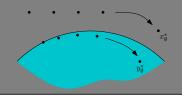
Lemma



- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \in I} d(x_s^*, A_l^p) \ \forall \ l \leq N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$
- $2\gamma > \gamma + d(x^*, A_2^p) > \liminf_s d(x_s^*, A_2^p) \Rightarrow d(x^*, A_3^p) < 2\gamma$

Lemma

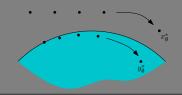
Let $0 \le \alpha < \omega_1$, 0 < 2a < b and $T \in \mathcal{T}_\alpha$. Let $A \subset X^*$ w*-compact, $(x_s^*)_{s \in T} \subset X^*$ be b-separated, w*- c^2 such that $\sup_{s \in T} \operatorname{d}(x_s^*, A) \le a$. Then $\exists \ S \in \mathcal{T}_\alpha$, $S \subset T$ and w*- c^2 , (b-2a)-separated $(y_s^*)_{s \in S} \subset A$ such that $\|x_\emptyset^* - y_\emptyset^*\| \le a$.



- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} d(x_s^*, A_l^p) \ \forall \ l \le N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$
- $2\gamma > \gamma + d(x^*, A_2^p) > \liminf_s d(x_s^*, A_2^p) \Rightarrow d(x^*, A_3^p) < 2\gamma$

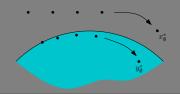
• . . .

Lemma



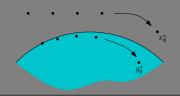
- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to 0} d(x_s^*, A_l^p) \ \forall \ l \le N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$
- $2\gamma > \gamma + d(x^*, A_2^p) > \liminf_s d(x_s^*, A_2^p) \Rightarrow d(x^*, A_3^p) < 2\gamma$
- · · · $d(x^*, A_{N_p+1}^p) < N_p \gamma$ contradiction as $A_{N_p+1}^k = \emptyset$.

Lemma



- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} (x_s^*, A_l^p) \ \forall \ l \leq N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$
- $2\gamma > \gamma + d(x^*, A_2^p) > \liminf_s d(x_s^*, A_2^p) \Rightarrow d(x^*, A_3^p) < 2\gamma$
- \cdots $d(x^*, A_{N_n+1}^p) < N_p \gamma$ contradiction as $A_{N_n+1}^k = \emptyset$.
- enough that $\frac{\varepsilon}{2} 2N_p \gamma \geq \frac{\varepsilon}{4} > 2^{-p}$.

Lemma



- Suppose that $\gamma + d(x^*, A_l^p) > \liminf_{s \to l} (x_s^*, A_l^p) \ \forall \ l \le N_p$
- $x^* \in A_1^p \Rightarrow \gamma > \liminf_s d(x_s^*, A_1^p)$
- Lemma \Longrightarrow d $(x^*, A_2^p) < \gamma$
- $2\gamma > \gamma + d(x^*, A_2^p) > \liminf_s d(x_s^*, A_2^p) \Rightarrow d(x^*, A_3^p) < 2\gamma$
- \cdots $d(x^*, A_{N_n+1}^p) < N_p \gamma$ contradiction as $A_{N_n+1}^k = \emptyset$.
- enough that $\frac{\varepsilon}{2} 2N_p \gamma \geq \frac{\varepsilon}{4} > 2^{-p}$.

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

Definition (Kuratowski measure of non-compactness)

$$\sigma(K) = \inf\{\varepsilon > 0 : K \subset \bigcup_{i=1}^n B(x_i, \varepsilon)\}$$

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

Definition (Kuratowski measure of non-compactness)

$$\sigma(K) = \inf\{\varepsilon > 0 : K \subset \bigcup_{i=1}^n B(x_i, \varepsilon)\}$$

Definition

$$[\sigma]'_{\varepsilon}(K) := \{x^* \in K : \forall w^* - \text{neighborhood } U \text{ of } x^*, \\ \sigma(\overline{K \cap U}^*) \ge \varepsilon\}$$

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

Definition (Kuratowski measure of non-compactness)

$$\sigma(K) = \inf\{\varepsilon > 0 : K \subset \bigcup_{i=1}^n B(x_i, \varepsilon)\}$$

Definition

$$[\sigma]'_{\varepsilon}(K) := \{x^* \in K: \ \forall \ \mathbf{w}^* - \text{neighborhood} \ U \ \text{of} \ x^*, \\ \sigma(\overline{K \cap U}^*) \geq \varepsilon \}$$

