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Uniqueness, Normality, Approximation

The Cauchy problem for the Laplacian (with V.G. Maz’ya, 1974)
Let Ω ⊂ Rn+1 be a domain with flat boundary near zero, v(x) is a
regular function such that

∫
0 log v(ρ)dρ = −∞, E ⊂ Sn−1 of

positive measure.

• If u ∈ Harm(Ω), goes to zero faster than any power as x → 0
along E and

∫
|x |<r |un|dσ ≤ v(r) then then u = 0.

• If f1, f2 ∈ C (∂Ω) are arbitrary and h ∈ C (∂Ω), h ≥ 0,
h(0) = 0 and goes to zero along E faster than any power,
then for any ε > 0 there is a harmonic function H such that
v(|x |)|f1(x)− H(x)|+ h(x)|f2(x)− Hn(x)| < ε.

• Let V be a regular function with
∫

0 log V <∞. The family of
harmonic in Ω functions with integrable normal derivative that
satisfy

∫
x∈∂Ω,|x |>r |u|+ |un|dσ ≤ V (r) is normal.



Uniqueness, Normality, Approximation

The Cauchy problem for the Laplacian (with V.G. Maz’ya, 1974)
Let Ω ⊂ Rn+1 be a domain with flat boundary near zero, v(x) is a
regular function such that

∫
0 log v(ρ)dρ = −∞, E ⊂ Sn−1 of

positive measure.

• If u ∈ Harm(Ω), goes to zero faster than any power as x → 0
along E and

∫
|x |<r |un|dσ ≤ v(r) then then u = 0.

• If f1, f2 ∈ C (∂Ω) are arbitrary and h ∈ C (∂Ω), h ≥ 0,
h(0) = 0 and goes to zero along E faster than any power,
then for any ε > 0 there is a harmonic function H such that
v(|x |)|f1(x)− H(x)|+ h(x)|f2(x)− Hn(x)| < ε.

• Let V be a regular function with
∫

0 log V <∞. The family of
harmonic in Ω functions with integrable normal derivative that
satisfy

∫
x∈∂Ω,|x |>r |u|+ |un|dσ ≤ V (r) is normal.



Uniqueness, Normality, Approximation

The Cauchy problem for the Laplacian (with V.G. Maz’ya, 1974)
Let Ω ⊂ Rn+1 be a domain with flat boundary near zero, v(x) is a
regular function such that

∫
0 log v(ρ)dρ = −∞, E ⊂ Sn−1 of

positive measure.

• If u ∈ Harm(Ω), goes to zero faster than any power as x → 0
along E and

∫
|x |<r |un|dσ ≤ v(r) then then u = 0.

• If f1, f2 ∈ C (∂Ω) are arbitrary and h ∈ C (∂Ω), h ≥ 0,
h(0) = 0 and goes to zero along E faster than any power,
then for any ε > 0 there is a harmonic function H such that
v(|x |)|f1(x)− H(x)|+ h(x)|f2(x)− Hn(x)| < ε.

• Let V be a regular function with
∫

0 log V <∞. The family of
harmonic in Ω functions with integrable normal derivative that
satisfy

∫
x∈∂Ω,|x |>r |u|+ |un|dσ ≤ V (r) is normal.



Uniqueness, Normality, Approximation

The Cauchy problem for the Laplacian (with V.G. Maz’ya, 1974)
Let Ω ⊂ Rn+1 be a domain with flat boundary near zero, v(x) is a
regular function such that

∫
0 log v(ρ)dρ = −∞, E ⊂ Sn−1 of

positive measure.

• If u ∈ Harm(Ω), goes to zero faster than any power as x → 0
along E and

∫
|x |<r |un|dσ ≤ v(r) then then u = 0.

• If f1, f2 ∈ C (∂Ω) are arbitrary and h ∈ C (∂Ω), h ≥ 0,
h(0) = 0 and goes to zero along E faster than any power,
then for any ε > 0 there is a harmonic function H such that
v(|x |)|f1(x)− H(x)|+ h(x)|f2(x)− Hn(x)| < ε.

• Let V be a regular function with
∫

0 log V <∞. The family of
harmonic in Ω functions with integrable normal derivative that
satisfy

∫
x∈∂Ω,|x |>r |u|+ |un|dσ ≤ V (r) is normal.



