Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.		Réclame
000	0000	0	00	0	0000	00000000000	0	0	0

GDR AFHP 2015

Absolutely summing composition operators on H^p spaces

(joint work with Luis Rodríguez Piazza)

Pascal Lefèvre Université d'Artois, France

Marseille 30 novembre 2015

GDR AFHP 2015

Preliminary ●○○	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Compo	osition o	perat	ors					

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

Preliminary ●○○	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Compo	osition o	perat	ors					

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

The aim of this topic is to understand the link:

"Operator C_{φ} " $\stackrel{??}{\longleftrightarrow}$ "symbol φ "

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

The aim of this topic is to understand the link:

"Operator
$$\mathcal{C}_{arphi}$$
" $\stackrel{\ref{eq: constraint}}{\longleftrightarrow}$ "symbol $arphi$ "

We shall focus on Hardy spaces H^p

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

The aim of this topic is to understand the link:

"Operator
$$\mathcal{C}_{arphi}$$
" $\stackrel{\ref{eq: constraint}}{\longleftrightarrow}$ "symbol $arphi$ "

We shall focus on Hardy spaces H^p

and

on properties like the membership in some classical operator ideals.

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

The aim of this topic is to understand the link:

"Operator
$$\mathcal{C}_{arphi}$$
" $\stackrel{??}{\longleftrightarrow}$ "symbol $arphi$ "

We shall focus on Hardy spaces H^p

and

on properties like the membership in some classical operator ideals.

The composition operators $C_{\varphi}: H^{p} \longrightarrow H^{p}$ are always bounded.

Moreover,

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

The aim of this topic is to understand the link:

"Operator
$$\mathcal{C}_{arphi}$$
" $\stackrel{??}{\longleftrightarrow}$ "symbol $arphi$ "

We shall focus on Hardy spaces H^p

and

on properties like the membership in some classical operator ideals.

The composition operators $C_{\varphi}: H^p \longrightarrow H^p$ are always bounded.

Moreover,

$$\left(rac{1}{1-|arphi(0)|^2}
ight)^{1/
ho} \leq \|m{C}_arphi\| \leq \left(rac{1+|arphi(0)|}{1-|arphi(0)|}
ight)^{1/
ho}$$

 $C_{\varphi}: f \longrightarrow f \circ \varphi$ where $\varphi: \mathbb{D} \to \mathbb{D}$ is analytic.

The aim of this topic is to understand the link:

"Operator
$$\mathcal{C}_{arphi}$$
" $\stackrel{??}{\longleftrightarrow}$ "symbol $arphi$ "

We shall focus on Hardy spaces H^p

and

on properties like the membership in some classical operator ideals.

The composition operators $C_{\varphi}: H^{p} \longrightarrow H^{p}$ are always bounded.

Moreover,

$$\left(rac{1}{1-|arphi(\mathsf{0})|^2}
ight)^{1/
ho} \leq \|oldsymbol{C}_arphi\| \leq \left(rac{1+|arphi(\mathsf{0})|}{1-|arphi(\mathsf{0})|}
ight)^{1/
ho}$$

Computing the exact value of $||C_{\varphi}||$ is still an open problem !

GDR AFHP 2015

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
000								
Nevan	linna coi	unting	g function					

• The Nevanlinna counting function N_{φ} :

(counting multiplicities)

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
000								
Nevan	linna coi	unting	g function					

• The Nevanlinna counting function N_{φ} :

$$N_{arphi}(w) = \left\{egin{array}{c} \sum\limits_{arphi(z)=w}\lograc{1}{|z|} & ext{if } w
eq arphi(0) ext{ and } w \in arphi(\mathbb{D}) \ & \ 0 & ext{else.} \end{array}
ight.$$

(counting multiplicities)

Subordination principle (Littlewood)

The boundedness of C_{φ} is "equivalent" to

$$N_{arphi}(w) \leq \log \Big|rac{1-\overline{arphi(0)}w}{arphi(0)-w}\Big| = O\Big(ig(1-|w|ig)ig) \qquad ext{when } |w|
ightarrow 1^-$$

 Preliminary
 Compactness
 N vs C
 Schatten Classes
 Approx. numbers
 Abs. summing operators
 Abs. summing C_{φ} Appl.
 !
 Réclame

 0.0
 0.0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Composition operators on H^p via the pullback measure

With $\lambda_{\varphi}(E) = \lambda(\varphi^{*-1}(E))$ where $E \subset \overline{\mathbb{D}}$ $\|f \circ \varphi\|_{p}^{p} = \int_{\overline{\mathbb{D}}} |f|^{p} d\lambda_{\varphi}$

 Preliminary
 Compactness
 N vs C
 Schatten Classes
 Approx. numbers
 Abs. summing operators
 Abs. summing C_Q
 Appl.
 !
 Réclame

 00
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0

Composition operators on H^p via the pullback measure

$$\text{With } \lambda_{\varphi}(E) = \lambda \big(\varphi^{*\,-1}(E) \big) \text{ where } E \subset \overline{\mathbb{D}} \qquad \big\| f \circ \varphi \big\|_{\rho}^{\rho} = \int_{\overline{\mathbb{D}}} |f|^{\rho} \, d\lambda_{\varphi}$$

2 λ_{φ} is a Carleson measure:

Boundedness of C_{φ} on H^{ρ} is equivalent to the boundedness of $f \in H^{\rho} \mapsto f \in L^{\rho}(\overline{\mathbb{D}}, \lambda_{\varphi})$

With $\lambda_{\varphi}(E) = \lambda(\varphi^{*-1}(E))$ where $E \subset \overline{\mathbb{D}}$ $\|f \circ \varphi\|_{p}^{p} = \int_{\overline{\mathbb{D}}} |f|^{p} d\lambda_{\varphi}$

2 λ_{φ} is a Carleson measure:

Boundedness of C_{φ} on H^{ρ} is equivalent to the boundedness of $f \in H^{\rho} \mapsto f \in L^{\rho}(\overline{\mathbb{D}}, \lambda_{\varphi})$

The Carleson window $\mathcal{W}(\xi, h)$

Composition operators on H^p via the pullback measure

With
$$\lambda_{\varphi}(E) = \lambda({\varphi^*}^{-1}(E))$$
 where $E \subset \overline{\mathbb{D}}$ $\|f \circ \varphi\|_{\rho}^{\rho} = \int_{\overline{\mathbb{D}}} |f|^{\rho} \, d\lambda_{\varphi}$

Compactness N vs C Schatten Classes Approx. numbers Abs. summing operators Abs. summing C_{φ}

Réclame

Appl.

