The non-commutative Khintchine inequalities in L_p , 0

Gilles Pisier Texas A&M University CIRM, GDR, December 1, 2015

╗▶ ◀ ⋽ ▶ ◀

B Banach space $x_n \in B$ **Question** When does the series

$$\sum \pm x_n$$

converge for almost all choices of signs ? More formally: (ε_n) i.i.d. random variables on (Ω, \mathbb{P}) with $\mathbb{P}(\varepsilon_n = \pm 1) = 1/2$ When does the random series

$$\sum \varepsilon_n x_n$$

converge a.s. ?

Scalar case $B = \mathbb{R}$ or \mathbb{C} **Answer to the question:** $\sum \varepsilon_n x_n$ converge a.s. IFF $\sum |x_n|^2 < \infty$ IFF $\sum \varepsilon_n x_n$ converges in L_2 IFF $\sum \varepsilon_n x_n$ converges in L_p for ALL 0**Khintchine inequalities** $For any <math>0 there are constants <math>A_p > 0$ and $B_p > 0$ such that for any sequence $x = (x_n)$ in ℓ_2 we have

$$A_p\left(\sum |x_n|^2\right)^{1/2} \leq \left(\int \left|\sum x_n \varepsilon_n\right|^p d\mathbb{P}\right)^{1/p} \leq B_p\left(\sum |x_n|^2\right)^{1/2}$$

Note that $A_p = 1$ when $p \ge 2$ and $B_p = 1$ when $p \le 2$ are the obvious cases since the $L_p(\mathbb{P})$ -norm is monotone increasing in p and $\|\sum x_n \varepsilon_n\|_{L_2(\mathbb{P})} = (\sum |x_n|^2)^{1/2}$.

Kahane inequalities

For any 0 there is a constant <math>K(p,q) such that for any Banach space B and any finite subset x_1, \ldots, x_n in an arbitrary Banach space B we have

$$\left\|\sum \varepsilon_k x_k\right\|_{L_p(B)} \leq \left\|\sum \varepsilon_k x_k\right\|_{L_q(B)} \leq K(p,q) \left\|\sum \varepsilon_k x_k\right\|_{L_p(B)}$$

In particular

$$\forall 0$$

Moreover

 $\sum \varepsilon_n x_n$ converge a.s. in B IFF it converges in $L_p(B)$

高 と く ヨ と く ヨ と

Our initial Question When does the series

 $\sum \varepsilon_n x_n$

converge for almost all choices of signs ? is now reduced to: Find a "computable" equivalent for

 $\|\sum \varepsilon_n x_n\|_{L_p(B)}$

and we can choose the p that we like.

.....cf Talagrand, Latała and Bednorz for, say, $B=\ell_\infty$

□ > < E > < E > _ E

Consider $B = L_p(m)$ Then the Khintchine inequality in L_p and Fubini imply:

$$\|\sum \varepsilon_n x_n\|_{L_p(B)} \simeq \|(\sum |x_n|^2)^{1/2}\|_B$$

Moreover

$$\sum \varepsilon_n x_n \text{ converge a.s. in B } \text{ IFF } \| (\sum |x_n|^2)^{1/2} \|_B < \infty$$

白 と く ヨ と く ヨ と …

3

Non-commutative Khintchine inequalities

 $B = L_p(M, \tau)$ M von Neumann alg. τ standard trace (normal, faithful, semi-finite): $\tau(x^*x) = \tau(xx^*)$ Basic example: M = B(H) equipped with usual trace $x \mapsto tr(x)$ Then

$$L_p(M, \tau) =$$
Schatten $p -$ class S_p

Note

$$\|(\sum |x_n|^2)^{1/2}\|_B$$
 still makes sense with $|x|=(x^*x)^{1/2}$

However

$$\|(\sum |x_n|^2)^{1/2}\|_B \neq \|(\sum |x_n^*|^2)^{1/2}\|_B$$

while

$$\|\sum \varepsilon_n x_n\|_{L_p(B)} = \|\sum \varepsilon_n x_n^*\|_{L_p(B)}$$

Non-commutative Khintchine inequalities

The case 1 is due to**F. Lust-Piquard 1986** There are positive constants α_p , β_p such that for any finite sequence $x = (x_1, \ldots, x_n)$ in $B = S_p$ (or $B = L_p(\tau)$) we have

$$\frac{1}{\beta_p}|||(x_k)|||_p \le \|\sum \varepsilon_n x_n\|_{L_p(B)} \le \alpha_p|||(x_k)|||_p \tag{1}$$

