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regular function such that [, log v(p)dp = —oo, E C §"1 of
positive measure.

o If u € Harm(Q), goes to zero faster than any power as x — 0
along E and f|x|<r |up|do < v(r) then then u = 0.

o If 1, € C(ON) are arbitrary and h € C(022), h > 0,
h(0) = 0 and goes to zero along E faster than any power,
then for any € > 0 there is a harmonic function H such that
v(IxP)Ii(x) = H(X)| + h(x)[fa(x) = Ha(x)| < €.

e Let V be a regular function with fo log V < co. The family of
harmonic in € functions with integrable normal derivative that
satisfy fx€89,|x|>r |u| + |up|do < V/(r) is normal.
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A vector field w in R3 is harmonic if div(w) = 0 and curl(w) = 0.

e (with A. Presa, E. Malinnikova) Runge type approximation
and approximation of continuous fields on small sets,
topological constrains.

o (with S. Smirnov) Approximation and extension of continuous
fields by divergence-free fields, geometric conditions.

e (with S.Smirnov) Approximation by harmonic functions and
their gradients on metrically discontinuous sets.
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Carleman estimates

Carleman (1933)

el < CylleT Pul

Implies unique continuation for a large class of second order elliptic
PDE; can be use to show that an analytic function in the disk can
not vanish on a set of positive measure on the boundary circle.
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Uniqueness

lu(0, n)| + |u(1,n)| < Cm(n) = u=0.
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(2006-12)
Deu= i, [u(0, )] + [u(L,X)| < Cexp(—x2/4),

(%) = u(0,x) = Aexp(—(1 + i)x*/4)

For any bounded V(x,t) and any a > 1/4
Oru = iAu+ Vu, |u(0,x)| + |u(1,x)| < Cexp(—ax?),

() = u(t,x)=0
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Free evolution and uncertainty principles

Hardy's uncertainty principle:
F(x)] < Cexp(—n|x?), [F(€)] < Cexp(—ml¢]?),
= f(x) = Aexp(—7|x|?)
is equivalent to (*)
Heisenberg's uncertainty principle can be reformulated in terms of

h(t) = [Ixu(t, x)|l2
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Logarithmic convexity for weighted norms of solutions to
PDE

Elliptic PDE: S. Agmon (1966); Landis and others (1980s),
Garofalo and Lin (1987), Brummelhuis (1995)

Schrodinger equation: Escauriaza, Kenig, Ponce, Vega

Hr(t) = or(x)u(t, )3,  dr(x) = exp(ylx + Re(1 - t)?)
0f log Hr(t) > —R*(47) ™"

exp(—R2(167) ) Hr(1/2) < Hr(0)/2Hr(1)"/? = H(0)/2H(1)!/?

Let R — oo and get a contradiction when v > ~p.
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Discrete case: previous results
Discrete potential theory: old and new

Chang and Yau, 1997, 2000

Three spheres theorem and logarithmic convexity for weighted
norms of discrete harmonic functions:

Gaudi and Malinnikova (Compt. Methods and Function Th, 2014)
Lippner and Mangoubi (Duke Math. J., 2015)

Heisenberg's uncertainty, interpretation for discrete Schrodinger
evolution: Fernandez-Bertolin (ACHA, available online February
2015)

Aim of our work: prove logarithmic convexity of the norms

H(t) = [l (n)u(t, n)l2

for some appropriate ) and derive uniqueness.
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¥
14(0, )|, |u(1, )| < c\/lm <2|en|> ~ Jn(1) ~ 27" ()L,

Then u(t,n) = Ai—"e=2J,(1—2t) foralln € Z and 0 < t < 1,
for some constant A.

o0

O(t,0) = Y u(t k)o* € [*(T)

k=—o00

B:d(t,0) = i(0+ 071 — 2)d(t,0), d(1,0) = 0 -Dd(0,0)

®o(z) = Aexp(—i(z +2z71)/2)



Time-independent real potentials

Theorem
Let u(t,n), t >0, n € Z be a solution of Oru = i(Au+ Vu),

where the potential V = V,, does not depend on time is bounded
and real-valued. If, for some ¢ > 0,

e A\l
lu(t,n)| < C <(2—|—5)|n|> , neZ,te{0;1},

then u = 0.



