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Composition operators

Composition operators are the operators of type:

Cϕ : f −→ f ◦ ϕ where ϕ : D→ D is analytic.

The aim of this topic is to understand the link:

“Operator Cϕ”
??←→ “symbol ϕ”

We shall focus on Hardy spaces Hp

and
on properties like the membership in some classical operator ideals.

The composition operators Cϕ : Hp −→ Hp are always bounded.

Moreover, (
1

1− |ϕ(0)|2

)1/p

≤ ‖Cϕ‖ ≤

(
1 + |ϕ(0)|
1− |ϕ(0)|

)1/p

Computing the exact value of ‖Cϕ‖ is still an open problem !
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Nevanlinna counting function

1 The Nevanlinna counting function Nϕ:

Nϕ(w) =


∑

ϕ(z)=w

log 1
|z| if w 6= ϕ(0) and w ∈ ϕ(D)

0 else.

(counting multiplicities)

Subordination principle (Littlewood)

The boundedness of Cϕ is “equivalent” to

Nϕ(w) ≤ log
∣∣∣1− ϕ(0)w

ϕ(0)− w

∣∣∣ = O
(

(1− |w |)
)

when |w | → 1−
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Composition operators on Hp via the pullback measure

With λϕ(E) = λ
(
ϕ∗−1(E)

)
where E ⊂ D

∥∥f ◦ ϕ∥∥p
p

=

∫
D
|f |p dλϕ

2 λϕ is a Carleson measure:

Boundedness of Cϕ on Hp is equivalent to the boundedness of f ∈ Hp 7→ f ∈ Lp(D, λϕ)

The Carleson window W(ξ, h)

Ξ

h

1
1�h

ρϕ(h) = sup
ξ∈T

λϕ
(
W(ξ, h)

)
= O (h) when |w | → 1−
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Compactness

Theorem (Shapiro-Taylor 73)

The problem reduces to the hilbertian case:

Cϕ is compact on Hp if and only if Cϕ is compact on H2.

Cϕ is Hilbert-Schmidt if and only if
∥∥Cϕ∥∥2

HS
=

∫
T

1

1− |ϕ∗|2 dλ <∞.

Actually

Cϕ is compact on Hp <=⇒ lim
|z|→1−

1− |ϕ(z)|
1− |z | =∞

if ϕ univalent (or finitely valent)

The converse is false in general: McCluer-Shapiro (86) constructed inner
functions ϕ admitting no angular derivatives at any point of the circle.

GDR AFHP 2015
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Compactness on Hardy spaces: two examples

ϕ(z) =
1 + z

2
(not compact)

10

Πa

lens map (0 < a < 1) very compact (nuclear)

BUT
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Compactness on Hardy spaces: a third example

A surjective symbol inducing a compact composition operator:

ai�4Πi

ai

�

where
f : D→ Ω is a conformal mapping

and

∀z ∈ D , ϕ1(z) = exp
(
− f (z)

)

and ϕ =
( a− z

1− az

)2

◦ ϕ1 fits...

GDR AFHP 2015
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Compactness

Theorem(Power 80, Mac-Cluer 85)

Cϕ is compact if and only if λϕ is a vanishing Carleson measure i.e.

ρϕ(h) = sup
ξ∈T

λϕ
(
W(ξ, h)

)
= o (h) when h→ 0

Theorem(Shapiro 87)

Cϕ is compact if and only if Nϕ(w) = o
(
1− |w |

)
when h→ 0

Actually:

‖Cϕ‖e = lim sup
|w|→1−

(
Nϕ(w)

1− |w |

)1/2

.

(Ackeroyd ’10)

‖Cϕ‖e = lim sup
|a|→1−

∥∥∥Cϕ( ka
‖ka‖H2

)∥∥∥
H2

(ka is the reproducing kernel)

GDR AFHP 2015
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Nevanlinna versus Carleson

There are two kinds of viewpoints/characterizations:
through Carleson’s windows OR through the Nevanlinna counting function.

Actually,

Theorem (L.-Li-Queffélec-Rodŕıguez Piazza ’11)

sup
ξ∈T

λϕ
(
W(ξ, h)

)
≈ sup
|w|≥1−h

Nϕ(w)
Ξ

h

1
1�h

More precisely
There exist c,C > 0 (numerical) s.t.

