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Let ∆ = {(x, x) : x ∈ R} be the diagonal of R× R.
K : R× R \∆ → C is a standard Calderón-Zygmund kernel if
there exists δ > 0 such that

|K(x, y)| ≤
C

|x− y|
,

|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)| ≤ Cδ
|y − z|

|x− y|1+δ
,

for x, y, z ∈ R with |x− y| > 2|y − z|.
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An operator T is called a Calderòn-Zygmund operator on R

associated to K, if

Tf(x) =

∫

R

K(x, y)f(y) dy, x /∈ supp f.
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An operator T is called a Calderòn-Zygmund operator on R

associated to K, if

Tf(x) =

∫

R

K(x, y)f(y) dy, x /∈ supp f.

Example: The Hilbert transform

Hf(x) = p.v.
1

π

∫ ∞

−∞

f(y)

x− y
dy.
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Theorem 1 (David and Journé, 1984) Let T be a CZO
associated to a standard kernel. Then the following are
equivalent:

A T defines a bounded linear operator L2(R) → L2(R)
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Theorem 2 (David and Journé, 1984) Let T be a CZO
associated to a standard kernel. Then the following are
equivalent:

A T defines a bounded linear operator L2(R) → L2(R)
B The following three conditions hold:

(i) |〈TχI , χI〉| . |I| for all intervals I ⊂ R (weak
boundedness)

(ii) T1 ∈ BMO(R)
(iii) T ∗1 ∈ BMO(R)

Idea: A CZ operator consists of parts which are controlled by the
BMO norm of T1, T ∗1 (so-called paraproducts) and a part
which is ”close to the diagonal”.
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Let f ∈ L2(R),

f(x) =
∑

I∈D

hI(x)f̂(I).

For a sequence (αI), define the Haar multiplier

Tαf =
∑

I∈D

hIαI f̂(I).

If (αI) = (εI) ∈ {−1, 1}D, Tε is a dyadic martingale transform.
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Let f ∈ L2(R),

f(x) =
∑

I∈D

hI(x)f̂(I).

For a sequence (αI), define the Haar multiplier

Tαf =
∑

I∈D

hIαI f̂(I).

If (αI) = (εI) ∈ {−1, 1}D, Tε is a dyadic martingale transform.
A dyadic shift S with parameters (m,n) is given by

Sf =
∑

L∈D

∑

J∈Dm(L)

hJ(x)
∑

I∈Dn(L)

cI,J f̂(I).
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Let f ∈ L2(R),

f(x) =
∑

I∈D

hI(x)f̂(I).

For a sequence (αI), define the Haar multiplier

Tαf =
∑

I∈D

hIαI f̂(I).

If (αI) = (εI) ∈ {−1, 1}D, Tε is a dyadic martingale transform.
A dyadic shift S with parameters (m,n) is given by

Sf =
∑

L∈D

∑

J∈Dm(L)

hJ(x)
∑

I∈Dn(L)

cI,J f̂(I).

Then k = max{n,m}+ 1 is called the complexity of S.
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Theorem 3 (Hytönen 2010) Let T be a CZO on R with the
standard kernel estimates, the weak boundedness property
|〈TχI , χI〉| ≤ C|I| for all intervals I, and the conditions
T (1) = b1, T

∗(1) = b2 ∈ BMO(R). Then for f, g ∈ C1
c (R),

〈Tf, g〉L2(R),L2(R) =

C · EΩ〈



Πω
b1 + (Πω

b2)
∗ +

∞
∑

m,n=0

τ(m,n)Smn
ω



 f, g〉L2(R),L2(R),

where C depends only on the constants in the standard
estimates of the kernel K and the weak boundedness property,
Smn
ω is a dyadic Haar shift of parameters (m,n) on the dyadic

system Dω and τ(m,n) . P (max{m,n})2−δmax{m,n}, with P a
polynomial.
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Let w be a weight function on R, 1 < p < ∞. We say that w is
an Ap-weight, if

[w]Ap = sup
I interval

〈w〉I〈w
− 1

p−1 〉p−1
I < ∞.
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Let w be a weight function on R, 1 < p < ∞. We say that w is
an Ap-weight, if

[w]Ap = sup
I interval

〈w〉I〈w
− 1

p−1 〉p−1
I < ∞.