2 λ_{φ} is a Carleson measure:

Preliminary

Boundedness of C_{φ} on H^{p} is equivalent to the boundedness of $f \in H^{p} \mapsto f \in L^{p}(\overline{\mathbb{D}}, \lambda_{\varphi})$

GDR AFHP 2015

Preliminary	Compactness ●○○○	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ○
Compa	actness							

- The problem reduces to the hilbertian case:
 - C_{φ} is compact on H^p if and only if C_{φ} is compact on H^2 .

Preliminary	Compactness ●○○○	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ⊖
Compa	actness							

• The problem reduces to the hilbertian case:

 C_{φ} is compact on H^{p} if and only if C_{φ} is compact on H^{2} .

•
$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

Actually

Preliminary	Compactness ●○○○	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ⊖
Compa	actness							

• The problem reduces to the hilbertian case:

 C_{φ} is compact on H^{p} if and only if C_{φ} is compact on H^{2} .

•
$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^{2} = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^{*}|^{2}} d\lambda < \infty.$

Actually

$$C_{\varphi}$$
 is compact on $H^{p} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$
if φ univalent (or finitely valent)

Preliminary	Compactness ●○○○	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ⊖
Compa	actness							

• The problem reduces to the hilbertian case:

 C_{φ} is compact on H^{p} if and only if C_{φ} is compact on H^{2} .

•
$$C_{\varphi}$$
 is Hilbert-Schmidt *if and only if* $\|C_{\varphi}\|_{HS}^2 = \int_{\mathbb{T}} \frac{1}{1 - |\varphi^*|^2} d\lambda < \infty.$

Actually

$$C_{\varphi}$$
 is compact on $H^{p} \iff \lim_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|} = \infty$
if φ univalent (or finitely valent)

The converse is false in general: McCluer-Shapiro (86) constructed inner functions φ admitting no angular derivatives at any point of the circle.

Compactness on Hardy spaces: two examples

Compactness on Hardy spaces: two examples

lens map (0 < a < 1) very compact (nuclear)

BUT

A surjective symbol inducing a compact composition operator:

where

 $f: \mathbb{D} \to \Omega$ is a conformal mapping

and

$$\forall z \in \mathbb{D}, \qquad \varphi_1(z) = \exp\left(-f(z)\right)$$

where

 $f: \mathbb{D} \to \Omega$ is a conformal mapping

and

$$\forall z \in \mathbb{D}$$
, $\varphi_1(z) = \exp\left(-f(z)\right)$ and $\varphi = \left(rac{a-z}{1-\overline{a}z}
ight)^2 \circ \varphi_1$ fits...

0

<u>Theorem</u>(Power 80, Mac-Cluer 85) C_{φ} is compact *if and only if* λ_{φ} is a vanishing Carleson measure i.e. $\rho_{\varphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{\varphi} (\mathcal{W}(\xi, h)) = o(h)$ when $h \to 0$

<u>Theorem</u>(Power 80, Mac-Cluer 85) C_{φ} is compact *if and only if* λ_{φ} is a vanishing Carleson measure i.e. $\rho_{\varphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{\varphi}(\mathcal{W}(\xi, h)) = o(h)$ when $h \to 0$

Theorem(Shapiro 87)

 C_arphi is compact if and only if $N_arphi(w)=oig(1-|w|ig)$ when h o 0 Actually:

$$\|C_{\varphi}\|_{e} = \limsup_{|w| \to 1^{-}} \left(\frac{N_{\varphi}(w)}{1-|w|}\right)^{1/2}.$$

<u>Theorem</u>(Power 80, Mac-Cluer 85) C_{φ} is compact *if and only if* λ_{φ} is a vanishing Carleson measure i.e. $\rho_{\varphi}(h) = \sup_{\xi \in \mathbb{T}} \lambda_{\varphi}(\mathcal{W}(\xi, h)) = o(h)$ when $h \to 0$

Theorem(Shapiro 87)

 C_{arphi} is compact if and only if $N_{arphi}(w) = oig(1-|w|ig)$ when h o 0Actually:

$$\|C_{\varphi}\|_{e} = \limsup_{|w| \to 1^{-}} \left(\frac{N_{\varphi}(w)}{1-|w|}\right)^{1/2}.$$

(Ackeroyd '10)

$$\left\|C_{\varphi}\right\|_{e} = \limsup_{|\mathbf{a}| \to 1^{-}} \left\|C_{\varphi}\left(\frac{k_{\mathbf{a}}}{\|k_{\mathbf{a}}\|_{H^{2}}}\right)\right\|_{H^{2}}$$

 $(k_a \text{ is the reproducing kernel})$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Nevan	linna ver	sus C	Carleson					

There are two kinds of viewpoints/characterizations:

through Carleson's windows **OR** through the Nevanlinna counting function.

Theorem (L.-Li-Queffélec-Rodríguez Piazza '11)

```
\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(\mathcal{W}(\xi,h)\big)\approx \sup_{|w|\geq 1-h}N_{\varphi}(w)
```

More precisely

Theorem (L.-Li-Queffélec-Rodríguez Piazza '11)

 $\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(\mathcal{W}(\xi,h)\big)\approx \sup_{|w|\geq 1-h}N_{\varphi}(w)$

More precisely

There exist c, C > 0 (numerical) s.t.

•
$$N_{arphi}(w) \leq C \lambda_{arphi} \left(\mathcal{W}(\xi, ch)
ight)$$
 where $w = \xi(1-h)$

Theorem (L.-Li-Queffélec-Rodríguez Piazza '11)

 $\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(\mathcal{W}(\xi,h)\big)\approx \sup_{|w|\geq 1-h}N_{\varphi}(w)$

More precisely

There exist c, C > 0 (numerical) s.t.

• $N_{arphi}(w) \leq C \lambda_{arphi} \Big(\mathcal{W}(\xi, ch) \Big)$ where $w = \xi(1-h)$

•
$$\lambda_{\varphi}(\mathcal{W}(\xi,h)) \leq rac{C}{\mathcal{A}(\mathcal{W}(\xi,ch))} \int_{\mathcal{W}(\xi,ch)} N_{\varphi}(w) \ d\mathcal{A} \leq C \sup_{w \in \mathcal{W}(\xi,ch)} N_{\varphi}(w)$$

Theorem (L.-Li-Queffélec-Rodríguez Piazza '11) $\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(\mathcal{W}(\xi,h)\big)\approx\sup_{|w|\geq 1-h}N_{\varphi}(w)$ More precisely There exist c, C > 0 (numerical) s.t. • $N_{\varphi}(w) \leq C\lambda_{\varphi}(\mathcal{W}(\xi, ch))$ where $w = \xi(1-h)$ • $\lambda_{\varphi}(\mathcal{W}(\xi,h)) \leq \frac{C}{\mathcal{A}(\mathcal{W}(\xi,ch))} \int_{\mathcal{W}(\xi,ch)} N_{\varphi}(w) \ d\mathcal{A} \leq C \sup_{w \in \mathcal{W}(\xi,ch)} N_{\varphi}(w)$

Recently, El Fallah and Kellay gave a new proof of the sup-inequalities.

