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Let L : D(L) ⊂ L2(X , µ)→ L2(X , µ) be an (unbounded) non-negative
self-adjoint operator. We denote by dEL(λ) the corresponding spectral
resolution.

Given F : [0,∞)→ C a bounded measurable function. The operator F (L) is
defined by

F (L) =

∫
[0,∞)

F (λ)dEL(λ).

Then F (L) is a bounded operator on L2 = L2(X , µ) with

‖F (L)‖2→2 := ‖F (L)‖L(L2) ≤ sup
λ≥0
|F (λ)|.

Question: Extend F (L) to all or some Lp for p 6= 2 ?
Possibilities:
- F is of Laplace transform type and the semigroup e−tL is Markovian (E.M.
Stein).
- F is bounded holomorphic in a sector Σ(w) (w close to π

2 ) and e−tL is
sub-Markovian (M. Cowling).
- F is bounded holomorphic in a sector Σ(w) (w > 0) and the heat kernel of L
has appropriate bounds (X.T. Duong and D.W. Robinson).
Our aim: suppose minimal regularity conditions on F : spectral multiplier
results.
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Theorem (Duong-Ou-Sikora, 2002, also Hebisch)
Suppose that (X , ρ, µ) is an open subset of a space of homogeneous type
with homogeneous ”dimension” d. Suppose that the heat kernel p(t , x , y) of L
satisfies the Gaussian upper bound

|p(t , x , y)| ≤ Ce−c ρ
2(x,y)

t

v(x ,
√

t)
, t > 0, x , y ∈ X .

If supt>0 ‖F (t ·)ϕ(·)‖Wβ,∞ <∞ for some non-trivial ϕ ∈ C∞c (0,∞) and some
β > d/2, then F (L) is of weak type (1,1) and extends to a bounded operator
on Lp for all p ∈ (1,∞).

For the particular case of the Euclidean Laplacian L = −∆ on Rd , a very well
known stronger result is valid.

Theorem (Hörmander)
If supt>0 ‖F (t ·)ϕ(·)‖Wβ,2 <∞ for some non-trivial ϕ ∈ C∞c (0,∞) and some
β > d/2, then the Fourier multiplier F (−∆) is of weak type (1,1) and extends
to a bounded operator on Lp(Rd ) for all p ∈ (1,∞).

Extension to Lie group settings by Christ, Mauceri-Meda, Alexopoulos....
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Examples:

- Elliptic operators on Rd or domain Ω (with Dirichlet or Neumann boundary
conditions):

L = −
∑

k,j=1

∂k
(
akj∂j

)
.

The upper Gaussian bound: |p(t , x , y)| ≤ Ct−d/2e−c |x−y|2
t is due to Aronson

(’68) (real-valued coefficients akj ∈ L∞). For operators on domains and
subject to boundary conditions (with possibly some complex-valued
coefficients), results by E.B. Davies, Auscher-McIntosh-Tchamitchian,
Ouhabaz, ...
- Schrödinger operators: L = −∆ + V where 0 ≤ V ∈ L1

loc . Possible
Gaussian upper bound if V has a ”small” negative part.
- Laplace-Beltrami on manifolds M:

|p(t , x , y)| ≤ Ce−c ρ
2(x,y)

t

v(x ,
√

t)

holds in many cases: non-negative Ricci curvature (Li-Yau), global Sobolev
inequality or Faber-Krahn inequality...results by Grigory’an, Coulhon,
Saloff-Coste, Varopoulous....
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Less regularity on F

Restriction estimates.
We introduce the condition that for any R > 0 and all Borel functions F
supported in [0,R],

(STq
p,s)

∥∥F (
√

L)PB(x,r)

∥∥
p→s ≤ CV (x , r)

1
s−

1
p
(
Rr
)d( 1

p−
1
s )∥∥F (R·)

∥∥
q

for all x ∈ X and all r ≥ 1/R.
If, e.g., V (x , r) ∼ rd , then (ST2

p,2) is equivalent to

(Rp)
∥∥dE√L(λ)

∥∥
p→p′ ≤ Cλd( 1

p−
1

p′ )−1
, ∀λ > 0.

