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[ ]

Composition operators

Composition operators are the operators of type:
Co:f—fop where ¢ : D — D is analytic.

The aim of this topic is to understand the link:

"Operator C," PREEN “symbol ¢"

We shall focus on Hardy spaces H”

and
on properties like the membership in some classical operator ideals.
The composition operators C, : H? — HP are always bounded.
Moreover,

1/p 1/p
B 1+ [(0)|
(1— |sa(0)|2> =lGl= (1— |<P(0)|>

Computing the exact value of ||Cy|| is still an open problem !
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Nevanlinna counting function

@ The Nevanlinna counting function N:

> logy if w#p(0)and w € (D)

Pp(2)=w
Np(w) =
0 else.

(counting multiplicities)
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L]

Nevanlinna counting function

@ The Nevanlinna counting function N:

> logy if w#p(0)and w € (D)
Pp(2)=w
Np(w) =
0 else.

(counting multiplicities)

Subordination principle (Littlewood)

The boundedness of C, is “equivalent” to

(O@W’ O((l - |W|)) when |w| — 1~

Ny (w) < log| -
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Composition operators on HP via the pullback measure

With A, (E) = A(¢* "'(E)) where E C D Hfoap”i:/Jf\"d)W,
D

@ )\, is a Carleson measure:

Boundedness of C, on HP is equivalent to the boundedness of f € H” — f € LP(DD, \,)

A/

The Carleson window W(¢, h

po(h) = sup Ao (W(E, h)) = O(h)  when [w| =1~ }
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Compactness
°

Compactness

Theorem (Shapiro-Taylor 73)

@ The problem reduces to the hilbertian case:

C, is compact on HP if and only if C, is compact on H?.
R S . 2 1
o C, is Hilbert-Schmidt if and only if HCWHHS = T[] d\ < oco.
T ¥
Actually
. .=
C, is compact on H? <> |im 1-le(2)l =00

lz|»1— 1 —|z]

if ¢ univalent (or finitely valent)

The converse is false in general: McCluer-Shapiro (86) constructed inner
functions ¢ admitting no angular derivatives at any point of the circle.
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Compactness on Hardy spaces: two examples

o(z) = % (not compact)
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Compactness on Hardy spaces: two examples

1
o(z) = % (not compact)

lens map (0 < a < 1) very compact (nuclear)
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Compactness on Hardy spaces: a third example

A surjective symbol inducing a compact composition operator:

where
f: D — Qis a conformal mapping

and

VzeD, p1(z) = exp (— f(2))
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Compactness
L]

Compactness on Hardy spaces: a third example

A surjective symbol inducing a compact composition operator:

where
f: D — Qis a conformal mapping

and

a—z
1—az

VzeD, pi1(z) =exp(—f(z)) and ¢= ( )2o<p1 fits...
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Compactness

Theorem(Power 80, Mac-Cluer 85)

C, is compact if and only if A, is a vanishing Carleson measure i.e.

pe(h) = sup A, (W(E, h)) = o (h) when h — 0
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Compactness

Theorem(Power 80, Mac-Cluer 85)

C, is compact if and only if A, is a vanishing Carleson measure i.e.
pe(h) = sup A, (W(E, h)) = o (h) when h — 0
E€ET

Theorem(Shapiro 87)

C, is compact  if and only if Ng(w) = o(1—|w|) when h — 0

Gl = limsup (’V(W))/

lw|—1— 1- |W|

Actually:

(Ackeroyd '10)

IColl. —IlmsupHC (||ka||Hz)’

|a|—1—

(ka is the reproducing kernel)
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Nevanlinna versus Carleson

There are two kinds of viewpoints/characterizations:
through Carleson’s windows OR through the Nevanlinna counting function.