Define $[\sigma]^{\alpha}_{\varepsilon}(K)$ for α ordinal as follows:

$$\bullet \ [\sigma]^0_{\varepsilon}(K) := K,$$

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

Definition (Kuratowski measure of non-compactness)

$$\sigma(K) = \inf\{\varepsilon > 0 : K \subset \bigcup_{i=1}^{n} B(x_i, \varepsilon)\}$$

Definition

$$[\sigma]'_{\varepsilon}(K) := \{x^* \in K : \forall w^* - \text{neighborhood } U \text{ of } x^*, \\ \sigma(\overline{K \cap U}^*) \ge \varepsilon\}$$

Define $[\sigma]^{\alpha}_{\varepsilon}(K)$ for α ordinal as follows:

- $[\sigma]^0_{\varepsilon}(K) := K$,
- $\bullet [\sigma]_{\varepsilon}^{\alpha+1}(K) := [\sigma]_{\varepsilon}'([\sigma]_{\varepsilon}^{\alpha}(K)),$

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

Definition (Kuratowski measure of non-compactness)

$$\sigma(K) = \inf\{\varepsilon > 0 : K \subset \bigcup_{i=1}^n B(x_i, \varepsilon)\}$$

Definition

$$[\sigma]'_{\varepsilon}(K) := \{x^* \in K: \ \forall \ \mathbf{w}^* - \text{neighborhood} \ U \ \text{of} \ x^*, \\ \sigma(\overline{K \cap U}^*) \geq \varepsilon \}$$

Define $[\sigma]^{\alpha}_{\varepsilon}(K)$ for α ordinal as follows:

- $[\sigma]^0_{\varepsilon}(K) := K$,
- $[\sigma]^{\alpha+1}_{\varepsilon}(K) := [\sigma]'_{\varepsilon}([\sigma]^{\alpha}_{\varepsilon}(K)),$
- $[\sigma]^{\alpha}_{\varepsilon}(K) := \bigcap_{\beta < \alpha} [\sigma]^{\beta}_{\varepsilon}(K)$ if α is a limit ordinal.

First we show that Sz(K) = KSz(K) and Cz(K) = KCz(K), second KSz(K) = KCz(K).

Definition (Kuratowski measure of non-compactness)

$$\sigma(K) = \inf\{\varepsilon > 0 : K \subset \bigcup_{i=1}^n B(x_i, \varepsilon)\}$$

Definition

$$[\sigma]'_{\varepsilon}(K) := \{x^* \in K: \ \forall \ \mathbf{w}^* - \text{neighborhood} \ U \ \text{of} \ x^*, \\ \sigma(\overline{K \cap U}^*) \geq \varepsilon \}$$

Define $[\sigma]^{\alpha}_{\varepsilon}(K)$ for α ordinal as follows:

- $[\sigma]^0_{\varepsilon}(K) := K$,
- $[\sigma]_{\varepsilon}^{\alpha+1}(K) := [\sigma]_{\varepsilon}'([\sigma]_{\varepsilon}^{\alpha}(K)),$
- $[\sigma]^{\alpha}_{\varepsilon}(K) := \bigcap_{\beta < \alpha} [\sigma]^{\beta}_{\varepsilon}(K)$ if α is a limit ordinal.

Then $KSz(K,\varepsilon) := \inf\{\alpha : [\sigma]^{\alpha}_{\varepsilon}(K) = \emptyset\}$ with $\inf \emptyset = +\infty$.

• $\operatorname{diam}(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$

- $\operatorname{diam}(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K$, $x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow$ no w*-neighborhood of x^* can be covered by finitely many balls of radius $< \frac{\varepsilon}{4}$.

- $\operatorname{diam}(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K$, $x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow$ no w*-neighborhood of x^* can be covered by finitely many balls of radius $< \frac{\varepsilon}{4}$.
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K, x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow \text{no w}^*$ -neighborhood of x^* can be covered by finitely many balls of radius $< \frac{\varepsilon}{4}$.
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = Sz(K)$.

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K, x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow \text{no w}^*\text{-neighborhood of } x^* \text{ can be covered by finitely many balls of radius } < \frac{\varepsilon}{4}.$
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = Sz(K)$.

 $K \subset X^*$ be a w*-compact convex set.