Theorem 5 (Hunt, Muckenhoupt, Wheeden 1974) Let
1 < p < ∞ and w be a weight on R. Then the Hilbert transform
H : Lp

w(R) → Lp
w(R) is bounded, if and only if w is an

Ap-weight.

What is the sharp bound of the norm of ‖T‖Lp
w→Lp

w
in terms of

[w]Ap?
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Let w be a weight function on R, 1 < p < ∞. We say that w is
an Ap-weight, if

[w]Ap = sup
I interval

〈w〉I〈w
− 1

p−1 〉p−1
I < ∞.

Theorem 6 (Hunt, Muckenhoupt, Wheeden 1974) Let
1 < p < ∞ and w be a weight on R. Then the Hilbert transform
H : Lp

w(R) → Lp
w(R) is bounded, if and only if w is an

Ap-weight.

What is the sharp bound of the norm of ‖T‖Lp
w→Lp

w
in terms of

[w]Ap?

A2-Conjecture: ‖T‖L2
w→L2

w
≤ CT [w]A2

.
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� Maximal function (Buckley 1993)
� Dyadic square function (Hukovic, Nazarov, Treil, Volberg

1999)
� Dyadic martingale transforms (Wittwer 2000)
� 3/2 bound for the Hilbert transform (Petermichl, Pott 2001)
� Hilbert transform (Petermichl 2007)
� Paraproducts (Beznosova 2008)
� T (1) Theorem for two-weighted dyadic shifts (Nazarov, Treil,

Volberg 2008)
� Hilbert transform again (Lacey, Reguera, Petermichl 2009)
� all Calderon-Zygmund operators (Hytönen 2010)
� all CZOs (Treil 2011)
� A2-A∞ bound for all CZOs (Hytönen, Perez 2013)
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Calderòn-Zygmund
Operators

Weighted norm
inequalities

Ap-weights and the
Hunt-Muckenhoupt-
Wheeden
Theorem

⊲

Some History of
Sharp A2

Bounds
The Representation
Theorem of Hytönen

The Bellmann
function proof of
Treil I

Proof II

Proof III

Proof IV

Matrix weights

An Application

Calderon-Zygmund
Operators on UMD
spaces

10 / 36

� Maximal function (Buckley 1993)
� Dyadic square function (Hukovic, Nazarov, Treil, Volberg

1999)
� Dyadic martingale transforms (Wittwer 2000)
� 3/2 bound for the Hilbert transform (Petermichl, Pott 2001)
� Hilbert transform (Petermichl 2007)
� Paraproducts (Beznosova 2008)
� T (1) Theorem for two-weighted dyadic shifts (Nazarov, Treil,

Volberg 2008)
� Hilbert transform again (Lacey, Reguera, Petermichl 2009)
� all Calderon-Zygmund operators (Hytönen 2010)
� all CZOs (Treil 2011)
� A2-A∞ bound for all CZOs (Hytönen, Perez 2013)



The Representation Theorem of Hytönen
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Theorem 7 (Hytönen 2010) Let T be a CZO on R with the
standard kernel estimates, the weak boundedness property
|〈TχI , χI〉| ≤ C|I| for all intervals I, and the conditions
T (1) = b1, T

∗(1) = b2 ∈ BMO(R). Then for f, g ∈ C1
c (R),

〈Tf, g〉L2(R),L2(R) =

C · EΩ〈



Πω
b1 + (Πω

b2)
∗ +

∞
∑

m,n=0

τ(m,n)Smn
ω



 f, g〉L2(R),L2(R),

where C depends only on the constants in the standard
estimates of the kernel K and the weak boundedness property,
Smn
ω is a dyadic Haar shift of parameters (m,n) on the dyadic

system Dω and τ(m,n) . P (max{m,n})2−δmax{m,n}, with P a
polynomial.
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We assume the linear bound for martingale transforms:

sup
ε
〈Tεf, g〉 =

∑

I

|〈f〉I+ − 〈f〉I− ||〈g〉I+ − 〈g〉I− | · |I|

≤ C[w]A2
‖f‖L2

w
‖g‖L2

w−1
.
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We assume the linear bound for martingale transforms:

sup
ε
〈Tεf, g〉 =

∑

I

|〈f〉I+ − 〈f〉I− ||〈g〉I+ − 〈g〉I− | · |I|

≤ C[w]A2
‖f‖L2

w
‖g‖L2

w−1
.