Actually,

Theorem (L.-Li-Queffélec-Rodriguez Piazza '11)

sup X, (W(E, h)) = sup  Ni(w)
£EeT |w|>1—h

More precisely

There exist ¢, C > 0 (numerical) s.t.

o No(w) < Chy (W(g, ch)) where w = £(1 — h)

c

_ C
Wi, ch)) /‘/V(&Ch) Ny(w) dA < sup  Ng(w)

weEW(E&,ch)

Recently, El Fallah and Kellay gave a new proof of the sup-inequalities.

In the sequel, we shall rather have a “Carleson” viewpoint....
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Schatten Classes
Schatten Classes

Definition

Let H be a (separable) Hilbert spaces, and T a bounded (compact) operator
on H.
For p > 1, define the Schatten p-norm of T as

[ Tllse := <Z>\‘,§(|T|))l/p _ (tr(|7—|p))1/p

n>1

where
AT = X(T)) >+ > X(|T|) > -+ are the eigenvalues of |T| = /(T*T).

T belongs to the Schatten class S” if its Schatten p-norm is finite.
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Schatten Classes

Definition

Let H be a (separable) Hilbert spaces, and T a bounded (compact) operator
on H.
For p > 1, define the Schatten p-norm of T as

[ Tllse := <Z>\‘,§(|T|))l/p _ (tr(|7—|p))1/p

n>1

where
AT = X(T)) >+ > X(|T|) > -+ are the eigenvalues of |T| = /(T*T).

T belongs to the Schatten class S” if its Schatten p-norm is finite.

Remark: T belongs to S? if and only if T is Hilbert-Schmidt.
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Schatten Classes
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Schatten Classes

Schatten Classes

The case & is already known and the general case was solved by Luecking: its
characterization uses Luecking windows = half dyadic Carleson’s windows.

Let n,j > 1:

R,w-:{ze]D);172_"§|z|<172_"_1 and Mgargz<2;7r}

iaament
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Schatten classes

(Luecking '87)
We assume that A, (T) = 0.

C, €Sy if and only if Z Z 2"\ ( ,,J) ? < +oo.

n>0 j=1
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Schatten classes

(Luecking '87)
We assume that A, (T) = 0.

C, €Sy if and only if Z Z 2"\ ( ,,J) ? < +oo.

n>0 j=1

Actually

C, eSS, if and only if ZZ 2 Ao nJ) p/2 < +oo.

n>0 j=1

In particular

sup Ao (W(E, h)) = O(h%) (where a > 1) = C, € S, for any p > —*;
€eT

Let us mention too

(Luecking-Zhu '92)

i i N, (z) p/2 dA
C, €S f and only if 2 <+
A /D(Iog(mz\)) @—|zpy2 =
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Approximation numbers on H?

Definition
Let T be an operator: a,(T) =inf{|T — R||; rank(R) < n}

Remarks: non-increasing sequence and  a,(T) — 0 if and only if T is compact.

and HTHSP - H(an(T))"HeP'

The problem of estimating the value of a,(C,) is still open J

But there are remarkable recent results on the subject:

(Li-Queffélec—Rodriguez-Piazza '11-15)
@ Given g, \( 0, there exists a symbol ¢ s.t. C, compact and a,(Cy) = .
@ For every symbol ¢, there exists r € (0,1) s.t. a,(C,) = r".
o If ¢ is the lens map (of index 6 € (0, 1)), then

e~ oV < an(C,) < e Povin
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Abs. summing operators
o

r-summing operators

Suppose 1 < r < +00
and
let T: X — Y be a (bounded) operator between Banach spaces.

We say T is a r-summing operator if there exists C > 0 such that

- r e b * r e -
(XImsl) "< sup (Solecml) " =€ sup |3
A X* EBxx =1 j=1

= aGBZ,/

)

for every finite sequence x1, x2,...,X, in X.

The r-summing norm of T, denoted by 7,(T), is the least suitable constant C > 0.
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Abs. summing operators
o

r-summing operators

Suppose 1 < r < +00
and
let T: X — Y be a (bounded) operator between Banach spaces.