On Rd , the restriction of the Fourier transform to the sphere Sd−1,

Rλf (ω) := f̂ (λω), ω ∈ Sd−1, λ > 0

is bounded from Lp(Rd ) to L2(Sd−1) if and only if 1 ≤ p ≤ 2(d + 1)/(d + 3).
This is the Stein-Tomas restriction estimates (p,2). In addition,
dE√−∆(λ) = λd−1

(2π)d R∗λRλ and hence the above (p,2) restriction estimate is
equivalent to (Rp).
For this reason, we call (STq

p,s) a Stein-Tomas restriction type condition and
(Rp) the Stein-Tomas (p,2) restriction condition.
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p→p′ ≤ Cλd( 1

p−
1

p′ )−1
, ∀λ > 0.

On Rd , the restriction of the Fourier transform to the sphere Sd−1,

Rλf (ω) := f̂ (λω), ω ∈ Sd−1, λ > 0

is bounded from Lp(Rd ) to L2(Sd−1) if and only if 1 ≤ p ≤ 2(d + 1)/(d + 3).
This is the Stein-Tomas restriction estimates (p,2). In addition,
dE√−∆(λ) = λd−1

(2π)d R∗λRλ and hence the above (p,2) restriction estimate is
equivalent to (Rp).
For this reason, we call (STq

p,s) a Stein-Tomas restriction type condition and
(Rp) the Stein-Tomas (p,2) restriction condition.



In order to state some of our results for F with less regularity, we recall that L
satisfies the finite speed propagation property if the kernel of cos(t

√
L)

satisfies:

(FS) Supp Kcos(t
√

L) ⊆ {(x , y) ∈ X × X : ρ(x , y) ≤ t} ∀t > 0 .

Property (FS) holds for most of second order self-adjoint operators and is
equivalent to Davies-Gaffney estimates.



Theorem (P.Chen, E.M. Ou, A. Sikora, L. Yan, 2012)
Suppose that L satisfies the finite speed propagation property and the
restriction estimate (STq

p,s) for some p, s,q such that 1 ≤ p < s ≤ ∞ and
1 ≤ q ≤ ∞.

(i) Compactly supported multipliers: Let F be an even function such that
SuppF ⊆ [−1,1] and F ∈W β,q for some β > d(1/p − 1/s). Then F (

√
L)

is bounded on Lp(X ), and

sup
t>0
‖F (t
√

L)‖p→p ≤ C‖F‖Wβ,q .

(ii) General multipliers: Suppose s = 2 and F satisfies

sup
t>0
‖F (t ·)ϕ(·)‖Wβ,q <∞

for some β > max{d(1/p − 1/2),1/q} and some non-trivial function
ϕ ∈ C∞c (0,∞). Then F (

√
L) is bounded on Lr (X ) for all p < r < p′.

For operators not satisfying (FS), a similar result but slightly weaker, was
proved recently by Kunstmann and Uhl (J. Op. Theory 2015).
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As a consequence (under (STq
p,2) ):

for all δ > max{d(1/p − 1/2)− 1/q,0} =: δq(p) the Bochner-Riesz mean of
order δ, SδR(L) with

SδR(λ) =


(
1− λ

R2

)δ
for λ ≤ R2

0 for λ > R2.

is bounded on Lp, uniformly in R > 0.

The endpoint result is also true

Theorem
Assume that L satisfies the finite speed propagation property and the
restriction condition (STq

p,2) for some p,q satisfying 1 ≤ p < 2 and 1 ≤ q ≤ ∞.

Then the Bochner Riesz mean Sδq(p)
R (L) is of weak-type (p,p) uniformly in R.

In the Euclidean case, Christ and Sogge proved weak-type (1,1) for
Sδ2(1)

R (−∆). Weak-type (p,p) estimates of Sδ2(p)
R (−∆) are proved by Christ

when p < 2d+2
d+3 . The endpoint estimates for p = 2d+2

d+3 are proved by Tao.
Bochner-Riesz summability for −∆ on Rd holds p ≤ 2d+4

d+4 (due to S. Lee
2004) and improved recently by Bourgain-Guth ’2011.
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Links to dispersive or Strichartz estimates
Strichartz estimates for the Schrödinger equation associated to L:

∂tu + iLu = 0, u(0) = f ∈ L2

read as follows: ∫
R
‖eitLf‖2

2d
d−2

dt ≤ C‖f‖2
2, f ∈ L2.