where $|||(x_k)|||_p$ is defined as follows: If $2 \le p < \infty$

$$|||(x_k)|||_p = \max\left\{\left\|\left(\sum x_k^* x_k\right)^{\frac{1}{2}}\right\|_p, \left\|\left(\sum x_k x_k^*\right)^{\frac{1}{2}}\right\|_p\right\}$$

and if 0 :

$$|||(x_k)|||_p \stackrel{\text{def}}{=} \inf_{x_k=a_k+b_k} \left\{ \left\| \left(\sum a_k^* a_k \right)^{\frac{1}{2}} \right\|_p + \left\| \left(\sum b_k b_k^* \right)^{\frac{1}{2}} \right\|_p \right\}.$$

Note that $\beta_p = 1$ if $p \ge 2$, while $\alpha_p = 1$ if $p \le 2$

The case p = 1 is in 1991 joint work with F. Lust-Piquard There we give 2 proofs. One of the proofs shows that the non-commutative Khintchine inequality for p = 1is essentially equivalent to the "little non-commutative Grothendieck inequality" that I had proved in 1978 Consider $x_{ij} \in \mathbb{C}$ **Question** When does

$$[\pm x_{i,j}] \in S_p$$

for almost all choices of independent signs \pm ?

i.e. When does
$$[\varepsilon_{i,j}x_{i,j}] \in S_p$$
 a.s. ?

Answer

•IFF $\sum_{i} (\sum_{j} |x_{ij}|^2)^{p/2} + \sum_{j} (\sum_{i} |x_{ij}|^2)^{p/2} < \infty$ when $2 \le p < \infty$ • IFF \exists a decomposition $x_{ij} = a_{ij} + b_{ij}$ such that $\sum_{i} (\sum_{j} |a_{ij}|^2)^{p/2} + \sum_{j} (\sum_{i} |b_{ij}|^2)^{p/2} < \infty$ when $1 \le p \le 2$ This follows from

$$\|\sum \varepsilon_{i,j} x_{ij} e_{i,j}\|_{L_P(S_p)} \simeq |||(x_{ij} e_{i,j})|||_p$$

• • = • • = •

When $0 the <math>L_p$ and $L_p(\tau)$ spaces are of cotype 2

Definition

B is of cotype 2 if there is C such that

$$(\sum ||x_n||^2)^{1/2} \le C ||\sum \varepsilon_n x_n||_{L_2(B)}$$

$$\sum \varepsilon_n x_n \text{ converges a.s. in B} \quad \Rightarrow (\sum \|x_n\|^2)^{1/2} < \infty$$

A B + A B +

The case 0 remained open since our 1991 paper.In JFA 2009 I made an attempt to solve the problem.I proposed to use an extrapolation method (idea originated inMaurey's work, already used to prove my non-com Grothendiecktheorem)

The idea was to introduce a priori for 0 the property

$$(\mathcal{K}_{p}) \quad \left\{ \begin{array}{l} \exists \beta_{p} \text{ such that for any finite sequence} \\ x = (x_{k}) \text{ in } B = L_{p}(\tau) \text{ we have} \\ |||x|||_{p} \leq \beta_{p} \|\sum \varepsilon_{n} x_{n}\|_{L_{p}(B)} \text{ where} \end{array} \right.$$
$$|(x_{k})|||_{p} \stackrel{\text{def}}{=} \inf_{x_{k}=a_{k}+b_{k}} \left\{ \left\| \left(\sum a_{k}^{*}a_{k}\right)^{\frac{1}{2}} \right\|_{p} + \left\| \left(\sum b_{k}b_{k}^{*}\right)^{\frac{1}{2}} \right\|_{p} \right\}.$$

Extrapolation Idea: to prove $(K_q) \Rightarrow (K_p) \quad \forall 0 .$ **Note:** $For the extrapolation argument <math>(\varepsilon_n)$ can be replaced by any general orthonormal sequence (\exists analogy with Rudin's $\Lambda(p)$ -sets) The key ingredient for this is a new form of (non-commutative) Hölder inequality involving the Jordan product **Notation:**

$$x \cdot y = (xy + yx)/2$$
$$J(x)(y) = x \cdot y$$
$$\mathcal{D} = \{f > 0 \mid \tau(f) = 1 \text{ densities}\}$$
Fix 0