Actually,

 $\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(\mathcal{W}(\xi,h)\big)\approx \sup_{|w|\geq 1-h}N_{\varphi}(w)$

More precisely

There exist c, C > 0 (numerical) s.t.

• $N_{arphi}(w) \leq C \lambda_{arphi} \Big(\mathcal{W}(\xi, ch) \Big)$ where $w = \xi(1-h)$

•
$$\lambda_{\varphi}(\mathcal{W}(\xi,h)) \leq \frac{C}{\mathcal{A}(\mathcal{W}(\xi,ch))} \int_{\mathcal{W}(\xi,ch)} N_{\varphi}(w) \ d\mathcal{A} \leq C \sup_{w \in \mathcal{W}(\xi,ch)} N_{\varphi}(w)$$

Recently, El Fallah and Kellay gave a new proof of the sup-inequalities.

In the sequel, we shall rather have a "Carleson" viewpoint....

GDR AFHP 2015

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame O
Schatt	en Class	es						

Definition

Let H be a (separable) Hilbert spaces, and T a bounded (compact) operator on H.

For $p \ge 1$, define the Schatten *p*-norm of *T* as

$$\|T\|_{\mathcal{S}^p} := \left(\sum_{n\geq 1} \lambda_n^p(|T|)\right)^{1/p} = \left(tr(|T|^p)\right)^{1/p}$$

where

 $\lambda_1(|\mathcal{T}|) \geq \lambda_2(|\mathcal{T}|) \geq \cdots \geq \lambda_n(|\mathcal{T}|) \geq \cdots$ are the eigenvalues of $|\mathcal{T}| = \sqrt{(\mathcal{T}^*\mathcal{T})}$.

T belongs to the Schatten class S^p if its Schatten p-norm is finite.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame O
Schatt	en Class	es						

Definition

Let H be a (separable) Hilbert spaces, and T a bounded (compact) operator on H.

For $p \ge 1$, define the Schatten *p*-norm of *T* as

$$\|T\|_{\mathcal{S}^p} := \left(\sum_{n\geq 1} \lambda_n^p(|T|)\right)^{1/p} = \left(tr(|T|^p)\right)^{1/p}$$

where $\lambda_1(|\mathcal{T}|) \geq \lambda_2(|\mathcal{T}|) \geq \cdots \geq \lambda_n(|\mathcal{T}|) \geq \cdots$ are the eigenvalues of $|\mathcal{T}| = \sqrt{(\mathcal{T}^*\mathcal{T})}$.

T belongs to the Schatten class S^p if its Schatten p-norm is finite.

Remark: T belongs to S^2 if and only if T is Hilbert-Schmidt.

The case S_2 is already known and the general case was solved by Luecking:

The case S_2 is already known and the general case was solved by Luecking: its characterization uses Luecking windows = half dyadic Carleson's windows.

The case S_2 is already known and the general case was solved by Luecking: its characterization uses Luecking windows = half dyadic Carleson's windows.

Let $n, j \ge 1$:

$$R_{n,j} = \left\{ z \in \mathbb{D} \; ; \; 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \quad \text{and} \quad \frac{2(j-1)\pi}{2^n} \le \arg z < \frac{2j\pi}{2^n} \right\}$$

Preliminary	Compactness	N vs C	Schatten Classes ○●	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ⊖
Schatt	en classe	es						

We assume that
$$\lambda_{\varphi}(\mathbb{T}) = 0$$
.
 $C_{\varphi} \in S_{p}$ if and only if $\sum_{n \geq 0} \sum_{j=1}^{2^{n}} \left[2^{n} \lambda_{\varphi}(R_{n,j})\right]^{p/2} < +\infty$.

Preliminary	Compactness	N vs C	Schatten Classes ○●	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Schatt	en class	25						

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_p$ if and only if $\sum_{n \geq 0} \sum_{j=1}^{2^n} \left[2^n \lambda_{\varphi}(R_{n,j})\right]^{p/2} < +\infty$.

Actually

$$C_{arphi}\in \mathcal{S}_{p}$$
 if and only if $\sum_{n\geq 0}\sum_{j=1}^{2^{n}}\left[2^{n}\lambda_{arphi}(W_{n,j})
ight]^{p/2}<+\infty.$

Preliminary	Compactness	N vs C	Schatten Classes ○●	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Schatt	en classe	≏s						

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_p$ if and only if $\sum_{n \geq 0} \sum_{j=1}^{2^n} \left[2^n \lambda_{\varphi}(R_{n,j})\right]^{p/2} < +\infty$.

Actually

$$C_{arphi}\in \mathcal{S}_{p} \qquad ext{if and only if} \qquad \sum_{n\geq 0}\sum_{j=1}^{2^{n}}\left[2^{n}\lambda_{arphi}(W_{n,j})
ight]^{p/2}<+\infty.$$

In particular

$$\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(W(\xi,h)\big)=O\big(h^{\alpha}\big) \text{ (where }\alpha>1)\implies C_{\varphi}\in\mathcal{S}_{p} \text{ for any }p>\tfrac{2}{\alpha-1}\cdot$$

Preliminary	Compactness	N vs C	Schatten Classes ○●	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ⊖
Schatt	en class	25						

We assume that $\lambda_{\varphi}(\mathbb{T}) = 0$. $C_{\varphi} \in S_{p}$ if and only if $\sum_{n \geq 0} \sum_{j=1}^{2^{n}} \left[2^{n} \lambda_{\varphi}(R_{n,j})\right]^{p/2} < +\infty$.

