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* If X ~ Y, then Cz(X) = Cz(Y).

+ More generally, if X C Y, then Cz(X) < Cz(Y).
* Cz(X) < +o iff X is Asplund.

¢ If X is separable, Cz(X) < +o0 iff C2(X) < wy.
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o if 2% € s T, and 3
w*-continuous 5-separated (z%),er C K such that o} = 2.
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Ny

T N _
f@®) =l ||+;2kanZd(x ,AR).

=1

+ Finally, |-| is the Minkowski functional of {z : f(x) < 1}.
* |-] is dual and satisfies ||-|| < |-| < 2]|-||.
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+ diam(K) > o(K) = [0]L(K) C s.(K)

cx*esl(K)3 (z)) C K, a* % z* and

liminf ||z* — xn|

|>5=now -nelghborhood of z* can be

* conv*[o]L(K) C conv*sL(K) C c011v*[a]’€/5(K) =

KCz(K) =Cz(K).
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« Hence (o)< _(K) =90.

KO Kn€

« = KCx(K) < w1,
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Then [0*"]¥(A) = 0 by the definition.
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— [awn]‘gﬁs(conv* (A)=0= J“’"H(conv*(A)) < Bke.
- = o¥"™ is 6r-convexifiable.




Proof of the lemma




Proof of the lemma




Proof of the lemma




Proof of the lemma
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* It is enough to show that when S'is a slice of conv*(A),
SN é&conv*(A) =0 = n(S) < ke'.

+ Soletz € X, supz(conv*(A4)) = 1 and
S = {z* € conv*(A) : z*(x) > &}.



























* This finishes the proof of Sz(K) = Cz(K) when
Sz(K) < w”.
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