Nϕ(w) ≤ Cλϕ
(
W(ξ, ch)

)
where w = ξ(1− h)

λϕ
(
W(ξ, h)

)
≤ C

A
(
W(ξ, ch)

) ∫
W(ξ,ch)

Nϕ(w) dA ≤ C sup
w∈W(ξ,ch)

Nϕ(w)

Recently, El Fallah and Kellay gave a new proof of the sup-inequalities.

In the sequel, we shall rather have a “Carleson” viewpoint....

GDR AFHP 2015
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Schatten Classes

Definition

Let H be a (separable) Hilbert spaces, and T a bounded (compact) operator
on H.
For p ≥ 1, define the Schatten p-norm of T as

‖T‖Sp :=

(∑
n≥1

λp
n(|T |)

)1/p

=

(
tr(|T |p)

)1/p

where
λ1(|T |) ≥ λ2(|T |) ≥ · · · ≥ λn(|T |) ≥ · · · are the eigenvalues of |T | =

√
(T ∗T ).

T belongs to the Schatten class Sp if its Schatten p-norm is finite.

Remark: T belongs to S2 if and only if T is Hilbert-Schmidt.

GDR AFHP 2015
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T belongs to the Schatten class Sp if its Schatten p-norm is finite.

Remark: T belongs to S2 if and only if T is Hilbert-Schmidt.
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Schatten Classes

The case S2 is already known and the general case was solved by Luecking:

its
characterization uses Luecking windows = half dyadic Carleson’s windows.

Let n, j ≥ 1:

Rn,j =
{
z ∈ D ; 1− 2−n ≤ |z | < 1− 2−n−1 and

2(j − 1)π

2n
≤ arg z <

2jπ

2n

}

R

R

R

n-1,1

n,1

n+1,2

1
1-2 -n
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Schatten classes

(Luecking ’87)

We assume that λϕ(T) = 0.

Cϕ ∈ Sp if and only if
∑
n≥0

2n∑
j=1

[
2nλϕ(Rn,j)

]p/2
< +∞.

Actually

Cϕ ∈ Sp if and only if
∑
n≥0

2n∑
j=1

[
2nλϕ(Wn,j)

]p/2
< +∞.

In particular

sup
ξ∈T

λϕ
(
W (ξ, h)

)
= O

(
hα
)

(where α > 1) =⇒ Cϕ ∈ Sp for any p > 2
α−1
·

Let us mention too

(Luecking-Zhu ’92)

Cϕ ∈ Sp if and only if

∫
D

( Nϕ(z)

log(1/|z |)

)p/2 dA
(1− |z |2)2

< +∞.
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Approximation numbers on H2

Definition

Let T be an operator: an(T ) = inf
{
‖T − R‖ ; rank(R) < n

}

Remarks: non-increasing sequence and an(T )→ 0 if and only if T is compact.

and
∥∥T∥∥Sp =

∥∥(an(T ))n
∥∥
`p

.

The problem of estimating the value of an(Cϕ) is still open

But there are remarkable recent results on the subject:

(Li–Queffélec–Rodŕıguez-Piazza ’11-15)

Given εn ↘ 0, there exists a symbol ϕ s.t. Cϕ compact and an(Cϕ) & εn.

For every symbol ϕ, there exists r ∈ (0, 1) s.t. an(Cϕ) & rn.

If ϕ is the lens map (of index θ ∈ (0, 1)), then

e−αθ
√
n . an(Cϕ) . e−βθ

√
n
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(Li–Queffélec–Rodŕıguez-Piazza ’11-15)

Given εn ↘ 0, there exists a symbol ϕ s.t. Cϕ compact and an(Cϕ) & εn.

For every symbol ϕ, there exists r ∈ (0, 1) s.t. an(Cϕ) & rn.