•
$$\langle \sigma \rangle_{\varepsilon}^0(K) := K$$
,

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K, x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \geq \frac{\varepsilon}{2} \Rightarrow \text{no w}^*\text{-neighborhood of } x^* \text{ can be covered by finitely many balls of radius } < \frac{\varepsilon}{4}.$
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = Sz(K)$.

 $K \subset X^*$ be a w*-compact convex set.

- ${}^{\bullet} \langle \sigma \rangle_{\varepsilon}^{0}(K) := K,$
- $\langle \sigma \rangle_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}([\sigma]'_{\varepsilon}(\langle \sigma \rangle_{\varepsilon}^{\alpha})),$

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K, x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \geq \frac{\varepsilon}{2} \Rightarrow \text{no w}^*\text{-neighborhood of } x^* \text{ can be covered by finitely many balls of radius } < \frac{\varepsilon}{4}.$
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = Sz(K)$.

 $K \subset X^*$ be a w*-compact convex set.

- ${}^{\bullet} \langle \sigma \rangle_{\varepsilon}^{0}(K) := K,$
- $\langle \sigma \rangle_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}([\sigma]'_{\varepsilon}(\langle \sigma \rangle_{\varepsilon}^{\alpha})),$
- $\langle \sigma \rangle_{\varepsilon}^{\alpha} := \bigcap_{\beta < \alpha} \langle \sigma \rangle_{\varepsilon}^{\beta}$ if α is a limit ordinal.

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K, x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow \text{no w}^*$ -neighborhood of x^* can be covered by finitely many balls of radius $< \frac{\varepsilon}{4}$.
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = \dot{S}z(K)$.

 $K \subset X^*$ be a w*-compact convex set.

- $\langle \sigma \rangle_{\varepsilon}^0(K) := K$,
- ${}^{\bullet}\langle\sigma\rangle^{\alpha}_{\varepsilon}:=\bigcap_{\beta<\alpha}\langle\sigma\rangle^{\beta}_{\varepsilon}$ if α is a limit ordinal.

Then $KCz(K,\varepsilon) := \inf\{\alpha : \langle \sigma \rangle_{\varepsilon}^{\alpha} = \emptyset\}$ with $\inf \emptyset = +\infty$.

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K$, $x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow$ no w*-neighborhood of x^* can be covered by finitely many balls of radius $< \frac{\varepsilon}{4}$.
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = Sz(K)$.

 $K \subset X^*$ be a w*-compact convex set.

- $\langle \sigma \rangle_{\varepsilon}^0(K) := K$,
- $\langle \sigma \rangle_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}([\sigma]'_{\varepsilon}(\langle \sigma \rangle_{\varepsilon}^{\alpha})),$
- $\langle \sigma \rangle_{\varepsilon}^{\alpha} := \bigcap_{\beta < \alpha} \langle \sigma \rangle_{\varepsilon}^{\beta}$ if α is a limit ordinal.

Then $KCz(K,\varepsilon):=\inf\{\alpha:\ \langle\sigma\rangle_{\varepsilon}^{\alpha}=\emptyset\}$ with $\inf\emptyset=+\infty.$ $KCz(K):=\sup_{\varepsilon>0}KCz(K,\varepsilon).$

- diam $(K) \ge \sigma(K) \Rightarrow [\sigma]'_{\varepsilon}(K) \subset s'_{\varepsilon}(K)$
- $x^* \in s_{\varepsilon}'(K) \exists (x_n^*) \subset K, \ x^* \xrightarrow{w^*} x^*$ and $\liminf \|x^* x_n^*\| \ge \frac{\varepsilon}{2} \Rightarrow \text{no w}^*$ -neighborhood of x^* can be covered by finitely many balls of radius $< \frac{\varepsilon}{4}$.
- $\Rightarrow s_{\varepsilon}(K) \subset [\sigma]'_{\varepsilon/5}(K)$.
- $\Rightarrow KSz(K) = Sz(K)$.

 $K \subset X^*$ be a w*-compact convex set.

- $\langle \sigma \rangle_{\varepsilon}^{0}(K) := K,$
- $\langle \sigma \rangle_{\varepsilon}^{\alpha+1} := \overline{\operatorname{conv}^*}([\sigma]_{\varepsilon}'(\langle \sigma \rangle_{\varepsilon}^{\alpha})),$
- $\langle \sigma \rangle_{\varepsilon}^{\alpha} := \bigcap_{\beta < \alpha} \langle \sigma \rangle_{\varepsilon}^{\beta}$ if α is a limit ordinal.