For $x = (x_k)$ (finite sequence) and $q \in [p, 2]$

$$C_q(x) = \inf_{f \in \mathcal{D}} \left\{ \left\| J(f^{\frac{1}{p} - \frac{1}{q}})^{-1} (\sum \varepsilon_n x_n) \right\|_{L_q(\mathbb{P} \times \tau)} \right\}$$

Let

$$J(f^{\frac{1}{p}-\frac{1}{q}})^{-1}(\sum \varepsilon_n x_n) = \sum \varepsilon_n y_n.$$

Then

$$x_n = (f^{\frac{1}{p} - \frac{1}{q}}y_n + y_n f^{\frac{1}{p} - \frac{1}{q}})/2.$$

留 と く ヨ と く ヨ と …

Ь

$$C_{q}(x) = \inf_{f \in \mathcal{D}} \left\{ \left\| J(f^{\frac{1}{p} - \frac{1}{q}})^{-1} (\sum \varepsilon_{n} x_{n}) \right\|_{L_{q}(\mathbb{P} \times \tau)} \right\}$$

$$C_{p}(x) = \left\| \sum \varepsilon_{n} x_{n} \right\|_{L_{p}(\mathbb{P} \times \tau)} \qquad C_{2}(x) \simeq |||x|||_{p}$$
Extrapolation idea to prove $(K_{q}) \Rightarrow (K_{p})$ requires:
for $p < q < 2$ and $\frac{1}{q} = \frac{1 - \theta}{p} + \frac{\theta}{2}$
$$C_{q}(x) \lesssim C_{p}(x)^{1 - \theta} C_{2}(x)^{\theta}$$
Indeed, assuming (K_{q}) we have for $y_{n} = J(f^{\frac{1}{p} - \frac{1}{q}})^{-1}(x_{n})$
 $(K_{q}) \Rightarrow |||y|||_{q} \lesssim \|\sum \varepsilon_{n} y_{n}\|_{L_{q}(B)}$
and choosing f realizing (up to a factor) the $\inf_{f \in \mathcal{D}}$
 $|||y|||_{q} \lesssim C_{q}(x) \lesssim C_{p}(x)^{1 - \theta} C_{2}(x)^{\theta}$

Sublemma: $|||x|||_p \lesssim |||y|||_q$ for any $f \in \mathcal{D}$ **Conclusion:** $|||x|||_p \lesssim C_p(x)^{1-\theta} |||x|||_p \Rightarrow |||x|||_p \lesssim C_p(x)$ **Proof of Sublemma** is not difficult but uses $\forall f, g \in D$

$$|||(f^{\frac{1}{p}-\frac{1}{q}}z_ng^{\frac{1}{q}-\frac{1}{2}})|||_p \lesssim |||(z_n)|||_2 = (\sum ||z_n||_2)^{1/2}$$

which follows from the 3 line lemma and hence

$$|||J(f^{\frac{1}{p}-\frac{1}{q}})J(g^{\frac{1}{q}-\frac{1}{2}})z_n|||_p \lesssim |||(z_n)|||_2 = (\sum ||z_n||_2)^{1/2}$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Main point is Hölder type inequality

$$(*) \quad C_q(x) \stackrel{<}{_\sim} C_p(x)^{1- heta} C_2(x)^ heta$$

which actually reduces indeed to a form of Hölder inequality: Define r by $\frac{1}{p} = \frac{1}{2} + \frac{1}{r}$ then (*) follows from: $\forall F \in B_{L_r}^+$ (e.g. $F = f^{\frac{1}{p} - \frac{1}{2}} = f^{\frac{1}{r}}$) (**) $\|J(F^{1-\theta})x\|_q \lesssim \|J(F)x\|_p^{1-\theta}\|x\|_2^{\theta}$

Review of commutative case

In the commutative case, with m instead of τ , it is easy to check that for any $q \in [p, 2]$

$$C_q(x) = \inf_{f \in \mathcal{D}} \|f^{-(\frac{1}{p} - \frac{1}{q})}(\mathbb{E}|\sum \varepsilon_n x_n|^q)^{1/q}\|_{L_q(m)}$$

and hence since $\|g\|_p = \inf_{f \in \mathcal{D}} \|f^{-(\frac{1}{p} - \frac{1}{q})}g\|_q$

$$C_q(x) = \|(\mathbb{E}|\sum \varepsilon_n x_n|^q)^{1/q}\|_{L_p(m)}$$

Fix $0 . Then for all <math>q \in (p, 2)$ with $\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{2}$

$$C_q(x) \leq C_p(x)^{1-\theta} C_2(x)^{\theta}$$

of course by classical Khintchine ineq.