Define BX(f ,F,U,g,G,V) :=

= |I0|
−1 sup

∑

I⊆I0

|〈f〉I+ − 〈f〉I− ||〈g〉I+ − 〈g〉I− | · |I|,

with the sup over all functions f, g and A2 weights w such that

〈f〉I0 = f ,
〈

wf2
〉

I0
= F, 〈g〉I0 = g,

〈

w−1g2
〉

I0
= G,

sup
I⊂I0

〈w〉I〈w
−1〉I ≤ X, 〈w〉I0 = U, 〈w−1〉I0 = V.
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By the assumption of the linear bound,

BX(f ,F,U,g,G,V) ≤ CXF1/2G1/2. (1)
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By the assumption of the linear bound,

BX(f ,F,U,g,G,V) ≤ CXF1/2G1/2. (1)

Write (f ,F,U,g,G,V) = A. For A = 1
2 (A

+ +A−),

1

2

(

BX(A+) + BX(A−)
)

+ |f+ − f−||g+ − g−|

≤ BX(A) (2)
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By the assumption of the linear bound,

BX(f ,F,U,g,G,V) ≤ CXF1/2G1/2. (1)

Write (f ,F,U,g,G,V) = A. For A = 1
2 (A

+ +A−),

1

2

(

BX(A+) + BX(A−)
)

+ |f+ − f−||g+ − g−|

≤ BX(A) (2)

Moreover, each function B with the boundedness property (1)
und the convexity property (2) proves the linear bound for
martingale transforms.
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Calderòn-Zygmund
Operators

Weighted norm
inequalities

Ap-weights and the
Hunt-Muckenhoupt-
Wheeden
Theorem
Some History of
Sharp A2 Bounds

The Representation
Theorem of Hytönen

The Bellmann
function proof of
Treil I

Proof II

⊲ Proof III

Proof IV

Matrix weights

An Application

Calderon-Zygmund
Operators on UMD
spaces

14 / 36

For a dyadic shift of complexity n, control instead

|I0|
−1 sup

∑

L⊆I0

∑

I,J∈Dn(L)

|〈f〉I − 〈f〉L|

2n
|〈g〉J − 〈g〉L|

2n
· |L|.

For some bounded real sequence (αL
I )I∈Dn(L) of average zero,

∑

I,J∈Dn(L)

|〈f〉I − 〈f〉L|

2n
|〈g〉J − 〈g〉L|

2n
· |L|

.
∑

I,J∈Dn(L)

αL
I α

L
J

〈f〉I − 〈f〉L
2n

〈g〉J − 〈g〉L
2n

· |L|.
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But for each such sequence,

∑

I,J∈Dn(L)

αL
I α

L
J

〈f〉I − 〈f〉L
2n

〈g〉J − 〈g〉L
2n

· |L| =





∑

I∈Dn(L)

1 + αL
I

2n
(〈f〉I − 〈f〉L)









∑

J∈Dn(L)

1 + αL
J

2n
(〈g〉J − 〈g〉L)



 |L|

. BX(AL)−
1

2n

∑

I∈Dn(L)

BX(AI).
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But for each such sequence,

∑

I,J∈Dn(L)

αL
I α

L
J

〈f〉I − 〈f〉L
2n

〈g〉J − 〈g〉L
2n

· |L| =





∑

I∈Dn(L)

1 + αL
I

2n
(〈f〉I − 〈f〉L)









∑

J∈Dn(L)

1 + αL
J

2n
(〈g〉J − 〈g〉L)



 |L|

. BX(AL)−
1

2n

∑

I∈Dn(L)

BX(AI).