Then $KCz(K,\varepsilon):=\inf\{\alpha:\ \langle\sigma\rangle_{\varepsilon}^{\alpha}=\emptyset\}$ with $\inf\emptyset=+\infty.$ $KCz(K):=\sup_{\varepsilon>0}KCz(K,\varepsilon).$

•
$$\overline{\operatorname{conv}}^*[\sigma]'_{\varepsilon}(K) \subset \overline{\operatorname{conv}}^*s'_{\varepsilon}(K) \subset \overline{\operatorname{conv}}^*[\sigma]'_{\varepsilon/5}(K) \Rightarrow KCz(K) = Cz(K).$$

A map η from the weak*-compacts of X^* into $[0,\infty)$ is a sublinear measure of non-compactness (nc-measure) if (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.
- (ii) $\eta(\bigcup_{i=1}^n A_i) = \max_i \eta(A_i)$.

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.
- (ii) $\eta(\bigcup_{i=1}^n A_i) = \max_i \eta(A_i)$.
- (iv) $\eta(\lambda A) = |\lambda| \eta(A)$

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.
- (ii) $\eta(\bigcup_{i=1}^n A_i) = \max_i \eta(A_i)$.
- $(iv) \ \eta(\lambda A) = |\lambda| \, \eta(A)$
- $(\vee) \ \eta(A+B) \le \eta(A) + \eta(B)$

A map η from the weak*-compacts of X^* into $[0,\infty)$ is a sublinear measure of non-compactness (nc-measure) if

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.
- (ii) $\eta(\bigcup_{i=1}^n A_i) = \max_i \eta(A_i)$.
- (iv) $\eta(\lambda A) = |\lambda| \eta(A)$
- $(\vee) \ \eta(A+B) \le \eta(A) + \eta(B)$

Fact

• σ is a nc-measure.

A map η from the weak*-compacts of X^* into $[0,\infty)$ is a sublinear measure of non-compactness (nc-measure) if

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.
- (ii) $\eta(\bigcup_{i=1}^n A_i) = \max_i \eta(A_i)$.
- (iv) $\eta(\lambda A) = |\lambda| \eta(A)$
- (V) $\eta(A+B) \le \eta(A) + \eta(B)$

Fact

- σ is a nc-measure.
- If η is a nc-measure, then

$$\eta^{\omega}(A) = \inf\{\varepsilon > 0 : [\eta]^{\omega}_{\varepsilon}(A) = \emptyset\}$$

is a nc-measure of non-compactness.

A map η from the weak*-compacts of X^* into $[0,\infty)$ is a sublinear measure of non-compactness (nc-measure) if

- (o) $\eta(\{x^*\}) = 0$ for any $x^* \in X^*$.
- (i) $A \subset B \Rightarrow \eta(A) \leq \eta(B)$.
- (ii) $\eta(\bigcup_{i=1}^n A_i) = \max_i \eta(A_i)$.
- (iv) $\eta(\lambda A) = |\lambda| \eta(A)$
- (V) $\eta(A+B) \le \eta(A) + \eta(B)$

Fact

- σ is a nc-measure.
- If η is a nc-measure, then

$$\eta^{\omega}(A) = \inf\{\varepsilon > 0 : [\eta]^{\omega}_{\varepsilon}(A) = \emptyset\}$$

is a nc-measure of non-compactness.

Notation: $\sigma^{\omega^n} := (\sigma^{\omega^{n-1}})^{\omega}$

• Enough to prove $KSz(K) \leq KCz(K)$.

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]_{\varepsilon}^{\omega^{n+1}}(K) = \emptyset$.

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]^{\omega^{n+1}}_{\varepsilon}(K) = \emptyset$.
- We have almost $[\sigma]^{\omega}_{\varepsilon}(A) = [\sigma^{\omega}]'_{\varepsilon}(A)$ so $[\sigma^{\omega^n}]^{\omega}(K) = \emptyset$.