$$\forall q \in [2, p] \quad C_q(x) \simeq \| (\sum |x_n|^2)^{1/2} \|_{L_p(m)}$$

Return to non-commutative case Problem is to show $\forall F \in B_{L_r}^+$ (e.g. $F = f^{\frac{1}{p} - \frac{1}{2}} = f^{\frac{1}{r}}$) $\|J(F^{1-\theta})x\|_q \lesssim \|J(F)x\|_p^{1-\theta} \|x\|_2^{\theta}$

where

$$J(x)=\frac{xy+yx}{2}$$

When $1 \le p < q < 2$, this holds cf. [P, JFA 2009] (using interpolation results notably by Junge-Parcet) This uses the boundedness, $L_p \rightarrow L_p$ if p > 1 or $L_1 \rightarrow \text{weak } L_1$ of the triangular projection

$$P: [x_{ij}] \mapsto [x_{ij}1_{i \le j}]$$

Unbounded for p < 1 !

For p > 1 the proof of (*) is very simple because the boundedness $L_p \rightarrow L_p$ of the triangular projection implies

$$||J(F^{1-\theta})x||_{p} \simeq ||F^{1-\theta}x||_{p} + ||xF^{1-\theta}||_{p}$$

so we are reduced to work with one sided multiplication for which Hölder inequalities are well known (by the 3 line lemma)

ゆう くほう くほう 二日

Case 0 < *p* < 1

In [P. JFA2009], I could not prove

$$(**) \quad \|J(F^{1-\theta})x\|_q \lesssim \|J(F)x\|_p^{1-\theta}\|x\|_2^{\theta}$$

However I observed that the value of θ is irrelevant and that it suffices to have a very weak estimate (valid $\forall x, F$)

$$(***) \quad \forall \delta > 0 \quad \|J(F^{1-\theta})x\|_q \leq w(\delta)\|J(F)x\|_p + \delta\|x\|_2$$

with

$$\lim_{\delta\to 0}w(\delta)=0$$

this is enough for the extrapolation proof to work But I was stuck, I could not prove (***)... In Fall 2014, Éric Ricard wrote to me that : (***) is obviously true ! His argument uses ultraproducts, requiring the use of

His argument uses ultraproducts, requiring the use of type III von Neuman algebras (those without traces) and it gave no estimate

Case 0 < *p* < 1

In [P. JFA2009], I could not prove

$$(**) \quad \|J(F^{1- heta})x\|_q \lesssim \|J(F)x\|_p^{1- heta}\|x\|_2^{ heta}$$

However I observed that the value of θ is irrelevant and that it suffices to have a very weak estimate (valid $\forall x, F$)

$$(***) \quad \forall \delta > 0 \quad \|J(F^{1-\theta})x\|_q \leq w(\delta)\|J(F)x\|_p + \delta\|x\|_2$$

with

$$\lim_{\delta\to 0}w(\delta)=0$$

this is enough for the extrapolation proof to work But I was stuck, I could not prove (***)... In Fall 2014, Éric Ricard wrote to me that :

(***) is obviously true !

His argument uses ultraproducts, requiring the use of type III von Neuman algebras (those without traces) and it gave no estimate

Case 0 < *p* < 1

In [P. JFA2009], I could not prove

$$(**) \quad \|J(F^{1- heta})x\|_q \lesssim \|J(F)x\|_p^{1- heta}\|x\|_2^{ heta}$$

However I observed that the value of θ is irrelevant and that it suffices to have a very weak estimate (valid $\forall x, F$)

$$(***) \quad \forall \delta > 0 \quad \|J(F^{1-\theta})x\|_q \leq w(\delta)\|J(F)x\|_p + \delta\|x\|_2$$

with

$$\lim_{\delta\to 0}w(\delta)=0$$

this is enough for the extrapolation proof to work But I was stuck, I could not prove (***)... In Fall 2014, Éric Ricard wrote to me that : (***) is obviously true !