Adding L ∈ D(I0) gives a telescopic sum and the desired bound.
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A matrix weight is a measurable function
W : R → Mat(d× d,C) which is positive and invertible almost
everywhere.
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A matrix weight is a measurable function
W : R → Mat(d× d,C) which is positive and invertible almost
everywhere. W satisfies the matrix A2 Muckenhoupt condition, if

[W ]A2
:= sup

I

∥

∥

∥

∥

〈

W (t)〉1/2
〈

W−1(t)
〉1/2∥

∥

∥

2
< ∞.

Theorem 9 (Treil, Volberg, Christ, Goldberg) Let W be a
matrix Ap weight, 1 < p < ∞. Then for each CZO T associated
to a standard kernel,

T : Lp
W (R,Cd) → Lp

W (R,Cd) is bounded.
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A matrix weight is a measurable function
W : R → Mat(d× d,C) which is positive and invertible almost
everywhere. W satisfies the matrix A2 Muckenhoupt condition, if

[W ]A2
:= sup

I

∥

∥

∥

∥

〈

W (t)〉1/2
〈

W−1(t)
〉1/2∥

∥

∥

2
< ∞.

Theorem 10 (Treil, Volberg, Christ, Goldberg) Let W be a
matrix Ap weight, 1 < p < ∞. Then for each CZO T associated
to a standard kernel,

T : Lp
W (R,Cd) → Lp

W (R,Cd) is bounded.

What is the sharp bound for ‖T‖L2
W

→L2
W

in terms of [W ]A2
?
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Now let f ∈ L2(R,Cd),

f(x) =
∑

I∈D

hI(x)f̂(I).

For a sequence (σI) of d× d matrices, define the Haar multiplier

Tσf =
∑

I∈D

hIσI f̂(I).
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Now let f ∈ L2(R,Cd),

f(x) =
∑

I∈D

hI(x)f̂(I).

For a sequence (σI) of d× d matrices, define the Haar multiplier

Tσf =
∑

I∈D

hIσI f̂(I).

It is easy to see that in order for Tσ to be bounded on
L2
W (R,Cd), one needs

‖σ‖∞,W = sup
I

‖〈W 〉
1/2
I σI〈W 〉

−1/2
I ‖ < ∞.
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Let N : [1,∞) → [1,∞) be given by

N(X) = sup ‖Tσ‖L2
W

(R,Cd)→L2
W

(R,Cd),

where the supremum is taken over all d× d matrix A2 weights
W with [W ]A2

≤ X and Tσ with ‖σ‖∞,W ≤ 1.

Theorem 11 (Pott, Stoica 2015) Let W be a d× d matrix
A2 weight. Let T be a Calderón-Zygmund operator on R

associated to a standard kernel. Suppose that |〈TχI , χI〉| ≤ C|I|
for all intervals I, and T (1) = T ∗(1) = 0. Then

‖T‖L2
W

(R,Cd)→L2
W

(R,Cd) ≤ C · dN([W ]A2
),

where C depends only on the constants in the standard
estimates and the weak boundedness property.
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To prove the linear bound for matrix weights for all CZOs, it
therefore remains to prove it for Haar multipliers and for
paraproducts. [Bickel, Petermichl, Wick 2014] prove a

[W ]
3/2
A2

log[W ]A2
bound for Haar multipliers, listing also a

strategy to prove the linear bound:
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To prove the linear bound for matrix weights for all CZOs, it
therefore remains to prove it for Haar multipliers and for
paraproducts. [Bickel, Petermichl, Wick 2014] prove a

[W ]
3/2
A2

log[W ]A2
bound for Haar multipliers, listing also a

strategy to prove the linear bound:

1. prove a matrix version of the Weighted Carleson Embedding
Theorem for matrix weights
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To prove the linear bound for matrix weights for all CZOs, it
therefore remains to prove it for Haar multipliers and for
paraproducts. [Bickel, Petermichl, Wick 2014] prove a

[W ]
3/2
A2

log[W ]A2
bound for Haar multipliers, listing also a

strategy to prove the linear bound:

1. prove a matrix version of the Weighted Carleson Embedding
Theorem for matrix weights -just done [Culiuc, Treil 2015]
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To prove the linear bound for matrix weights for all CZOs, it
therefore remains to prove it for Haar multipliers and for
paraproducts. [Bickel, Petermichl, Wick 2014] prove a

[W ]
3/2
A2

log[W ]A2
bound for Haar multipliers, listing also a

strategy to prove the linear bound:

1. prove a matrix version of the Weighted Carleson Embedding
Theorem for matrix weights -just done [Culiuc, Treil 2015]

2. verify the test condition
∑

I⊆J

Ŵ (I)〈W 〉−1
I Ŵ (I) . [W ]A2

W (J) - this gives the linear

bound for the weighted square function
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To prove the linear bound for matrix weights for all CZOs, it
therefore remains to prove it for Haar multipliers and for
paraproducts. [Bickel, Petermichl, Wick 2014] prove a

[W ]
3/2
A2

log[W ]A2
bound for Haar multipliers, listing also a

strategy to prove the linear bound:

1. prove a matrix version of the Weighted Carleson Embedding
Theorem for matrix weights -just done [Culiuc, Treil 2015]

2. verify the test condition
∑

I⊆J

Ŵ (I)〈W 〉−1
I Ŵ (I) . [W ]A2

W (J) - this gives the linear

bound for the weighted square function
3. prove the linear bound for Haar multipliers.
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To prove the linear bound for matrix weights for all CZOs, it
therefore remains to prove it for Haar multipliers and for
paraproducts. [Bickel, Petermichl, Wick 2014] prove a

[W ]
3/2
A2

log[W ]A2
bound for Haar multipliers, listing also a

strategy to prove the linear bound:

1. prove a matrix version of the Weighted Carleson Embedding
Theorem for matrix weights -just done [Culiuc, Treil 2015]

2. verify the test condition
∑

I⊆J

Ŵ (I)〈W 〉−1
I Ŵ (I) . [W ]A2

W (J) - this gives the linear

bound for the weighted square function
3. prove the linear bound for Haar multipliers.

[Isralowitz, Kwon, Pott 2015] prove the [W ]
3/2
A2

log[W ]A2
bound

for paraproducts.
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Suppose the A2 Conjecture holds for matrix weights. Let T be a
CZO which is bounded on L2(R). Then

‖[T, b]‖L2
w→L2

w
. CT

(

1

R
[w]A2

+R[w]A2
[w]2A∞

)

‖b‖BMO (R > 0).

In particular, choosing R = [w]−1
A∞

,

‖[T, b]‖L2
w→L2

w
. CT [w]A2

[w]A∞
‖b‖BMO

Moreover,

‖ [. . . [T, b], . . . , b] ‖L2
w→L2

w
. CT [w]A2

(

[w]A∞
+ [w−1]A∞

)n
‖b‖nBMO,

(compare with the results in Chung, Pereyra, Perez 2012 and
Hytönen, Perez 2013).
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Let w be an A2-weight, b a BMO function of norm 1. Define the
matrix weight

W =

(

1 b
0 1

)(

w 0
0 w

)(

1 0
b̄ 1

)

,

W−1 =

(

1 0
−b̄ 1

)(

w−1 0
0 w−1

)(

1 −b
0 1

)

Then

‖T‖L2
W

(Cd)→L2
W

(C2) = ‖W 1/2TW−1/2‖L2(C2)→L2(C2)

=

∥

∥

∥

∥

(

w1/2Tw−1/2 w1/2[T, b]w−1/2

0 w1/2Tw−1/2 0

)∥

∥

∥

∥

L2(C2)→L2(C2)

and thus
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‖[T, b]‖L2
w→L2

w
= ‖w1/2[T, b]w−1/2‖L2→L2

. sup
I

tr
(

〈W 〉I〈W
−1〉I

)

= sup
I

−

∫

I
−

∫

I
w(x)w−1(y)(2 + |b(x)− b(y)|2)dxdy

. [w]A2

+sup
I

(

−

∫

I
−

∫

I
(w(x)w−1(y))r

)1/r (

−

∫

I
−

∫

I
|b(x)− b(y)|2r

′

)1/r′

≤ [w]A2
(1 + ‖b‖2BMO,2r′)

. [w]A2
(1 + ([w]A∞

+ [w−1]A∞
)2‖b‖2BMO)

for r =
4[w]A∞

4[w]A∞
−1 , r

′ = 4[w]A∞
.
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For iterated commutators, consider the matrix weight













1 b . . . bn

n!