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]^{\omega^{n+1}}_{\varepsilon}(K) = \emptyset$.
- We have almost $[\sigma]^{\omega}_{\varepsilon}(A) = [\sigma^{\omega}]'_{\varepsilon}(A)$ so $[\sigma^{\omega^n}]^{\omega}(K) = \emptyset$.
- We will (maybe) prove that $\exists \kappa_n \geq 1 : [\sigma^{\omega^n}]^{\omega}_{\varepsilon}(K) = \emptyset \Rightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{\kappa_+ \varepsilon}(K) = \emptyset.$

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]^{\omega^{n+1}}_{\varepsilon}(K) = \emptyset$.
- We have almost $[\sigma]^\omega_\varepsilon(A) = [\sigma^\omega]'_\varepsilon(A)$ so $[\sigma^{\omega^n}]^\omega(K) = \emptyset$.
- We will (maybe) prove that $\exists \ \kappa_n \geq 1 : [\sigma^{\omega^n}]^{\omega}_{\varepsilon}(K) = \emptyset \Rightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{\kappa_n \varepsilon}(K) = \emptyset.$
- Unfortunately $\langle \sigma \rangle_{\varepsilon}^{\omega}(A) \neq \langle \sigma \rangle_{\varepsilon}'(A)$ but

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]^{\omega^{n+1}}_{\varepsilon}(K) = \emptyset$.
- We have almost $[\sigma]^{\omega}_{\varepsilon}(A) = [\sigma^{\omega}]'_{\varepsilon}(A)$ so $[\sigma^{\omega^n}]^{\omega}(K) = \emptyset$.
- We will (maybe) prove that $\exists \ \kappa_n \geq 1 : [\sigma^{\omega^n}]^{\omega}_{\varepsilon}(K) = \emptyset \Rightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{\kappa_n \varepsilon}(K) = \emptyset.$
- Unfortunately $\langle \sigma \rangle_{\varepsilon}^{\omega}(A) \neq \langle \sigma \rangle_{\varepsilon}'(A)$ but

$$\forall m \exists \kappa_m \ge 1 \ \forall \ \alpha : \ \langle \sigma^{\omega^m} \rangle_{\kappa_m \varepsilon}^{\omega \cdot \alpha}(A) \subset \langle \sigma^{\omega^{m+1}} \rangle_{\varepsilon}^{\alpha}(A)$$

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]^{\omega^{n+1}}_{\varepsilon}(K) = \emptyset$.
- We have almost $[\sigma]^{\omega}_{\varepsilon}(A) = [\sigma^{\omega}]'_{\varepsilon}(A)$ so $[\sigma^{\omega^n}]^{\omega}(K) = \emptyset$.
- We will (maybe) prove that $\exists \ \kappa_n \geq 1 : [\sigma^{\omega^n}]^{\omega}_{\varepsilon}(K) = \emptyset \Rightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{\kappa_n \varepsilon}(K) = \emptyset.$
- Unfortunately $\langle \sigma \rangle_{\varepsilon}^{\omega}(A) \neq \langle \sigma \rangle_{\varepsilon}'(A)$ but

$$\forall m \; \exists \; \kappa_m \geq 1 \; \forall \; \alpha : \; \langle \sigma^{\omega^m} \rangle_{\kappa_m \varepsilon}^{\omega \cdot \alpha}(A) \subset \langle \sigma^{\omega^{m+1}} \rangle_{\varepsilon}^{\alpha}(A)$$

• Hence $\langle \sigma \rangle_{\kappa_0 \cdots \kappa_n \varepsilon}^{\omega^{n+1}}(K) = \emptyset$.

- Enough to prove $KSz(K) \leq KCz(K)$.
- Let $KSz(K) \leq \omega^{n+1}$. Need to prove $KCz(K) \leq \omega^{n+1}$.
- Let $\varepsilon > 0$. Then $[\sigma]^{\omega^{n+1}}_{\varepsilon}(K) = \emptyset$.
- We have almost $[\sigma]^{\omega}_{\varepsilon}(A) = [\sigma^{\omega}]'_{\varepsilon}(A)$ so $[\sigma^{\omega^n}]^{\omega}(K) = \emptyset$.
- We will (maybe) prove that $\exists \ \kappa_n \geq 1 : [\sigma^{\omega^n}]^{\omega}_{\varepsilon}(K) = \emptyset \Rightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{\kappa_n \varepsilon}(K) = \emptyset.$
- Unfortunately $\langle \sigma \rangle_{\varepsilon}^{\omega}(A) \neq \langle \sigma \rangle_{\varepsilon}'(A)$ but

$$\forall m \exists \kappa_m \ge 1 \ \forall \alpha : \ \langle \sigma^{\omega^m} \rangle_{\kappa_m \varepsilon}^{\omega \cdot \alpha}(A) \subset \langle \sigma^{\omega^{m+1}} \rangle_{\varepsilon}^{\alpha}(A)$$

- Hence $\langle \sigma \rangle_{\kappa_0 \cdots \kappa_n \varepsilon}^{\omega^{n+1}}(K) = \emptyset$.
- $\Longrightarrow KCz(K) \le \omega^{n+1}$.