Actually

$$C_{arphi}\in \mathcal{S}_{p} \qquad ext{if and only if} \qquad \sum_{n\geq 0}\sum_{j=1}^{2^{n}}\left[2^{n}\lambda_{arphi}(W_{n,j})
ight]^{p/2}<+\infty.$$

In particular

$$\sup_{\xi\in\mathbb{T}}\lambda_{\varphi}\big(W(\xi,h)\big)=O\big(h^{\alpha}\big) \text{ (where }\alpha>1)\implies \mathsf{C}_{\varphi}\in\mathcal{S}_{p} \text{ for any }p>\tfrac{2}{\alpha-1}\cdot$$

Let us mention too

(Luecking-Zhu '92)

$$C_{\varphi} \in S_{p}$$
 if and only if $\int_{\mathbb{D}} \left(\frac{N_{\varphi}(z)}{\log(1/|z|)} \right)^{p/2} \frac{d\mathcal{A}}{(1-|z|^{2})^{2}} < +\infty.$

GDR AFHP 2015

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame O
Approx	kimation	num	bers on <i>H</i>	2				

Let T be an operator: $a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame ⊖
Approx	kimation	num	bers on <i>H</i>	2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: non-increasing sequence and

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{arphi}	Appl.		Réclame
000	0000	0	00	•	0000	00000000000	0	0	0
Appro>	kimation	num	bers on <i>H</i>	2					

Let T be an operator: $a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$

Remarks: non-increasing sequence and $a_n(T) \rightarrow 0$ if and only if T is compact.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Approx	kimation	num	bers on <i>H</i>	2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: non-increasing sequence and $a_n(T) \to 0$ if and only if T is compact. and $\|T\|_{S^p} = \|(a_n(T))_n\|_{\ell^p}.$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Appro>	kimation	num	bers on <i>H</i>	2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: non-increasing sequence and $a_n(T) \to 0$ if and only if T is compact. and $\|T\|_{S^p} = \|(a_n(T))_n\|_{\ell^p}.$

The problem of estimating the value of $a_n(C_{\varphi})$ is still open

But there are remarkable recent results on the subject:

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Approx	kimation	num	bers on H	2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: non-increasing sequence and $a_n(T) \to 0$ if and only if T is compact. and $\|T\|_{S^p} = \|(a_n(T))_n\|_{\ell^p}.$

The problem of estimating the value of $a_n(C_{\varphi})$ is still open

But there are remarkable recent results on the subject:

(Li-Queffélec-Rodríguez-Piazza '11-15)

• Given $\varepsilon_n \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_n(C_{\varphi}) \gtrsim \varepsilon_n$.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Approx	kimation	num	bers on H	2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: non-increasing sequence and $a_n(T) \to 0$ if and only if T is compact. and $\|T\|_{S^p} = \|(a_n(T))_n\|_{\ell^p}.$

The problem of estimating the value of $a_n(C_{\varphi})$ is still open

But there are remarkable recent results on the subject:

(Li-Queffélec-Rodríguez-Piazza '11-15)

- Given $\varepsilon_n \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_n(C_{\varphi}) \gtrsim \varepsilon_n$.
- For every symbol φ , there exists $r \in (0,1)$ s.t. $a_n(C_{\varphi}) \gtrsim r^n$.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Approx	kimation	num	bers on H	2				

Let T be an operator:
$$a_n(T) = \inf \{ ||T - R||; rank(R) < n \}$$

Remarks: non-increasing sequence and $a_n(T) \to 0$ if and only if T is compact. and $\|T\|_{S^p} = \|(a_n(T))_n\|_{\ell^p}.$

The problem of estimating the value of $a_n(C_{\varphi})$ is still open

But there are remarkable recent results on the subject:

(Li-Queffélec-Rodríguez-Piazza '11-15)

- Given $\varepsilon_n \searrow 0$, there exists a symbol φ s.t. C_{φ} compact and $a_n(C_{\varphi}) \gtrsim \varepsilon_n$.
- For every symbol φ , there exists $r \in (0,1)$ s.t. $a_n(C_{\varphi}) \gtrsim r^n$.
- If φ is the lens map (of index $heta \in (0,1)$), then

$$e^{-lpha_{ heta}\sqrt{n}}\lesssim a_n(C_arphi)\lesssim e^{-eta_{ heta}\sqrt{n}}$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators ●○○○	Abs. summing C_{φ}	Appl. O	Réclame O
<i>r</i> -sumr	ning ope	erator	ſS					

Suppose $1 \le r < +\infty$ and let $T: X \to Y$ be a (bounded) operator between Banach spaces.

We say T is a r-summing operator if there exists C > 0 such that

$$\Big(\sum_{j=1}^{n} \|Tx_{j}\|^{r}\Big)^{1/r} \leq C \sup_{x^{*} \in B_{X^{*}}} \Big(\sum_{j=1}^{n} |\langle x^{*}, x_{j} \rangle|^{r}\Big)^{1/r} = C \sup_{a \in B_{\ell^{r'}}} \Big\|\sum_{j=1}^{n} a_{j} x_{j}\Big\|,$$

for every finite sequence x_1, x_2, \ldots, x_n in X.

The *r*-summing norm of T, denoted by $\pi_r(T)$, is the least suitable constant C > 0.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators ●○○○	Abs. summing C_{φ}	Appl. O	Réclame ⊖
<i>r</i> -sumr	ning ope	erator	ΓS					

Suppose $1 \le r < +\infty$ and let $T: X \to Y$ be a (bounded) operator between Banach spaces.

We say T is a r-summing operator if there exists C > 0 such that

$$\Big(\sum_{j=1}^{n} \|Tx_{j}\|^{r}\Big)^{1/r} \leq C \sup_{x^{*} \in B_{X^{*}}} \Big(\sum_{j=1}^{n} |\langle x^{*}, x_{j} \rangle|^{r}\Big)^{1/r} = C \sup_{a \in B_{\ell^{r'}}} \Big\|\sum_{j=1}^{n} a_{j} x_{j}\Big\|,$$

for every finite sequence x_1, x_2, \ldots, x_n in X.

The *r*-summing norm of T, denoted by $\pi_r(T)$, is the least suitable constant C > 0.

• This forms an operator ideal.

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a r-summing operator and $\pi_r(T) = 1$, indeed

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

$$\sum_{j=1}^{n} \|T(f_{j})\|_{r}^{r} = \int_{K} \sum_{j=1}^{n} |f_{j}(x)|^{r} d\nu$$

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

$$\sum_{j=1}^n \| {\mathcal T}(f_j) \|_r^r = \ \int_{{\mathcal K}} \sum_{j=1}^n |f_j(x)|^r \ d
u \le \int_{{\mathcal K}} \sup_{\chi \in B_{{\mathcal C}({\mathcal K})^*}} \ \sum_{j=1}^n |\chi(f_j)|^r \ d
u$$

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

$$\sum_{j=1}^n \|T(f_j)\|_r^r = \int_K \sum_{j=1}^n |f_j(x)|^r \ d\nu \le \int_K \sup_{\chi \in \mathcal{B}_{\mathcal{C}(K)^*}} \sum_{j=1}^n |\chi(f_j)|^r \ d\nu \le \sup_{\chi \in \mathcal{B}_{\mathcal{C}(K)^*}} \sum_{j=1}^n |\chi(f_j)|^r$$