We say T is a r-summing operator if there exists C > 0 such that

- r e b * r e -
(XImsl) "< sup (Solecml) " =€ sup |3
A X* EBxx =1 j=1

= aGBZ,/

)

for every finite sequence x1, x2,...,X, in X.

The r-summing norm of T, denoted by 7,(T), is the least suitable constant C > 0.

@ This forms an operator ideal.
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Abs. summing operators
[ ]

a (generic) example

Let (K, v) a probability space, where K is compact and consider

C(K) — L'(K,v)

T:’fo

T is a r-summing operator and 7,(T) = 1, indeed
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a (generic) example

Let (K, v) a probability space, where K is compact and consider

C(K) — L'(K,v)

T:’fo

T is a r-summing operator and 7,(T) = 1, indeed

Let fi, f,...,f in C(K).
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a (generic) example

Let (K, v) a probability space, where K is compact and consider

C(K) — L'(K,v)

T:’fo

T is a r-summing operator and 7,(T) = 1, indeed

Let fi, f,...,f in C(K).

n

SIT@IE= [ l50ar dvs [ s Z|x<f fdv< s SN

K X€Bc(k XEBcky* =

Any restriction of this operator still works...

Actually, up to factorizations, any r-summing looks like this: J
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Abs. summing operators
L]

Pietsch Theorem

(Pietsch '67)

T: X — Y is a r-summing operator

if and only if
there exists a (probability) measure v on the compact (Bx=, w™) s.t.
B 1/r
wex. TS ([ leear aute))
By

if and only if
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Abs. summing operators
L]

Pietsch Theorem

(Pietsch '67)

T: X — Y is a r-summing operator

if and only if

there exists a (probability) measure v on the compact (Bx=, w™) s.t.

wxex, TS ([ lecar an)”

Bx
if and only if
we have the following factorization
X —
\ T T
Y |
Xcc(Bx) & X cL'(Bx,v)

for some probability measure v on Bx-x.
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Pietsch Theorem

Consequences

o If n <, every n-summing operator is r-summing.
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Pietsch Theorem

Consequences

o If n <, every n-summing operator is r-summing.

@ r-summing operators are weakly compact and map weakly convergent
sequences to norm convergence sequences (Dunford-Pettis operator).
In particular, they are compact when X is reflexive.

@ For 1 < p <2, H? and L” have cotype 2. For p > 2, they have cotype p.
Hence
Ju is n-summing  if and only if j, is r>-summing

in the following cases:

e Fori1<p<2andn, n>1
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Hence
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in the following cases:
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e Forp>2,and 1< r, rn < p’, where p’ is the conjugate exponent of p.
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Pietsch Theorem

Consequences

o If n <, every n-summing operator is r-summing.

@ r-summing operators are weakly compact and map weakly convergent
sequences to norm convergence sequences (Dunford-Pettis operator).
In particular, they are compact when X is reflexive.

@ For 1 < p <2, H? and L” have cotype 2. For p > 2, they have cotype p.
Hence
Ju is n-summing  if and only if j, is r>-summing

in the following cases:

e Fori1<p<2andn, n>1

e Forp>2,and 1< r, rn < p’, where p’ is the conjugate exponent of p.

Point out that r-summing operators on H” (with p > 1) are compact.
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Our problem now:
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This problem is equivalent to:

When the identity f € H? — f € LP(D, \,) is r-summing ?

Hence we are interested in the following more general problem:
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Carleson embeddings

Our problem now:
When a composition operator C,: H? — HP is r-summing ?
This problem is equivalent to:

When the identity f € H? — f € LP(D, \,) is r-summing ?