Approximation by harmonic vector fields and harmonic
differential forms

A vector field w in R3 is harmonic if div(w) = 0 and curl(w) = 0.

• (with A. Presa, E. Malinnikova) Runge type approximation
and approximation of continuous fields on small sets,
topological constrains.

• (with S. Smirnov) Approximation and extension of continuous
fields by divergence-free fields, geometric conditions.

• (with S.Smirnov) Approximation by harmonic functions and
their gradients on metrically discontinuous sets.
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2001 D. Beliaev and V. P. Havin, On the uncertainty principle
for M. Riesz potentials. Ark. Mat.
2007 K. Izyurov, On a uniqueness theorem for M. Riesz
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• Normal families of harmonic functions:
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Carleman estimates

Carleman (1933)

‖eTφ(x)u‖ ≤ Cφ‖eTφ(x)Pu‖

Implies unique continuation for a large class of second order elliptic
PDE; can be use to show that an analytic function in the disk can
not vanish on a set of positive measure on the boundary circle.
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Discrete Schrödinger evolutions

Equation
∂tu = i(∆du + Vu),

where u : R+ × Z→ C and ∆d is the discrete Laplacian, that is,
for a complex valued function f : Z→ C,

∆d f (n) := f (n + 1) + f (n − 1)− 2f (n).

We assume that the potential V = V (t, n) is a (real-valued)
bounded function.

Uniqueness

|u(0, n)|+ |u(1, n)| ≤ Cm(n) ⇒ u ≡ 0.
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Continuous case

L. Escauriaza, C. E. Kenig, G. Ponce, L. Vega (and M. Cowling)
(2006-12)

∂tu = i∆u, |u(0, x)|+ |u(1, x)| ≤ C exp(−x2/4),

(∗) ⇒ u(0, x) = A exp(−(1 + i)x2/4)

For any bounded V (x , t) and any a > 1/4

∂tu = i∆u + Vu, |u(0, x)|+ |u(1, x)| ≤ C exp(−ax2),

(∗∗) ⇒ u(t, x) ≡ 0
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Free evolution and uncertainty principles

Hardy’s uncertainty principle:

|f (x)| ≤ C exp(−π|x |2), |f̂ (ξ)| ≤ C exp(−π|ξ|2),

⇒ f (x) = A exp(−π|x |2)

is equivalent to (*)

Heisenberg’s uncertainty principle can be reformulated in terms of

h(t) = ‖xu(t, x)‖2
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Logarithmic convexity for weighted norms of solutions to
PDE

Elliptic PDE: S. Agmon (1966); Landis and others (1980s),
Garofalo and Lin (1987), Brummelhuis (1995)

Schrödinger equation: Escauriaza, Kenig, Ponce, Vega

HR(t) = ‖φR(x)u(t, x)‖2
2, φR(x) = exp(γ|x + Rt(1− t)|2)

∂2
t log HR(t) ≥ −R2(4γ)−1

exp(−R2(16γ)−1)HR(1/2) ≤ HR(0)1/2HR(1)1/2 = H(0)1/2H(1)1/2

Let R →∞ and get a contradiction when γ > γ0.
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Discrete case: previous results
Discrete potential theory: old and new

Chang and Yau, 1997, 2000

Three spheres theorem and logarithmic convexity for weighted
norms of discrete harmonic functions:
Gaudi and Malinnikova (Compt. Methods and Function Th, 2014)
Lippner and Mangoubi (Duke Math. J., 2015)

Heisenberg’s uncertainty, interpretation for discrete Schrödinger
evolution: Fernández-Bertolin (ACHA, available online February
2015)

Aim of our work: prove logarithmic convexity of the norms

H(t) = ‖ψ(n)u(t, n)‖2

for some appropriate ψ and derive uniqueness.
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Toy example: Free discrete Schrödinger

Proposition

Let ∂tu = i∆du, and

|u(0, n)|, |u(1, n)| ≤ C
1√
|n|

(
e

2|n|

)|n|
∼ Jn(1) ∼ 2−n(n!)−1.

Then u(t, n) = Ai−ne−2itJn(1− 2t) for all n ∈ Z and 0 ≤ t ≤ 1,
for some constant A.