Time-independent real potentials

Theorem

Let u(t,n), t >0, n € Z be a solution of Oru = i(Au+ Vu),
where the potential V = V,, does not depend on time is bounded
and real-valued. If, for some ¢ > 0,

|n|
e)|n|> , neZ, te{0;1},

lu(t,n)| < C <(2+E

then u = 0.

Generalized eigenvectors e,(A), V(A t) = >, u(t, n)en(N),
Phragmén-Lindelof theorem, spectral theorem: generalized
eigenvectors are dense.



Time-independent real potentials

Theorem

Let u(t,n), t >0, n € Z be a solution of Oru = i(Au+ Vu),
where the potential V = V,, does not depend on time is bounded
and real-valued. If, for some ¢ > 0,

|n|
e)|n|> , neZ, te{0;1},

lu(t,n)| < C <(2+E

then u = 0.

Generalized eigenvectors e,(A), V(A t) = >, u(t, n)en(N),
Phragmén-Lindelof theorem, spectral theorem: generalized
eigenvectors are dense.

Now we have our dream majorant/weight:

m(n) = Jn(1) = ¢~ *(n).
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First energy estimate

Ya(t) = {ta(t, M)}nez = {(1 + )"+ } 0y

Proposition
Let V = V4 + iV, with Vi, Vs : [0, T] x Z — R and Vs bounded
and F : [0, T] x Z — C bounded.

Oru(t,n) = i(Au(t,n) + V(t,n)u+ F(t,n)).
Assume that {1)o(0, n)u(0, n)} € ¢(?(Z) for some o € (0,1]. Then
e (T, n)u(T, n)|f3 <
.
o< (I10n0. 0. + [ Ials. (s, ml3 o)



Formal computations
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Formal computations

Let f =(t, n)u(t, n), O:f = Sf + Af + iVFf, where S and A are
symmetric and anti-symmetric operators, respectively. Explicitly

(WA — T AWN) + B,
= L (AW + v W),

SN \

Then 0:H(t) = 2(Sf, f), since V is real-valued, and thus

£H(t)

(S¢f , ) + 4R(SF, )
(S¢f, ) + 4||SF|12 + 2([S, A]f, f) + 4R(SF, iVF)
(Sef, f)
(Sef , f)

F) + 2([S, Alf, f) + 4R(SF + iVF, SF)

2
2
2
2(Sef, £) + 2([S, Alf, f) + ||12SF + iVF|? — || VF|*.



Estimates with an auxiliary weight

Proposition
Let v > 0. Assume that u is a strong solution of

Oru = i(Aqu + Vu)
where the potential V' is a bounded real-valued function. Let also
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Estimates with an auxiliary weight

Proposition
Let v > 0. Assume that u is a strong solution of

Oru = i(Aqu + Vu)
where the potential V' is a bounded real-valued function. Let also
1+ [nl) (e, n) < +00, ¢ € {0;1}.

Then, for all t € [0,1], ||(1 + [n])Y®*"Du(e, n)|]2 < +oc.

Auxiliary weight and logarithmic convexity
Y(n) = &™), kp(n) = (1 + [n]) In®(1+ |n]),

where 1/2 < b < 1, then b — 1.



Final convexity estimates with a parameter

P(t,n) = e"(t:n)  where k(t,n) =~(|n| + R(t)) In(|n| + R(t)), and
R(t) = Co + Rot(1 —t), Ry > 0, Gy being large enough. As before
we define H(t) = ||u(t, n)y(t, n)]|3.

Lemma

For every v > (3 4 1/3)/2 there exists C(y) such that for
Co > C(y) and R(t) = Co + Rot(1 — t) we have

d?(log H(t)) > — Rolog Ry — CiRy — G,

3

where C; and C, depend on v and ||V||« only.
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