Hence we are interested in the following more general problem:

Assume from now on that p is a Carleson measure, concentrated in the open
disk D:

When the Carleson embedding Ju: H? — LP(D, ) is a r-summing operator ?
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(Shapiro-Taylor '73)
Let p > 2. The composition operator C,: H? — HP is p-summing if and only if

1
T d\ < 4oo.
/qu—lso*l2
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In the Carleson embedding framework, the condition is / 171”2 dp < +o0
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T d\ < 4oo.
/qu—lso*l2
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In the Carleson embedding framework, the condition is / 17”2 dp < +o0
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The only if condition is easy to see (test the most natural sequence and think
to the Hausdorff-Young inequality)
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Known facts

(Shapiro-Taylor '73)
Let p > 2. The composition operator C,: H? — HP is p-summing if and only if

1
T d\ < 4oo.
/qu—lso*l2

In the Carleson embedding framework, the condition is / 171”2 dp < +o0
pl—|z

The only if condition is easy to see (test the most natural sequence and think
to the Hausdorff-Young inequality)

1 1
For the converse, recall that HéZH(HP)* = (1—7|z|2) P
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Known facts

(Shapiro-Taylor '73)

Let p > 2. The composition operator C,: H? — HP is p-summing if and only if

1
—— dA < 4o00.
/T 1—[e*f?
. N 1
In the Carleson embedding framework, the condition is 17”2 dp < +o0
pl—|z

The only if condition is easy to see (test the most natural sequence and think
to the Hausdorff-Young inequality)

1 1
For the converse, recall that HéZH(Hp)* = (1—7|z|2) P

But

(Domenig '99)

Let p € [1,2). There exist (p-)summing composition operator on H” such that

1
———— d\ =+
/]ID]-_‘QO*P
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First new results: the annulus case.

Joint work with L. Rodriguez-Piazza

From now on : p > 1 and we fix a finite measure y on D.
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Joint work with L. Rodriguez-Piazza
From now on : p > 1 and we fix a finite measure y on D.

Let n be an integer. We denote by p, the restriction of p to the (dyadic)

annulus
M={zeD:1-27"<|z]<1-2""""}

and by j, the inclusion of H” into LP(jn).
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From now on : p > 1 and we fix a finite measure y on D.

Let n be an integer. We denote by p, the restriction of p to the (dyadic)

annulus
M={zeD:1-27"<|z]<1-2""""}

and by j, the inclusion of H” into LP(jn).
I, is the union of the 2" Luecking windows R, ;.

Now consider, for n € N, the 2"-dimensional subspace Hf of H” generated by
the monomials z¥, with 2" < k < 21,
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First new results: the annulus case.

Joint work with L. Rodriguez-Piazza
From now on : p > 1 and we fix a finite measure y on D.

Let n be an integer. We denote by p, the restriction of p to the (dyadic)

annulus
M={zeD:1-27"<|z]<1-2""""}

and by j, the inclusion of H” into LP(jn).
I, is the union of the 2" Luecking windows R, ;.

Now consider, for n € N, the 2"-dimensional subspace Hf of H” generated by
the monomials z¥, with 2" < k < 21,
We have, the decomposition

{feHP:f(0)=0} =EPH;]

n>0

which is an orthogonal decomposition when p = 2 (i.e. for H?).
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First new results: the annulus case.

Joint work with L. Rodriguez-Piazza
From now on : p > 1 and we fix a finite measure y on D.

Let n be an integer. We denote by p, the restriction of p to the (dyadic)

annulus
M={zeD:1-27"<|z]<1-2""""}

and by j, the inclusion of H” into LP(jn).
I, is the union of the 2" Luecking windows R, ;.

Now consider, for n € N, the 2"-dimensional subspace Hf of H” generated by
the monomials z¥, with 2" < k < 21,
We have, the decomposition

{feHP:f(0)=0} =EPH;]

n>0
which is an orthogonal decomposition when p = 2 (i.e. for H?).