If ϕ is the lens map (of index θ ∈ (0, 1)), then

e−αθ
√
n . an(Cϕ) . e−βθ

√
n

GDR AFHP 2015



Preliminary Compactness N vs C Schatten Classes Approx. numbers Abs. summing operators Abs. summing Cϕ Appl. ! Réclame
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r -summing operators

Suppose 1 ≤ r < +∞
and
let T : X → Y be a (bounded) operator between Banach spaces.

We say T is a r -summing operator if there exists C > 0 such that( n∑
j=1

‖Txj‖r
)1/r

≤ C sup
x∗∈BX∗

( n∑
j=1

|〈x∗, xj〉|r
)1/r

= C sup
a∈B

`r
′

∥∥∥ n∑
j=1

ajxj

∥∥∥,
for every finite sequence x1, x2, . . . , xn in X .

The r -summing norm of T , denoted by πr (T ), is the least suitable constant C > 0.

This forms an operator ideal.
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a (generic) example

Let (K , ν) a probability space, where K is compact and consider

T :

∣∣∣∣C(K) −→ Lr (K , ν)
f 7−→ f

T is a r -summing operator and πr (T ) = 1, indeed

Let f1, f2, . . . , fn in C(K).

n∑
j=1

‖T (fj)‖rr =

∫
K

n∑
j=1

|fj(x)|r dν ≤
∫
K

sup
χ∈BC(K)∗

n∑
j=1

|χ(fj)|r dν ≤ sup
χ∈BC(K)∗

n∑
j=1

|χ(fj)|r

Any restriction of this operator still works...

Actually, up to factorizations, any r -summing looks like this:
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Pietsch Theorem

(Pietsch ’67)

T : X → Y is a r -summing operator

if and only if

there exists a (probability) measure ν on the compact (BX∗ ,w
∗) s.t.

∀x ∈ X , ‖T (x)‖ .
(∫

BX∗
|ξ(x)|r dν(ξ)

)1/r

if and only if

we have the following factorization

X
T−→ Y

| ↑ T̃
↓ |

X̃ ⊂ C
(
BX∗

) “id”−→ Xr ⊂ Lr
(
BX∗ , ν

)
for some probability measure ν on BX∗ .
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Pietsch Theorem

Consequences

If r1 ≤ r2, every r1-summing operator is r2-summing.

r -summing operators are weakly compact and map weakly convergent
sequences to norm convergence sequences (Dunford-Pettis operator).
In particular, they are compact when X is reflexive.

For 1 ≤ p ≤ 2, Hp and Lp have cotype 2. For p > 2, they have cotype p.
Hence

jµ is r1-summing if and only if jµ is r2-summing

in the following cases:

For 1 ≤ p ≤ 2 and r1, r2 ≥ 1.

For p > 2, and 1 ≤ r1, r2 < p′, where p′ is the conjugate exponent of p.

Point out that r -summing operators on Hp (with p > 1) are compact.

GDR AFHP 2015
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Carleson embeddings

Our problem now:

When a composition operator Cϕ : Hp → Hp is r -summing ?

This problem is equivalent to:

When the identity f ∈ Hp 7→ f ∈ Lp(D, λϕ) is r -summing ?

Hence we are interested in the following more general problem:

Assume from now on that µ is a Carleson measure, concentrated in the open
disk D:

When the Carleson embedding jµ : Hp ↪→ Lp(D, µ) is a r -summing operator ?
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Known facts

(Shapiro-Taylor ’73)

Let p ≥ 2. The composition operator Cϕ : Hp → Hp is p-summing if and only if∫
T

1

1− |ϕ∗|2 dλ < +∞ .

In the Carleson embedding framework, the condition is

∫
D

1

1− |z |2 dµ < +∞

The only if condition is easy to see (test the most natural sequence and think
to the Hausdorff-Young inequality)

For the converse, recall that
∥∥δz∥∥

(Hp )∗
=
( 1

1− |z |2
) 1

p ·

But

(Domenig ’99)

Let p ∈ [1, 2). There exist (p-)summing composition operator on Hp such that∫
D

1

1− |ϕ∗|2 dλ = +∞

GDR AFHP 2015
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First new results: the annulus case.

joint work with L. Rodŕıguez-Piazza

From now on : p > 1 and we fix a finite measure µ on D.