0 1
. . .

...
...

. . .
. . . b

0 . . . 0 1

























w 0 . . . 0

0 w
. . .

...
...

. . .
. . . 0

0 . . . 0 w

























1 0 . . . 0

−b̄ 1
. . .

...
...

. . .
. . . 0

(−b̄)
n

n!

. . . −b̄ 1













.

This yields the weighted commutator matrix













T [T, b] . . . 1
n! [[[T, b], . . .], b]

0 T [T, b]
...

...
. . .

. . . [T, b]
0 . . . . . . T













,
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Checking the matrix A2 constant gives

‖[[[T, b], . . . ], b]‖L2
w→L2

w
=

. sup
I

tr
(

〈W 〉I〈W
−1〉I

)

. sup
I

−

∫

I
−

∫

I
w(x)w−1(y)(2 + |b(x)− b(y)|2n)dxdy

. [w]A2

+sup
I

(

−

∫

I
−

∫

I
(w(x)w−1(y))r

)1/r (

−

∫

I
−

∫

I
|b(x)− b(y)|2nr

′

)1/r′

≤ [w]A2
(1 + ‖b‖2nBMO,2nr′)

. [w]A2
(1 + ([w]A∞

+ [w−1]A∞
)2n‖b‖2nBMO),

which yields the second result.
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A Banach space X is a UMD (unconditional for martingale
differences) space if there exists a constant Cp for one (or
equivalently, for all) p ∈ (1,∞) such that

∥

∥

∥

n
∑

k=1

εkdk

∥

∥

∥

Lp(X)
≤ Cp

∥

∥

∥

n
∑

k=1

dk

∥

∥

∥

Lp(X)
,

for all n ≥ 1, all X-valued martingale difference sequences
{dk}

n
k=1, and all choices of signs {εk}

n
k=1 of signs from {±1}.
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A Banach space X is a UMD (unconditional for martingale
differences) space if there exists a constant Cp for one (or
equivalently, for all) p ∈ (1,∞) such that

∥

∥

∥

n
∑

k=1

εkdk

∥

∥

∥

Lp(X)
≤ Cp

∥

∥

∥

n
∑

k=1

dk

∥

∥

∥

Lp(X)
,

for all n ≥ 1, all X-valued martingale difference sequences
{dk}

n
k=1, and all choices of signs {εk}

n
k=1 of signs from {±1}.

For each p ∈ (1,∞), the smallest constant in the previous
inequality is denoted by βp,X and is called the UMDp constant of
X.
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Theorem 12 (Burkholder, Bourgain) Let X be a Banach
space. Then X is a UMD space, if and only if the Hilbert
transform extends to a bounded linear operator
Lp(R, X) → Lp(R, X) for some (and equivalently, to all)
1 < p < ∞.
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Theorem 13 (Figiel’s T1 Theorem) Let X be a UMD space,
1 < p < ∞, and βp,X be the UMDp constant of X. Let T be a
Calderón-Zygmund operator on R which satisfies the standard
kernel estimates, the weak boundedness property
|〈TχI , χI〉| ≤ C|I| for all intervals I, and the conditions
T (1), T ∗(1) ∈ BMO. Then

‖T‖Lp(X)→Lp(X) ≤ Cβ2
p,X ,

where C depends only on the constants in the standard
estimates and the weak boundedness property, and the BMO
norm of T (1), T ∗(1).
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Theorem 14 (Pott, Stoica 2013) Let X be a UMD space,
1 < p < ∞, and βp,X be the UMDp constant of X. Let K be
an even standard kernel with smoothness δ > 1/2 and T be a
Calderón-Zygmund operator on R associated to K. Suppose
that T satisfies the weak boundedness property
|〈TχI , χI〉| ≤ C|I| for all intervals I, and the vanishing
paraproduct conditions T (1) = T ∗(1) = 0. Then

‖T‖Lp(X)→Lp(X) ≤ CTβp,X ,

where CT depends only on the constants in the standard
estimates and the weak boundedness property.
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By definition of βp,X

∑

I

|〈〈f〉I+ − 〈f〉I− , 〈g〉I+ − 〈g〉I−〉X,X∗ | · |I|

≤ βp,X‖f‖Lp(X)‖g‖Lp′(X∗).
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By definition of βp,X

∑

I

|〈〈f〉I+ − 〈f〉I− , 〈g〉I+ − 〈g〉I−〉X,X∗ | · |I|

≤ βp,X‖f‖Lp(X)‖g‖Lp′(X∗).