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a r-summing operator and $\pi_r(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^n \| \mathsf{T}(f_j) \|_r^r = \int_{\mathcal{K}} \sum_{j=1}^n |f_j(x)|^r \ d\nu \leq \int_{\mathcal{K}} \sup_{\chi \in \mathcal{B}_{\mathcal{C}(\mathcal{K})^*}} \sum_{j=1}^n |\chi(f_j)|^r \ d\nu \leq \sup_{\chi \in \mathcal{B}_{\mathcal{C}(\mathcal{K})^*}} \sum_{j=1}^n |\chi(f_j)|^r$$

Any restriction of this operator still works...

$$T: \begin{array}{ccc} C(K) & \longrightarrow & L^{r}(K,\nu) \\ f & \longmapsto & f \end{array}$$

T is a r-summing operator and $\pi_r(T) = 1$, indeed Let f_1, f_2, \ldots, f_n in C(K).

$$\sum_{j=1}^n \|T(f_j)\|_r^r = \int_{\mathcal{K}} \sum_{j=1}^n |f_j(x)|^r \ d\nu \leq \int_{\mathcal{K}} \sup_{\chi \in B_{\mathcal{C}(\mathcal{K})^*}} \sum_{j=1}^n |\chi(f_j)|^r \ d\nu \leq \sup_{\chi \in B_{\mathcal{C}(\mathcal{K})^*}} \sum_{j=1}^n |\chi(f_j)|^r$$

Any restriction of this operator still works...

Actually, up to factorizations, any r-summing looks like this:

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators ○○●○	Abs. summing C_{φ}	Appl.	Réclame O
Pietsch	n Theore	em						

(Pietsch '67)

 $T \colon X \to Y$ is a *r*-summing operator

if and only if

there exists a (probability) measure ν on the compact (B_{X^*}, w^*) s.t.

$$orall x \in X$$
, $\|T(x)\| \lesssim \Big(\int_{B_{X^*}} |\xi(x)|^r d
u(\xi)\Big)^{1/r}$

if and only if

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators ○○●○	Abs. summing C_{φ}	Appl.	Réclame O
Pietsch	n Theore	em						

(Pietsch '67)

 $T: X \to Y$ is a *r*-summing operator

if and only if

there exists a (probability) measure ν on the compact (B_{X^*}, w^*) s.t.

$$orall x \in X$$
, $\|T(x)\| \lesssim \left(\int_{B_{X^*}} |\xi(x)|^r d
u(\xi)
ight)^{1/r}$

if and only if

we have the following factorization

$$\begin{array}{cccc} X & \stackrel{T}{\longrightarrow} & Y \\ | & & \uparrow & \widetilde{T} \\ \downarrow & & | \\ \widetilde{X} \subset C(B_{X^*}) & \stackrel{"id"}{\longrightarrow} & X_r & \subset L^r(B_{X^*}, \nu) \end{array}$$

for some probability measure ν on B_{X^*} .

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

• If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator).

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- *r*-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ} 000000000000000000000000000000000000	Appl. O	Réclame ○
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- *r*-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is r_1 -summing *if and only if* j_{μ} is r_2 -summing

in the following cases:

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is r_1 -summing *if and only if* j_{μ} is r_2 -summing

in the following cases:

• For $1 \le p \le 2$ and r_1 , $r_2 \ge 1$.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \leq p \leq 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is r_1 -summing *if and only if* j_{μ} is r_2 -summing

in the following cases:

- For $1 \le p \le 2$ and r_1 , $r_2 \ge 1$.
- For p > 2, and $1 \le r_1$, $r_2 < p'$, where p' is the conjugate exponent of p.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators ○○○●	Abs. summing C_{φ}	Appl. O	Réclame O
Pietsch	n Theore	em						

- If $r_1 \leq r_2$, every r_1 -summing operator is r_2 -summing.
- r-summing operators are weakly compact and map weakly convergent sequences to norm convergence sequences (Dunford-Pettis operator). In particular, they are compact when X is reflexive.
- For $1 \le p \le 2$, H^p and L^p have cotype 2. For p > 2, they have cotype p. Hence

 j_{μ} is r_1 -summing *if and only if* j_{μ} is r_2 -summing

in the following cases:

- For $1 \le p \le 2$ and r_1 , $r_2 \ge 1$.
- For p > 2, and $1 \le r_1$, $r_2 < p'$, where p' is the conjugate exponent of p.

Point out that *r*-summing operators on H^p (with p > 1) are compact.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.		Réclame O
Carleson embeddings									

Our problem now:

When a composition operator $C_{\varphi} \colon H^{p} \to H^{p}$ is *r*-summing ?

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O		Réclame
Carleson embeddings									

Our problem now:

When a composition operator $C_{\varphi} \colon H^{p} \to H^{p}$ is *r*-summing ?

This problem is equivalent to:

When the identity $f \in H^p \mapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$ is *r*-summing ?

Hence we are interested in the following more general problem:
Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Carleso	on embe	dding	(S					

Our problem now:

When a composition operator $C_{\varphi} \colon H^{p} \to H^{p}$ is *r*-summing ?

This problem is equivalent to:

When the identity $f \in H^p \mapsto f \in L^p(\overline{\mathbb{D}}, \lambda_{\varphi})$ is *r*-summing ?

Hence we are interested in the following more general problem:

Assume from now on that μ is a Carleson measure, concentrated in the open disk $\mathbb{D}:$

When the Carleson embedding $j_{\mu} : H^{p} \hookrightarrow L^{p}(\mathbb{D}, \mu)$ is a *r*-summing operator ?

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Known	facts							

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}} \frac{1}{1-|\varphi^*|^2} \, d\lambda < +\infty \, .$$

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame
Known	facts							

Let $p \ge 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}} \frac{1}{1-|\varphi^*|^2} \, d\lambda < +\infty \, .$$

In the Carleson embedding framework, the condition is $\int \frac{1}{1}$

$$\int_{\mathbb{D}}rac{1}{1-|z|^2}\,d\mu<+\infty$$

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ○
Known	facts							

Let $p \geq 2$. The composition operator $C_{\varphi} \colon H^p \to H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|^2}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} rac{1}{1-|z|^2} \, d\mu < +\infty$

The *only if* condition is easy to see (test the most natural sequence and think to the Hausdorff-Young inequality)

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ○
Known	facts							

Let $p\geq 2$. The composition operator $C_{arphi}\colon H^p o H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|^2}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} rac{1}{1-|z|^2} \, d\mu < +\infty$

The *only if* condition is easy to see (test the most natural sequence and think to the Hausdorff-Young inequality)

For the converse, recall that $\left\|\delta_z\right\|_{(H^p)^*}=\Big(rac{1}{1-|z|^2}\Big)^{rac{1}{p}}.$