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}}^*(A)) \leq \kappa \eta(A)$.

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}}^*(A)) \leq \kappa \eta(A)$.

Lemma

$$[\sigma^{\omega^n}]^\omega_\varepsilon(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^\omega_{5\kappa\varepsilon}(\overline{\operatorname{conv}^*}(A)) = \emptyset$$

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}^*}(A)) \leq \kappa \eta(A)$.

Lemma

If σ^{ω^n} is κ -convexifiable, then

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa\varepsilon}(\overline{\operatorname{conv}}^*(A)) = \emptyset$$

• Exercise: σ is 1-convexifiable.

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}^*}(A)) \leq \kappa \eta(A)$.

Lemma

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa\varepsilon}(\overline{\operatorname{conv}^*}(A)) = \emptyset$$

- Exercise: σ is 1-convexifiable.
- Assume that σ^{ω^n} is κ -convexifiable. Let A w*-compact such that $\sigma^{\omega^{n+1}}(A) < \varepsilon$.

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}^*}(A)) \leq \kappa \eta(A)$.

Lemma

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa\varepsilon}(\overline{\operatorname{conv}^*}(A)) = \emptyset$$

- Exercise: σ is 1-convexifiable.
- Assume that σ^{ω^n} is κ -convexifiable. Let A w*-compact such that $\sigma^{\omega^{n+1}}(A) < \varepsilon$.
- Then $[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset$ by the definition.

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}^*}(A)) \leq \kappa \eta(A)$.

Lemma

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa\varepsilon}(\overline{\operatorname{conv}}^*(A)) = \emptyset$$

- Exercise: σ is 1-convexifiable.
- Assume that σ^{ω^n} is κ -convexifiable. Let A w*-compact such that $\sigma^{\omega^{n+1}}(A) < \varepsilon$.
- Then $[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset$ by the definition.
- Lemma $\Rightarrow \langle \sigma^{\omega^n} \rangle_{5\kappa\varepsilon}^{\omega}(\overline{\operatorname{conv}}^*(A)) = \emptyset$

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}^*}(A)) \leq \kappa \eta(A)$.

Lemma

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa\varepsilon}(\overline{\operatorname{conv}}^*(A)) = \emptyset$$

- Exercise: σ is 1-convexifiable.
- Assume that σ^{ω^n} is κ -convexifiable. Let A w*-compact such that $\sigma^{\omega^{n+1}}(A) < \varepsilon$.
- Then $[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset$ by the definition.
- Lemma $\Rightarrow \langle \sigma^{\omega^n} \rangle_{5\kappa\varepsilon}^{\omega}(\overline{\operatorname{conv}^*}(A)) = \emptyset$
- $\Longrightarrow [\sigma^{\omega^n}]_{5\kappa\varepsilon}^{\omega}(\overline{\operatorname{conv}^*}(A)) = \emptyset \Rightarrow \sigma^{\omega^{n+1}}(\overline{\operatorname{conv}^*}(A)) \le 5\kappa\varepsilon.$

Definition

A nc-measure η is κ -convexifiable ($\kappa \geq 1$) if $\forall A$ w*-compact $\eta(\overline{\operatorname{conv}^*}(A)) \leq \kappa \eta(A)$.

Lemma

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa\varepsilon}(\overline{\operatorname{conv}}^*(A)) = \emptyset$$

- Exercise: σ is 1-convexifiable.
- Assume that σ^{ω^n} is κ -convexifiable. Let A w*-compact such that $\sigma^{\omega^{n+1}}(A) < \varepsilon$.
- Then $[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset$ by the definition.
- Lemma $\Rightarrow \langle \sigma^{\omega^n} \rangle_{5\kappa \varepsilon}^{\omega}(\overline{\operatorname{conv}}^*(A)) = \emptyset$
- $\Longrightarrow [\sigma^{\omega^n}]_{5\kappa\varepsilon}^{\omega}(\overline{\operatorname{conv}}^*(A)) = \emptyset \Rightarrow \sigma^{\omega^{n+1}}(\overline{\operatorname{conv}}^*(A)) \leq 5\kappa\varepsilon.$
- $\Rightarrow \sigma^{\omega^{n+1}}$ is 6κ -convexifiable.