Moreover, for p > 1:
H,’,) ~ égn
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We have the following key fact:

For 1 < p < 400, the following quantities are equivalent:

(1] Tr,(jn: HP — Lp(,u,,))

(2} Wr(jn‘,_,g: HE — LP(pn))

o
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The annulus case

We have the following key fact:

For 1 < p < 400, the following quantities are equivalent:

(1] Tr,(jn: HP — Lp(,u,,))
(2} Wr(jn‘,_,g: HE — LP(pn))

© 7,(D.), where D.: £5, — {5, is the diagonal operator whose multipliers are
aj = (2"#(Rn,j))1/p (where j =1,2,...,2™).

o
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The annulus case

But the summing norms of multipliers on sequence spaces are known, so:

on

1/2
Q@ 1<p<2 (s~ (Z[znﬂ(Rn,j)]Q/p>

j=1
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The annulus case

But the summing norms of multipliers on sequence spaces are known, so:

on 1/2
Q1<p<2 m(jn)w (ZP"N(RnJ)]Q/p)
j=1
Q p>2:
on , 1/p
0 if1<r<p. m(jn)= <Z[2"M(Rn,j)}p /,,>
j=1
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The annulus case

But the summing norms of multipliers on sequence spaces are known, so:

on 1/2
Q1<p<2 m(jn)w (ZP"N(RnJ)]Q/p)
j=1
Q p>2:
on , 1/p
0 if1<r<p. m(jn)= <Z[2"M(Rn,j)}p /,,>
j=1
on 1/r
oif p' <r<p.  m(jn)~ (ZP"#(RM)] ,/,,>
j=1
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The annulus case

But the summing norms of multipliers on sequence spaces are known, so:

on 1/2
Q@ 1<p<2: m(jn)= (Z[zn“(’?w)]m)
j=1
Q p>2:
on , 1/p
0 if1<r<p. m(jn)= <Z[2"M(Rn,j)}p /,,>
j=1
on 1/r
oifp' <r<p. ()~ (ZP"#(RM)] ,/,,>
j=1
on 1/p
oifp<r. m(n)~ <Z[2”M(Rn,j)}>
j=1
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The annulus case

But the summing norms of multipliers on sequence spaces are known, so:

on 1/2
Q@ 1<p<2: m(jn)= (Z[zn“(’?w)]m)
j=1
Q p>2:
on , 1/p
0 if1<r<p. m(jn)= <Z[2"M(Rn,j)}p /,,>
j=1
on 1/r
oifp' <r<p. ()~ (ZP"#(RM)] ,/,,>
j=1
on 1/p
oifp<r. m(n)~ <Z[2”M(Rn,j)}>
j=1

How to glue the pieces ?
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First results: when p > 2

In some cases, we succeed in gluing.
So we get for composition operators C, : H? — H”:

© In the case r > p > 2, we have:
. 1/p . 1/p
m(Co) ~ (X mGlP) = (X 2"A(Ru)])
n n,j

1 1/p
~ ( —_— d)\W) i.e. order bounded.
pl—|z|

GDR AFHP 2015



Abs. summing C,
L]

First results: when p > 2

In some cases, we succeed in gluing.
So we get for composition operators C, : H? — H”:

©Q In the case r > p > 2, we have:

wr (o)~ (X i) = (3 e (Rel)

n n,j

1 1/p
~ ( —_— d)\W) i.e. order bounded.
pl—|z|

@ In the case p’ < r < p, we have:

mo (o) (X tnelil) % (X eRl?) e e sy
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First results: when p > 2

In some cases, we succeed in gluing.
So we get for composition operators C, : H? — H”:

©Q In the case r > p > 2, we have:

7 (Co) ~ (X mtil?) " ~ (3 2o Res)l)

1 1/p
~ ( —_— d)\W) i.e. order bounded.
pl—|z|

@ In the case p’ < r < p, we have:
C\qr 1/r n B 1/r )
(o)~ (3 I l) " = (30 27 Ae(Rai)) e, Cp € Sx(HP).
n n,j

© In the case 1 < r < p’, the standard glue does not paste the norms...
But there mlght be a characterization of different nature (result too fresh: put into quarantine)
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The case p < 2.