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ○
Known	facts							

Let $p\geq 2$. The composition operator $C_{arphi}\colon H^p o H^p$ is *p*-summing *if and only if*

$$\int_{\mathbb{T}}rac{1}{1-|arphi^*|^2}\,d\lambda<+\infty\,.$$

In the Carleson embedding framework, the condition is $\int_{\mathbb{D}} rac{1}{1-|z|^2} \, d\mu < +\infty$

The *only if* condition is easy to see (test the most natural sequence and think to the Hausdorff-Young inequality)

For the converse, recall that
$$\left\|\delta_z\right\|_{(H^p)^*} = \left(rac{1}{1-|z|^2}
ight)^{rac{1}{p}}.$$

But

(Domenig '99)

Let $p \in [1,2)$. There exist (p-)summing composition operator on H^p such that

$$\int_{\mathbb{D}}rac{1}{1-|arphi^*|^2}\,d\lambda=+\infty$$

First n	ow result	te• th	a annulus	COSA					
000	0000	0	00	0	0000	00000000000	0	0	0
Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.		Réclame

joint work with L. Rodríguez-Piazza

From now on : p > 1 and we fix a finite measure μ on \mathbb{D} .

joint work with L. Rodríguez-Piazza

From now on : p > 1 and we fix a finite measure μ on \mathbb{D} .

Let *n* be an integer. We denote by μ_n the restriction of μ to the (dyadic) annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

joint work with L. Rodríguez-Piazza

From now on : p > 1 and we fix a finite measure μ on \mathbb{D} .

Let *n* be an integer. We denote by μ_n the restriction of μ to the (dyadic) annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

joint work with L. Rodríguez-Piazza

From now on : p > 1 and we fix a finite measure μ on \mathbb{D} .

Let *n* be an integer. We denote by μ_n the restriction of μ to the (dyadic) annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$.

joint work with L. Rodríguez-Piazza

From now on : p > 1 and we fix a finite measure μ on \mathbb{D} .

Let *n* be an integer. We denote by μ_n the restriction of μ to the (dyadic) annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$. We have, the decomposition

$$\{f\in H^p: f(0)=0\}=\bigoplus_{n>0}H^p_n$$

which is an orthogonal decomposition when p = 2 (i.e. for H^2).

joint work with L. Rodríguez-Piazza

From now on : p > 1 and we fix a finite measure μ on \mathbb{D} .

Let *n* be an integer. We denote by μ_n the restriction of μ to the (dyadic) annulus

$$\Gamma_n = \left\{ z \in \mathbb{D} : 1 - 2^{-n} \le |z| < 1 - 2^{-n-1} \right\}$$

and by j_n the inclusion of H^p into $L^p(\mu_n)$.

 Γ_n is the union of the 2^{*n*} Luecking windows $R_{n,j}$.

Now consider, for $n \in \mathbb{N}$, the 2^n -dimensional subspace H_n^p of H^p generated by the monomials z^k , with $2^n \le k < 2^{n+1}$. We have, the decomposition

$$\{f\in H^p: f(0)=0\}=\bigoplus_{n\geq 0}H_n^p$$

which is an orthogonal decomposition when p = 2 (i.e. for H^2).

Moreover, for p > 1:

$$H_n^p \sim \ell_{2^n}^p$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
						000000000000000000000000000000000000000		
The ar	nnulus ca	ase						

Proposition

For 1 , the following quantities are equivalent:

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
						000000000000000000000000000000000000000		
The ar	nnulus ca	ase						

Proposition

For 1 , the following quantities are equivalent:

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame O
The ar	nnulus ca	ase						

Proposition

For 1 , the following quantities are equivalent:

$$a \pi_r (j_{n|H_n^p} \colon H_n^p \to L^p(\mu_n))$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame O
The ar	nnulus ca	ase						

Proposition

For 1 , the following quantities are equivalent:

$$a \pi_r \left(j_{n|H_n^p} \colon H_n^p \to L^p(\mu_n) \right)$$

• $\pi_r(D_a)$, where $D_a \colon \ell_{2^n}^p \to \ell_{2^n}^p$ is the diagonal operator whose multipliers are $a_j = (2^n \mu(R_{n,j}))^{1/p}$ (where $j = 1, 2, ..., 2^n$).

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
The ar	nnulus ca	ase						

•
$$1 : $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
The ar	nnulus ca	ase						

•
$$1 : $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$$$

② *p* > 2:

• if
$$1 \le r \le p'$$
. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)^{1/p}$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
The ar	nnulus ca	ase						

•
$$1 : $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$$$

② *p* > 2:

• if
$$1 \le r \le p'$$
. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)^{1/p'}$
• if $p' \le r \le p$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{r/p}\right)^{1/r}$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
The ar	nnulus ca	ase						

•
$$1 :
• $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$
• if $1 \le r \le p'$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)^{1/p'}$
• if $p' \le r \le p$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{r/p}\right)^{1/r}$
• if $p \le r$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]\right)^{1/p}$$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
The ar	nnulus ca	ase						

•
$$1 :
• $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{2/p}\right)^{1/2}$
• if $1 \le r \le p'$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{p'/p}\right)^{1/p'}$
• if $p' \le r \le p$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]^{r/p}\right)^{1/r}$
• if $p \le r$. $\pi_r(j_n) \approx \left(\sum_{j=1}^{2^n} [2^n \mu(R_{n,j})]\right)^{1/p}$$$

How to glue the pieces ?

GDR AFHP 2015

In some cases, we succeed in gluing. So we get for composition operators $C_{\varphi}: H^p \longrightarrow H^p$:
 Preliminary
 Compactness
 N vs C
 Schatten Classes
 Approx. numbers
 Abs. summing operators
 Abs. summing C_φ
 Appl.
 !
 Rédame

 000
 000
 0
 0
 0
 0
 0
 0
 0

First results: when $p \ge 2$

In some cases, we succeed in gluing. So we get for composition operators $C_{\varphi}: H^p \longrightarrow H^p$:

Theorem

• In the case $r \ge p \ge 2$, we have:

$$\pi_r(C_{arphi}) pprox \left(\sum_n \left[\pi_r(j_n)
ight]^p
ight)^{1/p} pprox \left(\sum_{n,j} \left[2^n\lambda_{arphi}(R_{n,j})
ight]
ight)^{1/p} \ pprox \left(\int_{\mathbb{D}} rac{1}{1-|z|} \, d\lambda_{arphi}
ight)^{1/p}$$
 i.e. order bounded.