Let n be an integer. We denote by µn the restriction of µ to the (dyadic)
annulus

Γn =
{
z ∈ D : 1− 2−n ≤ |z | < 1− 2−n−1}

and by jn the inclusion of Hp into Lp(µn).

Γn is the union of the 2n Luecking windows Rn,j .

Now consider, for n ∈ N, the 2n-dimensional subspace Hp
n of Hp generated by

the monomials zk , with 2n ≤ k < 2n+1.
We have, the decomposition

{f ∈ Hp : f (0) = 0} =
⊕
n≥0

Hp
n

which is an orthogonal decomposition when p = 2 (i.e. for H2).

Moreover, for p > 1:
Hp

n ∼ `p2n

GDR AFHP 2015
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First new results: the annulus case.

joint work with L. Rodŕıguez-Piazza
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The annulus case

We have the following key fact:

Proposition

For 1 < p < +∞, the following quantities are equivalent:

1 πr

(
jn : Hp → Lp(µn)

)

2 πr

(
jn|Hp

n
: Hp

n → Lp(µn)
)

3 πr (Da), where Da : `p2n → `p2n is the diagonal operator whose multipliers are

aj =
(
2nµ(Rn,j)

)1/p
(where j = 1, 2, . . . , 2n).
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The annulus case

But the summing norms of multipliers on sequence spaces are known, so:

1 1 < p ≤ 2: πr (jn) ≈

(
2n∑
j=1

[
2nµ(Rn,j)

]2/p

)1/2

2 p > 2:

if 1 ≤ r ≤ p′. πr (jn) ≈
(

2n∑
j=1

[
2nµ(Rn,j )

]p′/p)1/p′

if p′ ≤ r ≤ p. πr (jn) ≈
(

2n∑
j=1

[
2nµ(Rn,j )

]r/p)1/r

if p ≤ r . πr (jn) ≈
(

2n∑
j=1

[
2nµ(Rn,j )

])1/p

How to glue the pieces ?
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First results: when p ≥ 2

In some cases, we succeed in gluing.
So we get for composition operators Cϕ : Hp −→ Hp:

Theorem

1 In the case r ≥ p ≥ 2, we have:

πr

(
Cϕ
)
≈
(∑

n

[πr (jn)]p
)1/p

≈
(∑

n,j

[2nλϕ(Rn,j)]
)1/p

≈
(∫

D

1

1− |z | dλϕ
)1/p

i.e. order bounded.

2 In the case p′ < r ≤ p, we have:

πr
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≈
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[πr (jn)]r
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≈
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)1/r
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(H2).

3 In the case 1 ≤ r ≤ p′, the standard glue does not paste the norms...
But there might be a characterization of different nature (result too fresh: put into quarantine)
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The case p ≤ 2.

In this case (like in the case p > 2 and r ≤ p′ ?) trying to glue seems to be not
the right strategy. Our characterization is of different nature:

Theorem

Let 1 < p ≤ 2. The Carleson embedding jµ : Hp → Lp(µ) is absolutely summing
if and only if ∫

T

(∫
Γ(ξ)

dµ(z)

(1− |z |)1+p/2

)2/p

dλ(ξ) < +∞

where Γ(ξ) is the Stolz domain in ξ:

Ξ

G HΞ L
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The case p ≤ 2: sketch of proof

Step 1 (via Maurey factorization theorem)

Let r > 1 with 1/r + 1/2 = 1/p T : X → Lp(µ) a bounded operator.

T is a 2-summing operator

if and only if

There exists F ∈ Lr (µ), with F > 0 µ-a.e., such that T : X → L2(ν) is well
defined and 2-summing, where ν is the measure defined by

dν(z) =
1

F (z)2
dµ(z) .