Sublemma 1

$$\forall \, \varepsilon' > \varepsilon \quad \langle \eta \rangle^{\omega}_{\kappa \varepsilon'}(\overline{\operatorname{conv}^*}(A)) = \emptyset.$$

Sublemma 1

Let X be a Banach space and η a κ -convexifiable nc-measure. Assume that A is a weak*-compact symmetric and radial such that $[\eta]'_{\varepsilon}(A) \subset \lambda A$ for some $\lambda \in (0,1)$ and $\varepsilon > 0$. Then

$$\forall \, \varepsilon' > \varepsilon \quad \langle \eta \rangle^{\omega}_{\kappa \varepsilon'}(\overline{\operatorname{conv}^*}(A)) = \emptyset.$$

• Let $\varepsilon' > \varepsilon$. Let $\lambda < \zeta < \xi < 1$ (ζ arbitrary fixed, $\xi \to 1$).

Sublemma 1

$$\forall \, \varepsilon' > \varepsilon \quad \langle \eta \rangle^{\omega}_{\kappa \varepsilon'}(\overline{\operatorname{conv}^*}(A)) = \emptyset.$$

- Let $\varepsilon' > \varepsilon$. Let $\lambda < \zeta < \xi < 1$ (ζ arbitrary fixed, $\xi \to 1$).
- We will show that $\langle \eta \rangle'_{\kappa \varepsilon'} \overline{\operatorname{conv}^*}(A) \subset \xi \overline{\operatorname{conv}^*}(A)$

Sublemma 1

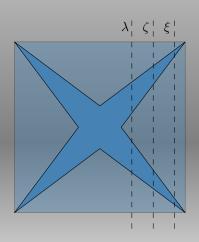
$$\forall \, \varepsilon' > \varepsilon \quad \langle \eta \rangle^{\omega}_{\kappa \varepsilon'}(\overline{\operatorname{conv}^*}(A)) = \emptyset.$$

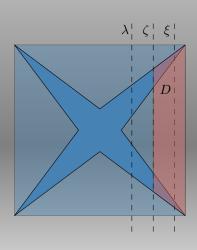
- Let $\varepsilon' > \varepsilon$. Let $\lambda < \zeta < \xi < 1$ (ζ arbitrary fixed, $\xi \to 1$).
- We will show that $\langle \eta \rangle'_{\kappa \varepsilon'} \overline{\operatorname{conv}^*}(A) \subset \xi \overline{\operatorname{conv}^*}(A)$
- It is enough to show that when S is a slice of $\overline{\operatorname{conv}^*}(A)$, $S \cap \xi \overline{\operatorname{conv}^*}(A) = \emptyset \Rightarrow \eta(S) < \kappa \varepsilon'$.

Sublemma 1

$$\forall \, \varepsilon' > \varepsilon \quad \langle \eta \rangle^{\omega}_{\kappa \varepsilon'}(\overline{\operatorname{conv}^*}(A)) = \emptyset.$$

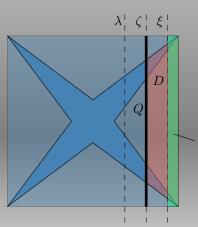
- Let $\varepsilon' > \varepsilon$. Let $\lambda < \zeta < \xi < 1$ (ζ arbitrary fixed, $\xi \to 1$).
- We will show that $\langle \eta \rangle'_{\kappa \varepsilon'} \overline{\operatorname{conv}^*}(A) \subset \xi \overline{\operatorname{conv}^*}(A)$
- It is enough to show that when S is a slice of $\overline{\operatorname{conv}^*}(A)$, $S \cap \xi \overline{\operatorname{conv}^*}(A) = \emptyset \Rightarrow \eta(S) < \kappa \varepsilon'$.
- So let $x \in X$, $\sup x(\overline{\operatorname{conv}}^*(A)) = 1$ and $S = \{x^* \in \overline{\operatorname{conv}}^*(A) : x^*(x) > \xi\}.$