Φ(t, θ) =
∞∑

k=−∞
u(t, k)θk ∈ L2(T)

∂tΦ(t, θ) = i(θ + θ−1 − 2)Φ(t, θ), Φ(1, θ) = e i(θ+θ−1−2)Φ(0, θ)

Φ0(z) = A exp(−i(z + z−1)/2)
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Time-independent real potentials

Theorem
Let u(t, n), t > 0, n ∈ Z be a solution of ∂tu = i(∆u + Vu),
where the potential V = Vn does not depend on time is bounded
and real-valued. If, for some ε > 0,

|u(t, n)| ≤ C

(
e

(2 + ε)|n|

)|n|
, n ∈ Z, t ∈ {0; 1},

then u = 0.

Generalized eigenvectors en(λ), Ψ(λ, t) =
∑

n u(t, n)en(λ),
Phragmén-Lindelöf theorem, spectral theorem: generalized
eigenvectors are dense.

Now we have our dream majorant/weight:
m(n) = Jn(1) = ψ−1(n).
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Main result

Theorem (Jaming, Lyubarskii, M, Perfekt 2015;
Fernandez-Bertolin, Vega, 2015)

If u is a solution of

∂tu = i(∆du + Vu)

where V (t, n) is a bounded function, and

‖(1 + |n|)γ(1+|n|)u(0, n)‖2, ‖(1 + |n|)γ(1+|n|)u(1, n)‖2 < +∞,

for γ > γ0, then u ≡ 0.
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First energy estimate

ψα(t) = {ψα(t, n)}n∈Z = {(1 + |n|)α|n|/(1+t)}n∈Z

Proposition

Let V = V1 + iV2, with V1,V2 : [0,T ]× Z→ R and V2 bounded
and F : [0,T ]× Z→ C bounded.

∂tu(t, n) = i(∆u(t, n) + V (t, n)u + F (t, n)).

Assume that {ψα(0, n)u(0, n)} ∈ `2(Z) for some α ∈ (0, 1]. Then

‖ψα(T , n)u(T , n)‖2
2 ≤

eCT
(
‖ψα(0, n)u(0, n)‖2

2 +

∫ T

0
‖ψα(s, n)F (s, n)‖2

2 ds

)



Formal computations

Let f = ψ(t, n)u(t, n), ∂t f = Sf +Af + iVf , where S and A are
symmetric and anti-symmetric operators, respectively. Explicitly

Sf =
i

2

(
ψ∆(ψ−1f )− ψ−1∆(ψf )

)
+ ∂tκf ,

Af =
i

2

(
ψ∆(ψ−1f ) + ψ−1∆(ψf )

)
.

Then ∂tH(t) = 2〈Sf , f 〉, since V is real-valued, and thus

∂2
t H(t) = 2〈St f , f 〉+ 4<〈Sf , ft〉

= 2〈St f , f 〉+ 4‖Sf ‖2 + 2〈[S,A]f , f 〉+ 4<〈Sf , iVf 〉
= 2〈St f , f 〉+ 2〈[S,A]f , f 〉+ 4<〈Sf + iVf ,Sf 〉
= 2〈St f , f 〉+ 2〈[S,A]f , f 〉+ ‖2Sf + iVf ‖2 − ‖Vf ‖2.
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Estimates with an auxiliary weight

Proposition

Let γ > 0. Assume that u is a strong solution of

∂tu = i(∆du + Vu)

where the potential V is a bounded real-valued function. Let also

‖(1 + |n|)γ(1+|n|)u(t, n)‖2 < +∞, t ∈ {0; 1}.

Then, for all t ∈ [0, 1], ‖(1 + |n|)γ(1+|n|)u(t, n)‖2 < +∞.

Auxiliary weight and logarithmic convexity

ψ(n) = eκb(n), κb(n) = γ(1 + |n|) lnb
(
1 + |n|

)
,

where 1/2 < b < 1, then b → 1.
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Final convexity estimates with a parameter

ψ(t, n) = eκ(t,n), where κ(t, n) = γ(|n|+ R(t)) ln(|n|+ R(t)), and
R(t) = C0 + R0t(1− t), R0 > 0, C0 being large enough. As before
we define H(t) = ‖u(t, n)ψ(t, n)‖2

2.

Lemma
For every γ > (3 +

√
3)/2 there exists C (γ) such that for

C0 > C (γ) and R(t) = C0 + R0t(1− t) we have

∂2
t (log H(t)) ≥ − 4γ

2γ − 3
R0 log R0 − C1R0 − C2,

where C1 and C2 depend on γ and ‖V ‖∞ only.



THANK YOU!