 Preliminary
 Compactness
 N vs C
 Schatten Classes
 Approx. numbers
 Abs. summing operators
 Abs. summing C_φ
 Appl.
 !
 Rédame

 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

First results: when $p \ge 2$

In some cases, we succeed in gluing. So we get for composition operators $C_{\varphi}: H^{p} \longrightarrow H^{p}$:

Theorem

• In the case $r \ge p \ge 2$, we have:

$$\pi_r(C_{arphi}) pprox \left(\sum_n \left[\pi_r(j_n)
ight]^p
ight)^{1/
ho} pprox \left(\sum_{n,j} \left[2^n\lambda_{arphi}(R_{n,j})
ight]
ight)^{1/
ho} \ pprox \left(\int_{\mathbb{D}} rac{1}{1-|z|} \, d\lambda_{arphi}
ight)^{1/
ho}$$
 i.e. order bounded.

2 In the case $p' < r \le p$, we have:

$$\pi_r(C_{\varphi}) \approx \left(\sum_n \left[\pi_r(j_n)\right]^r\right)^{1/r} \approx \left(\sum_{n,j} \left[2^n \lambda_{\varphi}(R_{n,j})\right]^{r/\rho}\right)^{1/r} \quad \text{i.e. } C_{\varphi} \in \mathcal{S}_{\frac{2r}{\rho}}(H^2).$$

 Preliminary
 Compactness
 N vs C
 Schatten Classes
 Approx. numbers
 Abs. summing operators
 Abs. summing C_φ
 Appl.
 !
 Rédame

 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

First results: when $p \ge 2$

In some cases, we succeed in gluing. So we get for composition operators $C_{\varphi}: H^{p} \longrightarrow H^{p}$:

Theorem

• In the case $r \ge p \ge 2$, we have:

$$\pi_r(C_{arphi}) pprox \left(\sum_n \left[\pi_r(j_n)
ight]^p
ight)^{1/
ho} pprox \left(\sum_{n,j} \left[2^n\lambda_{arphi}(R_{n,j})
ight]
ight)^{1/
ho} \ pprox \left(\int_{\mathbb{D}} rac{1}{1-|z|} \, d\lambda_{arphi}
ight)^{1/
ho}$$
 i.e. order bounded.

2 In the case $p' < r \le p$, we have:

$$\pi_r(C_{\varphi}) \approx \left(\sum_n \left[\pi_r(j_n)\right]^r\right)^{1/r} \approx \left(\sum_{n,j} \left[2^n \lambda_{\varphi}(R_{n,j})\right]^{r/\rho}\right)^{1/r} \quad \text{i.e. } C_{\varphi} \in S_{\frac{2r}{\rho}}(H^2).$$

() In the case $1 \le r \le p'$, the standard glue does not paste the norms... But there might be a characterization of different nature (result too fresh: put into quarantine)

In this case (like in the case p > 2 and $r \le p'$?) trying to glue seems to be not the right strategy. Our characterization is of different nature:

In this case (like in the case p > 2 and $r \le p'$?) trying to glue seems to be not the right strategy. Our characterization is of different nature:

Theorem

Let $1 . The Carleson embedding <math>j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is absolutely summing *if and only if*

$$\int_{\mathbb{T}} \left(\int_{\Gamma(\xi)} rac{d\mu(z)}{(1-|z|)^{1+p/2}}
ight)^{2/p} d\lambda(\xi) < +\infty$$

where $\Gamma(\xi)$ is the Stolz domain in ξ :

GDR AFHP 2015

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
000	0000		00		0000	000000000000		
T 1		n .⊥	I C					

The case $p \leq 2$: sketch of proof

Step 1 (via Maurey factorization theorem)

Let r>1 with 1/r+1/2=1/p $T:X
ightarrow L^p(\mu)$ a bounded operator.

GDR AFHP 2015

Step 1 (via Maurey factorization theorem)

Let r > 1 with 1/r + 1/2 = 1/p $T: X \to L^p(\mu)$ a bounded operator.

T is a 2-summing operator

if and only if

There exists $F \in L^{r}(\mu)$, with F > 0 μ -a.e., such that $T: X \to L^{2}(\nu)$ is well defined and 2-summing, where ν is the measure defined by

$$d\nu(z)=\frac{1}{F(z)^2}\,d\mu(z)\,.$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
The ca	se $p \leq 2$	2: ske	etch of pro	of				

Step 1 (via Maurey factorization theorem)

Let r>1 with 1/r+1/2=1/p $T\colon X\to L^p(\mu)$ a bounded operator.

T is a 2-summing operator

if and only if

There exists $F \in L^{r}(\mu)$, with F > 0 μ -a.e., such that $T: X \to L^{2}(\nu)$ is well defined and 2-summing, where ν is the measure defined by

$$d\nu(z)=\frac{1}{F(z)^2}\,d\mu(z)\,.$$

Moreover, we have

$$\pi_2\big(T\colon X\to L^p(\mu)\big)\\\approx$$

$$\inf\Big\{\pi_2\big(T\colon X o L^2(
u)ig): d
u=d\mu/F^2, F\ge 0, \int F^r\,d\mu\le 1\Big\}.$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
						000000000000		
The ca	$n \leq n < 1$	2. ck	etch of pro	of				

The natural injection $j \colon H^p \to L^2(\nu)$ is a 2-summing operator

if and only if

$$\int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{1}{|z-w|^2} \, d\nu(z) \right)^{p'/2} d\lambda(w) < +\infty$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame
						000000000000		
The cr	$n \leq n \leq 1$	2	otch of pro	of				

The natural injection $j \colon H^p \to L^2(\nu)$ is a 2-summing operator

if and only if

$$\int_{\mathbb{T}} \left(\int_{\mathbb{D}} rac{1}{|z-w|^2} \, d
u(z)
ight)^{p'/2} d\lambda(w) < +\infty \, ,$$

In fact we have

$$\pi_2(j\colon H^p\to L^2(\nu))\approx \left(\int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\nu(z)}{|z-w|^2}\right)^{p'/2} d\lambda(w)\right)^{1/p'}$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ⊖
The ca	se $p \leq 2$	2: ske	etch of pro	oof				

Step 1 and Step 2 lead to

 $j_\mu \colon H^p o L^p(\mu)$ is 2-summing if and only if

$$\inf\left\{\int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\mu(z)}{|z-w|^2 \cdot F(z)^2}\right)^{p'/2} d\lambda(w) : F \ge 0, \int F' \ d\mu \le 1 \right\} \text{ is finite}$$

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
The ca	ase $p < 1$	2: ske	etch of pro	oof				