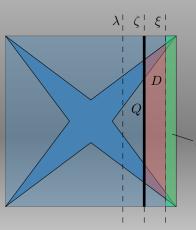


•
$$D = \overline{\operatorname{conv}^*} \{ x^* \in A : x^*(x) \ge \zeta \},$$

 $\eta(D) \le \kappa \varepsilon.$



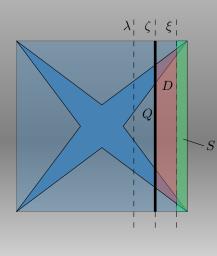
$$\begin{array}{l} \bullet \ D = \overline{\mathrm{conv}^*}\{x^* \in A : x^*(x) \geq \zeta\}, \\ \eta(D) \leq \kappa \varepsilon. \\ \bullet \ \forall \ x^* \in S \ \exists t > t_\xi = \frac{\xi - \zeta}{1 - \zeta} \ \mathrm{such \ that} \\ x^* \in tD + (1 - t)Q. \end{array}$$



$$\begin{array}{l} \bullet \ D = \overline{\operatorname{conv}^*}\{x^* \in A : x^*(x) \geq \zeta\}, \\ \eta(D) \leq \kappa \varepsilon. \\ \bullet \ \forall \ x^* \in S \ \exists t > t_\xi = \frac{\xi - \zeta}{1 - \zeta} \ \text{such that} \end{array}$$

 $S \quad x^* \in tD + (1 - t)Q.$

•
$$S \subset [t_{\xi}, 1]D + [0, 1 - t_{\xi}]Q$$



- $D = \overline{\operatorname{conv}^*} \{ x^* \in A : x^*(x) \ge \zeta \},$ $\eta(D) \leq \kappa \varepsilon$.

•
$$\forall x^* \in S \ \exists t > t_\xi = \frac{\xi - \zeta}{1 - \zeta} \text{ such that } x^* \in tD + (1 - t)Q.$$

•
$$S \subset [t_{\xi}, 1]D + [0, 1 - t_{\xi}]Q$$

$$\bullet \Longrightarrow \eta(S) < \kappa \varepsilon'.$$

Let $A\subset X^*$ be a weak*-compact such that $[\sigma^{\omega^n}]^m_\varepsilon(A)=\emptyset$. Then there is a symmetric radial weak*-compact set $B\supset A$ such that

$$[\sigma^{\omega^n}]_{4\varepsilon}'(B) \subset \left(1 - \frac{1}{32(m+1)}\right)B.$$

Let $A\subset X^*$ be a weak*-compact such that $[\sigma^{\omega^n}]^m_\varepsilon(A)=\emptyset$. Then there is a symmetric radial weak*-compact set $B\supset A$ such that

$$[\sigma^{\omega^n}]'_{4\varepsilon}(B) \subset \left(1 - \frac{1}{32(m+1)}\right)B.$$

Sublemma 1 + Sublemma 2 ⇒ Lemma

Let $A\subset X^*$ be a weak*-compact such that $[\sigma^{\omega^n}]^m_\varepsilon(A)=\emptyset$. Then there is a symmetric radial weak*-compact set $B\supset A$ such that

$$[\sigma^{\omega^n}]_{4\varepsilon}'(B) \subset \left(1 - \frac{1}{32(m+1)}\right)B.$$

- Sublemma 1 + Sublemma 2 ⇒ Lemma
- i.e. (with $\kappa_n = 6^n$):

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa_n \varepsilon}(\overline{\operatorname{conv}}^*(A)) = \emptyset$$

Let $A\subset X^*$ be a weak*-compact such that $[\sigma^{\omega^n}]^m_\varepsilon(A)=\emptyset$. Then there is a symmetric radial weak*-compact set $B\supset A$ such that

$$[\sigma^{\omega^n}]_{4\varepsilon}'(B) \subset \left(1 - \frac{1}{32(m+1)}\right)B.$$

- Sublemma 1 + Sublemma 2 ⇒ Lemma
- i.e. (with $\kappa_n = 6^n$):

$$[\sigma^{\omega^n}]^{\omega}_{\varepsilon}(A) = \emptyset \Longrightarrow \langle \sigma^{\omega^n} \rangle^{\omega}_{5\kappa_n \varepsilon}(\overline{\operatorname{conv}}^*(A)) = \emptyset$$

• This finishes the proof of Sz(K)=Cz(K) when $Sz(K)<\omega^{\omega}.$

Thank you!