Moreover, we have

π2

(
T : X → Lp(µ)

)
≈

inf
{
π2

(
T : X → L2(ν)

)
: dν = dµ/F 2,F ≥ 0,

∫
F r dµ ≤ 1

}
.
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The case p ≤ 2: sketch of proof

Step 2

The natural injection j : Hp → L2(ν) is a 2-summing operator

if and only if ∫
T

(∫
D

1

|z − w |2 dν(z)

)p′/2

dλ(w) < +∞ ,

In fact we have

π2

(
j : Hp → L2(ν)

)
≈
(∫

T

(∫
D

dν(z)

|z − w |2
)p′/2

dλ(w)

)1/p′

.
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The case p ≤ 2: sketch of proof

Step 3

Step 1 and Step 2 lead to

jµ : Hp → Lp(µ) is 2-summing if and only if

inf

{∫
T

(∫
D

dµ(z)

|z − w |2 · F (z)2

)p′/2

dλ(w) : F ≥ 0,

∫
F r dµ ≤ 1

}
is finite

if and only if

inf
F∈B+

Lr/2(µ)

sup
g∈B+

Lt (T)

∫
T

∫
D

g(w)

|z − w |2 · F (z)
dµ(z) dλ(w) is finite

where t is the conjugate of p′/2, and 1/r + 1/2 = 1/p.

By Ky Fan’s lemma the order of taking the sup and the inf can be interchanged.
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The case p ≤ 2: sketch of proof

Using Fubini and the following result:

Lemma

Let h : Ω→ [0,+∞) be a measurable function on (Ω,Σ, µ) and α > 0. Then

inf

{∫
h

F
dµ : F ≥ 0,

∫
Fα dµ ≤ 1

}
=
(∫

hα/(α+1) dµ
)(α+1)/α

.

We obtain that jµ : Hp → Lp(µ) is 2-summing if and only if

sup
g∈B+

Lt (T)

∫
D

(∫
T

g(w)

|z − w |2 dλ(w)

)p/2

dµ(z) is finite

if and only if

sup
g∈B+

Lt (T)

∫
D

(
P[g ](z)

1− |z |2

)p/2

dµ(z) is finite

But it means that the Poisson transform maps Lt to Lp/2(ν), where

dν(z) =
dµ(z)

(1− |z |)p/2

Applying a result of Luecking, Blasco-Jarchow, we get the conclusion.

GDR AFHP 2015



Preliminary Compactness N vs C Schatten Classes Approx. numbers Abs. summing operators Abs. summing Cϕ Appl. ! Réclame
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The case p ≤ 2: sketch of proof

Using Fubini and the following result:

Lemma

Let h : Ω→ [0,+∞) be a measurable function on (Ω,Σ, µ) and α > 0. Then

inf

{∫
h

F
dµ : F ≥ 0,

∫
Fα dµ ≤ 1

}
=
(∫

hα/(α+1) dµ
)(α+1)/α

.

We obtain that jµ : Hp → Lp(µ) is 2-summing if and only if

sup
g∈B+

Lt (T)

∫
D

(∫
T

g(w)

|z − w |2 dλ(w)

)p/2

dµ(z) is finite

if and only if

sup
g∈B+

Lt (T)

∫
D

(
P[g ](z)

1− |z |2

)p/2

dµ(z) is finite

But it means that the Poisson transform maps Lt to Lp/2(ν), where

dν(z) =
dµ(z)

(1− |z |)p/2

Applying a result of Luecking, Blasco-Jarchow, we get the conclusion.

GDR AFHP 2015



Preliminary Compactness N vs C Schatten Classes Approx. numbers Abs. summing operators Abs. summing Cϕ Appl. ! Réclame
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Applications

1 ∀ p2 ≥ p1 > 1 , Cϕ is r -summing on Hp2 =⇒ Cϕ is r -summing on Hp1 .

2 From Hardy to Bergman

By definition, the norm on the Bergman space Bq (=Aq) is the same than the
norm on Lq(D,A).
Let p, q ≥ 1. It is well known that the injection f ∈ Hp 7−→ f ∈ Bq is

bounded if and only if q ≤ 2p.

compact if and only if q < 2p.

Let p, q ≥ 1 with q ≤ 2p.

Hp ↪→ Bq is r -summing for some r ≥ 1 if and only if q < max(2, p).

Moreover

As soon as q < 2, it is 1-summing

When 2 ≤ q < p, it is (at least) q-summing.
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Béatrice Vedel: ondelettes

Valentin Ferenczi: sous-groupes d’isométries

Eric Ricard: espaces Lp non commutatifs
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