In this case (like in the case p > 2 and r < p’ ?) trying to glue seems to be not
the right strategy. Our characterization is of different nature:
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The case p < 2.

In this case (like in the case p > 2 and r < p’ ?) trying to glue seems to be not
the right strategy. Our characterization is of different nature:

Let 1 < p < 2. The Carleson embedding j,.: H? — LP(u) is absolutely summing

if and only if

/T(/r(g) (1_d|i(|;1)+p/2>2/p dA(§) < +oo

where T'(€) is the Stolz domain in &:
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The case p < 2: sketch of proof

Step 1 (via Maurey factorization theorem)

Let r >1with1/r+1/2=1/p T: X — LP(p) a bounded operator.
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The case p < 2: sketch of proof

Step 1 (via Maurey factorization theorem)

Let r >1with1/r+1/2=1/p T: X — LP(p) a bounded operator.

T is a 2-summing operator
if and only if

There exists F € L"(p), with F > 0 p-a.e., such that 7: X — [%(v) is well
defined and 2-summing, where v is the measure defined by
1

dv(z) = Fap du(z).
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The case p < 2: sketch of proof

Step 1 (via Maurey factorization theorem)

Let r >1with1/r+1/2=1/p T: X — LP(p) a bounded operator.

T is a 2-summing operator
if and only if

There exists F € L"(p), with F > 0 p-a.e., such that 7: X — [%(v) is well
defined and 2-summing, where v is the measure defined by
) = — ()
= F(z)E

Moreover, we have

m(T: X = LP(n))

~
~

inf{m(T: X = L2(v)) : dv = du/F%, F > O,/F’ du < 1}.
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The case p < 2: sketch of proof

The natural injection j: H? — L?(v) is a 2-summing operator

([ = du(z))p'/z I (W) < oo,

if and only if
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The case p < 2: sketch of proof

Step 2

The natural injection j: H? — L?(v) is a 2-summing operator

1 P’/2
———dv(z dA\(w) < +o0,
[([e=apa@) oo
In fact we have

m(j: HP = 12(v)) ~ (/T(/D %)M d)\(w))l/p,.

if and only if
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The case p < 2: sketch of proof

. i _khhiitrrh!™

Step 1 and Step 2 lead to

Ju: H? — LP(u) is 2-summing if and only if

inf{/jr( D|Z_:/'L|L2('Z?E(Z)2>p//2d)\(w) : FzO,/F'd,u <1 } is finite
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The case p < 2: sketch of proof

. i _khhiitrrh!™

Step 1 and Step 2 lead to

Ju: H? — LP(u) is 2-summing if and only if

inf{/jr( D|Z_:/'L|L2('Z?E(Z)2>p//2d)\(w) : FzO,/F'd,u <1 } is finite

if and only if

g(w) e
|nf sup //|z—w|2 F(z)d u(z) dA\(w) is finite

FeBf 17/2(,1) EEB

where t is the conjugate of p'/2, and 1/r+1/2=1/p.
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The case p < 2: sketch of proof

. i _khhiitrrh!™

Step 1 and Step 2 lead to

Ju: H? — LP(u) is 2-summing if and only if

inf{/jr( D|Z_VdV'L|L2('Z?E(Z)2>p//2d)\(W) : FzO,/F'd,u <1 } is finite

if and only if

g(w) e
|nf sup //|z—w|2 F(z)d u(z) dA\(w) is finite

FeBf 17/2(,1) EEB

where t is the conjugate of p'/2, and 1/r+1/2=1/p.

By Ky Fan's lemma the order of taking the sup and the inf can be interchanged.
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The case p < 2: sketch of proof

Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“dug1}:(/ha/(‘””du) .
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Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“du§1}:(/ha/(a“wu) .