Define B(f ,F,g,G) :=

= |I0|
−1 sup

∑

I⊆I0

|〈〈f〉I+ − 〈f〉I− , 〈g〉I+ − 〈g〉I−〉X,X∗ | · |I|,

with the sup over all functions f, g such that

〈f〉I0 = f ,
〈

‖f‖pX
〉

I0
= F, 〈g〉I0 = g,

〈

‖g‖p
′

X∗

〉

I0
= G,

Thus BX(f ,F,g,G) ≤ βp,XF1/pG1/p′ .



Proof II
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Write (f ,F,g,G) = A. For A = 1
2 (A

+ +A−),

1

2

(

BX(A+) + BX(A−)
)

+
∣

∣〈f+ − f−,g+ − g−〉X,X∗

∣

∣

≤ BX(A) (3)
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Write (f ,F,g,G) = A. For A = 1
2 (A

+ +A−),

1

2

(

BX(A+) + BX(A−)
)

+
∣

∣〈f+ − f−,g+ − g−〉X,X∗

∣

∣

≤ BX(A) (3)

Moreover, each function B with the boundedness property (1)
und the convexity property (2) proves the linear bound for
martingale transforms.
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For a dyadic shift of complexity n, control instead

|I0|
−1 sup

∑

L⊆I0

∑

I,J∈Dn(L)

1

22n
|〈〈f〉I − 〈f〉L, 〈g〉J − 〈g〉L〉X,X∗ |·|L|.

For any bounded real sequence (αL
I )I∈Dn(L) of average zero,

∑

I,J∈Dn(L)

αL
I

2n
αL
J

2n
〈〈f〉I − 〈f〉L, 〈g〉J − 〈g〉L〉 · |L|

. B(AL)−
1

2n

∑

I∈Dn(L)

B(AI).
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For a dyadic shift of complexity n, control instead

|I0|
−1 sup

∑

L⊆I0

∑

I,J∈Dn(L)

1

22n
|〈〈f〉I − 〈f〉L, 〈g〉J − 〈g〉L〉X,X∗ |·|L|.

For any bounded real sequence (αL
I )I∈Dn(L) of average zero,

∑

I,J∈Dn(L)

αL
I

2n
αL
J

2n
〈〈f〉I − 〈f〉L, 〈g〉J − 〈g〉L〉 · |L|

. B(AL)−
1

2n

∑

I∈Dn(L)

B(AI).

by the convexity properties of the Bellman function.
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Lemma 15 Let ΛL be the real symmetric 2n × 2n matrix with
entries

ΛL
I,J =

1

22n
(〈〈f〉I − 〈f〉L, 〈g〉J − 〈g〉L〉X,X∗+〈〈f〉J − 〈f〉L, 〈g〉I − 〈g〉L〉X,X∗)

Then for a suitably chosen bounded real sequence
αL = (αL

I )I∈Dn(L) of average zero and with sup norm 1, we have
that

2−n/2
∑

I,J∈Dn(L)

∣

∣ΛL
I,J

∣

∣ · |L|

. tr(αL ⊗ αL · ΛL)|L| . B(AL)−
1

2n

∑

I∈Dn(L)

B(AI).
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Let S denote the Schur multipliers on the 2n × 2n matrices. By
Grothendieck’s inequality,

S ≃ l∞2n⊗̂l∞2n .

Thus the matrix ΛL can be paired with all symmetric real Schur
multipliers of norm 1. But for any 2n × 2n matrix M ,

‖M‖S ≤ 2n/2‖M‖l∞(n×n),

and this is sharp (Davidson, Donsig 2007). This means that

sup
αL

tr(αL ⊗ αL · ΛL)|L| & 2−n/2 sup
‖M‖l∞≤1

tr(M · ΛL)|L|

=
∑

I,J∈Dn(L)

∣

∣ΛL
I,J

∣

∣ · |L|. �
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