His argument uses ultraproducts, requiring the use of type III von Neuman algebras (those without traces) and it gave no estimate

We worked together on [P and Ricard, JIMJ to appear in 2016] and proved the following version of Hölder inequality With θ as before such that

$$\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{2} \text{ and } \frac{1}{r} = \frac{1}{p} - \frac{1}{2}$$

For any 0 < heta' < 1 be such that

$$1-\theta' < (p/2)(1-\theta)$$

 $\forall F \in B_{L_r}^+ \quad \|J(F^{1-\theta})x\|_q \lesssim \|J(F)x\|_p^{1-\theta'}\|x\|_2^{\theta'}$

A key ingredient: Complex Uniform Convexity of $L_p(\tau)$ (Q. Xu) for 0

Application:

Non-commutative Khintchine (K_p) holds for 0

We worked together on [P and Ricard, JIMJ to appear in 2016] and proved the following version of Hölder inequality With θ as before such that

$$\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{2} \text{ and } \frac{1}{r} = \frac{1}{p} - \frac{1}{2}$$

For any 0 < heta' < 1 be such that

$$1-\theta' < (p/2)(1-\theta)$$

 $\forall F \in B_{L_r}^+ \quad \|J(F^{1-\theta})x\|_q \lesssim \|J(F)x\|_p^{1-\theta'}\|x\|_2^{\theta'}$

A key ingredient: Complex Uniform Convexity of $L_{p}(\tau)$ (Q. Xu) for 0

Application:

Non-commutative Khintchine (K_p) holds for 0

More generally Let x be in $L_s(\tau)$, and let $f \in L_1^+$ with $||f||_1 = 1$. Note that $||f^{\alpha}||_r = 1$ ($\alpha = 1/r$). Let $0 < \theta < 1$. Let q be determined by $\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{s}$ and let $\alpha = \frac{1}{r} = \frac{1}{p} - \frac{1}{s}$.

Theorem (P.-Ricard)

Let $0 . Let <math>\alpha, \theta$ be as above. Then for any θ' such that $1 - \theta' < (p/2)(1 - \theta)$ there is a constant C such that for any $x \in L_s(\tau)$ and $f \in L_1(\tau)^+$ with $||f||_1 = 1$, and for any unitaries V, $W \in M$ commuting with f we have

$$\left\| xWf^{\alpha(1-\theta)} + Vf^{\alpha(1-\theta)}x \right\|_{q} \le C \left\| xWf^{\alpha} + Vf^{\alpha}x \right\|_{p}^{1-\theta'} \|x\|_{s}^{\theta'}.$$
 (2)

In particular for any choice of sign ± 1 we have

$$\left\| x f^{\alpha(1-\theta)} \pm f^{\alpha(1-\theta)} x \right\|_{q} \le C \left\| x f^{\alpha} \pm f^{\alpha} x \right\|_{p}^{1-\theta'} \|x\|_{s}^{\theta'}.$$
(3)

Application to the Mazur maps

The Mazur map $M_{p,q}:L_p(au) o L_q(au)$ $(0< p,q<\infty)$ given by $M_{p,q}(f)=f|f|^{rac{p-q}{q}}$

uniform homeomorphism between unit spheres (due to Raynaud) **Question:** For which $0 < \gamma \le 1$ is it γ -Hölder,i.e. $\exists C$ such that $\forall g, h \in L_p(\tau)$ with $\|g\|_p = \|h\|_p = 1$ we have

$$\left\|M_{p,q}(g)-M_{p,q}(h)\right\|_q\leq C\left\|g-h\right\|_p^\gamma.$$

If $1 \leq p, q < \infty$, $M_{p,q}$ is Hölder with exponent $\min\{1, \frac{p}{q}\}$ as for commutative integration (due to É. Ricard) Actually, Ricard proved that for $0 < p, q < \infty$, $M_{p,q}$ is γ -Hölder IFF $\forall x = x^* \in L_{\infty}(\tau), ||x||_{\infty} = 1, \forall \phi \in L_p(\tau)^+, ||\phi||_p = 1,$

$$\left\| x \phi^{\frac{p}{q}} \pm \phi^{\frac{p}{q}} x \right\|_{q} \lesssim \left\| x \phi \pm \phi x \right\|_{p}^{\gamma}.$$
(4)

But this is the same as (3) with $s = \infty \phi = f^{\alpha}_{-}$ and $\gamma = 1 - \theta'_{-}$

and hence we obtain

Theorem

For any $0 < p, q < \infty$ and any semifinite von Neumann algebra, the Mazur map $M_{p,q}$ is γ -Hölder for some $0 < \gamma < 1$. If $0 < p, q \leq 1$ this holds for $\gamma < \frac{1}{2q} \left(\frac{p}{3^k}\right)^2$ where $k \geq 0$ is the smallest integer such that $\frac{p}{q} < 3^k$. Thank you !

All preprints are on arxiv

Reference: Gilles Pisier and Éric Ricard. The non-commutative Khintchine inequalities for 0 , to appear in J.Inst.Math.Jussieu

* E > * E >