We obtain that j,,: H? — LP(u) is 2-summing if and only if
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The case p < 2: sketch of proof

Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“du§1}:(/ha/(a“wu) .

We obtain that j,,: H? — LP(u) is 2-summing if and only if

sup /D(/legfm;zlzd)\(w)>p/2du(z) is finite

!
S
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The case p < 2: sketch of proof

Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“du§1}:(/ha/(a“wu) .

We obtain that j,,: H? — LP(u) is 2-summing if and only if

sup /D(/legfm;zlzd)\(w)>p/2du(z) is finite

!
S

if and only if
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The case p < 2: sketch of proof

Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“du§1}:(/ha/(a“wu) .

We obtain that j,,: H? — LP(u) is 2-summing if and only if
p/2
sup /(/ g(iw)z d)\(w)> du(z) s finite
geBz;(T) p\Jr |z —w|

if and only if

sup /D(P[g](z))p/2du(z) is finite

— 2
geBzrt(,ﬂ_) 1 ‘Z|
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The case p < 2: sketch of proof

Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“du§1}:(/ha/(a“wu) .

We obtain that j,,: H? — LP(u) is 2-summing if and only if

g(w) P2
sup di(w) du(z) s finite
+ |z — w?
gEBLf(T) D T

sup /D (71’[g](22|2))p/2du(z) is finite

!
SR

if and only if

But it means that the Poisson transform maps L to LP/?(v), where
du(z)
d = — 2 =
S e e
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The case p < 2: sketch of proof

Using Fubini and the following result:

Let h: Q — [0, +00) be a measurable function on (€2, X, 1) and o > 0. Then

(@+1)/a
inf{/ng:on,/F“du§1}:(/ha/(a“wu) .

We obtain that j,,: H? — LP(u) is 2-summing if and only if

g(w) P2
sup di(w) du(z) s finite
+ |z — w?
gEBLf(T) D T

sup /D (71’[g](22|2))p/2du(z) is finite

!
SR

if and only if

But it means that the Poisson transform maps L to LP/?(v), where
du(z)
d = —7r =
V&) = G aper
Applying a result of Luecking, Blasco-Jarchow, we get the conclusion.
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By definition, the norm on the Bergman space B9 (=.47) is the same than the
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Let p, g > 1. It is well known that the injection f € H? — f € B7 is

@ bounded if and only if g < 2p.
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@ compact if and only if g < 2p.

GDR AFHP 2015



Applications

QVp>p>1, C,isr-summing on H? —> C, is r-summing on H".

@ From Hardy to Bergman

By definition, the norm on the Bergman space B9 (=.47) is the same than the
norm on LY(DD, A).

Let p, g > 1. It is well known that the injection f € H? — f € B7 is

@ bounded if and only if g < 2p.

@ compact if and only if g < 2p.

Let p,g > 1 with g < 2p.

e HP — B9 is r-summing for some r > 1 if and only if g < max(2, p).

Moreover
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Applications

QVp>p>1, C,isr-summing on H? —> C, is r-summing on H".

@ From Hardy to Bergman

By definition, the norm on the Bergman space B9 (=.47) is the same than the
norm on LY(DD, A).

Let p, g > 1. It is well known that the injection f € H? — f € B7 is

@ bounded if and only if g < 2p.

@ compact if and only if g < 2p.

Let p,g > 1 with g < 2p.

e HP — B9 is r-summing for some r > 1 if and only if g < max(2, p).
Moreover
@ As soon as g < 2, it is 1-summing

@ When 2 < g < p, it is (at least) g-summing.
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Réclame

Mini-Cours du GDR AFHP a Lens
du 23 au 25 mai 2016

o Béatrice Vedel: ondelettes
@ Valentin Ferenczi: sous-groupes d'isométries

o Eric Ricard: espaces LP non commutatifs
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