Theorem
(i) Suppose that L satisfies the Strichartz estimate and the classical

smoothing property

‖exp(−tL)‖p→ 2d
d+2
≤ Kt−

d
2 ( 1

p−
d+2
2d ),

for all p ∈ [1, 2d
d+2 ]. Then the restriction estimate (Rp) is satisfied.

(ii) Fix p ∈ [1, 2d
d+2 ]. Suppose that V (x , r) ∼ rd . Assume that L satisfies the

finite speed propagation property together with Strichartz and smoothing
estimates as in (i). Then the previous sharp spectral multiplier results
hold with regularity W β,2 for β > d(1/p − 1/2).
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Remarks

- The dispersive estimate

‖eitL‖1→∞ ≤ C|t |−d/2, t ∈ R, t 6= 0

implies the Strichartz estimate (due to Keel and Tao, 1998). Therefore for L
satisfying the dispersive estimate one has sharp spectral multiplier results for
p ∈ [1, 2d

d+2 ].
- The Euclidean Laplacian satisfies the dispersive estimate.
- The Schrödinger operator −∆− c

|x|2 satisfies Strichartz estimates (due to
Burq, Planchon, Stalker and Tahvildar-Zadeh, 2003).
- The Stein-Tomas type restriction estimate (STq

p,2) does not hold for operators
having discrete spectrum. We have a different formulation for these operators
(examples: the harmonic oscillator −∆ + |x |2, the Laplacian on a compact
manifold... ). In this setting the corresponding ”restriction estimate” (Rp) is the
Sogge’s spectral cluster condition∥∥E√L[λ, λ+ 1)

∥∥
p→p′ ≤ C(1 + λ)

d( 1
p−

1
p′ )−1

.

- Is the limitation in p, i.e. p ≤ 2d
d+2 optimal in our abstract setting ? could one

push this to 2d+2
d+3 ?
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Links to the semigroup

Theorem (Bernicot-Ou 2013)
Let d be a positive constant and fix p ∈ [1,2). The following assertions are
equivalent.
1) The restriction estimate (Rp) holds for every λ > 0;
2) There exists a positive constant C such that

‖LNe−tL‖Lp→Lp′ ≤ C(N − 1)!N
d
2 ( 1

p−
1

p′ )t−N− d
2 ( 1

p−
1

p′ ),

for all t > 0 and all N ∈ N.

The main ingredient for the proof is the following formula for the functional
calculus:

lim
N→∞

1
(N − 1)!

∫ ∞
0

φ(s−1)〈((N − 1)sL)Ne−s(N−1)Lf ,g〉ds
s

= 〈φ(L)f ,g〉.

Hence
dEL(λ) = lim

N→∞

1
N!

[
λ−1(Nλ−1L)N+1e−Nλ−1L

]
.
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Assume that the heat semigroup (e−tL)t>0 satisfies the classical Lp − L2

estimates

‖e−tL‖Lp→L2 ≤ Ct−
d
2 ( 1

p−
1
2 ) for every t > 0 and some p ∈ [1,2].

Then we observe that for every integer N ≥ 3

‖LNe−tL‖Lp→Lp′ ≤ ‖e−
t
N L‖L2→Lp′‖LNe−t(1− 2

N )L‖L2→L2‖e−
t
N L‖Lp→L2

≤ C
(

t
N

)− d
2

(
1
p−

1
p′

)(
N

t(1− 2
N )

)N

e−N

≤ Ct−N− d
2

(
1
p−

1
p′

)
N

d
2

(
1
p−

1
p′

)
(Ne−1)N

≤ Ct−N− d
2

(
1
p−

1
p′

)
N

d
2

(
1
p−

1
p′

)
(N − 1)!

√
N,

(use Stirling’s formula for the last inequality).

Therefore we see that the gap between this very general estimate and the
one required in the previous theorem is an extra term of order N

1
2 .

Example: if L satisfies the dispersive estimate

‖eitL‖1→∞ ≤ C|t |−d/2, t ∈ R, t 6= 0

then it satisfies assertion 2) of the previous theorem, namely

‖LNe−tL‖Lp→Lp′ ≤ C(N − 1)!N
d
2 ( 1

p−
1

p′ )t−N− d
2 ( 1

p−
1

p′ ).
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