Step 1 and Step 2 lead to

 $j_{\mu} \colon H^{p}
ightarrow L^{p}(\mu)$ is 2-summing *if and only if*

$$\inf\left\{\int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\mu(z)}{|z-w|^2 \cdot F(z)^2}\right)^{p'/2} d\lambda(w) : F \ge 0, \int F^r \, d\mu \le 1 \right\} \text{ is finite}$$

if and only if

$$\inf_{F \in B^+_{L^{r/2}(\mu)}} \sup_{g \in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{T}} \int_{\mathbb{D}} \frac{g(w)}{|z - w|^2 \cdot F(z)} d\mu(z) \, d\lambda(w) \text{ is finite}$$

where t is the conjugate of p'/2, and 1/r + 1/2 = 1/p.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame O
The ca	ise $p < 2$	2: ske	etch of pro	oof				

Step 1 and Step 2 lead to

 $j_{\mu} \colon H^{p}
ightarrow L^{p}(\mu)$ is 2-summing *if and only if*

$$\inf\left\{\int_{\mathbb{T}} \left(\int_{\mathbb{D}} \frac{d\mu(z)}{|z-w|^2 \cdot F(z)^2}\right)^{p'/2} d\lambda(w) : F \ge 0, \int F^r \, d\mu \le 1 \right\} \text{ is finite}$$

if and only if

$$\inf_{F \in B^+_{L^{r/2}(\mu)}} \sup_{g \in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{T}} \int_{\mathbb{D}} \frac{g(w)}{|z - w|^2 \cdot F(z)} d\mu(z) \, d\lambda(w) \text{ is finite}$$

where t is the conjugate of p'/2, and 1/r + 1/2 = 1/p.

By Ky Fan's lemma the order of taking the sup and the inf can be interchanged.

Using Fubini and the following result:

Lemma

Let $h: \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/\alpha}$$
Using Fubini and the following result:

Lemma

Let $h: \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/c}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

Using Fubini and the following result:

Lemma

Let $h: \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/c}$$

We obtain that $j_{\mu} \colon H^{p} o L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w) \right)^{p/2} d\mu(z) \quad \text{is finite}$$

Using Fubini and the following result:

Lemma

Let $h: \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/c}$$

We obtain that $j_{\mu} \colon H^{p} o L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w)\right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

Using Fubini and the following result:

Lemma

Let $h \colon \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/c}$$

We obtain that $j_{\mu} \colon H^{p} o L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w) \right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\frac{\mathcal{P}[g](z)}{1-|z|^2}\right)^{p/2} d\mu(z) \quad \text{is finite}$$

Using Fubini and the following result:

Lemma

Let $h: \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/c}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w)\right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

$$\sup_{g\in \mathcal{B}^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\frac{\mathcal{P}[g](z)}{1-|z|^2}\right)^{p/2} d\mu(z) \quad \text{is finite}$$

But it means that the Poisson transform maps L^t to $L^{p/2}(\nu)$, where $d\nu(z) = \frac{d\mu(z)}{(1-|z|)^{p/2}}$

Using Fubini and the following result:

Lemma

Let $h: \Omega \to [0, +\infty)$ be a measurable function on (Ω, Σ, μ) and $\alpha > 0$. Then

$$\inf\left\{\int \frac{h}{F}\,d\mu:F\geq 0,\int F^{\alpha}\,d\mu\leq 1\right\}=\left(\int h^{\alpha/(\alpha+1)}\,d\mu\right)^{(\alpha+1)/c}$$

We obtain that $j_{\mu} \colon H^{p} \to L^{p}(\mu)$ is 2-summing *if and only if*

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\int_{\mathbb{T}} \frac{g(w)}{|z-w|^2} \, d\lambda(w) \right)^{p/2} d\mu(z) \quad \text{is finite}$$

if and only if

$$\sup_{g\in B^+_{L^t(\mathbb{T})}} \int_{\mathbb{D}} \left(\frac{\mathcal{P}[g](z)}{1-|z|^2}\right)^{p/2} d\mu(z) \quad \text{is finite}$$

But it means that the Poisson transform maps L^t to $L^{p/2}(\nu)$, where $d\nu(z) = \frac{d\mu(z)}{(1-|z|)^{p/2}}$ Applying a result of Luecking, Blasco-Jarchow, we get the conclusion.

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame ⊖
Applic	ations							

 $\label{eq:p2} { \begin{subarray}{c} { \bed { \begin{subaray}{c} { \begin{subarray}{c} { \begin{subarray}{c}$

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame ⊖
Applic	ations							

 $\ \, { \ \, { 0 } \ \ \, } \ \ \, \forall \ \ \, p_2 \geq p_1 > 1 \, , \quad C_{\varphi} \ \ \, \text{is r-summing on H^{p_2}} \Longrightarrow C_{\varphi} \ \ \, \text{is r-summing on H^{p_1}} .$

2 From Hardy to Bergman

By definition, the norm on the Bergman space \mathcal{B}^q (= \mathcal{A}^q) is the same than the norm on $L^q(\mathbb{D}, \mathcal{A})$.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Applic	ations							

 $\texttt{O} \ \forall \ p_2 \geq p_1 > 1 \,, \quad C_{\varphi} \text{ is } r \text{-summing on } H^{p_2} \Longrightarrow C_{\varphi} \text{ is } r \text{-summing on } H^{p_1}.$

2 From Hardy to Bergman

By definition, the norm on the Bergman space \mathcal{B}^q (= \mathcal{A}^q) is the same than the norm on $L^q(\mathbb{D}, \mathcal{A})$.

Let $p, q \ge 1$. It is well known that the injection $f \in H^p \mapsto f \in \mathcal{B}^q$ is

• bounded if and only if $q \leq 2p$.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Applic	ations							

 $\ \, \forall \ \, p_2 \geq p_1 > 1 \,, \quad C_{\varphi} \ \, \text{is r-summing on H^{p_2}} \Longrightarrow C_{\varphi} \ \, \text{is r-summing on H^{p_1}} .$

2 From Hardy to Bergman

By definition, the norm on the Bergman space \mathcal{B}^q (= \mathcal{A}^q) is the same than the norm on $L^q(\mathbb{D}, \mathcal{A})$.

Let $p, q \ge 1$. It is well known that the injection $f \in H^p \mapsto f \in \mathcal{B}^q$ is

- bounded if and only if $q \leq 2p$.
- compact if and only if q < 2p.

Preliminary	Compactness	N vs C O	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Applic	ations							

 $\texttt{O} \ \forall \ p_2 \geq p_1 > 1 \,, \quad C_{\varphi} \text{ is } r \text{-summing on } H^{p_2} \Longrightarrow C_{\varphi} \text{ is } r \text{-summing on } H^{p_1}.$

2 From Hardy to Bergman

By definition, the norm on the Bergman space \mathcal{B}^q (= \mathcal{A}^q) is the same than the norm on $L^q(\mathbb{D}, \mathcal{A})$.

Let $p, q \ge 1$. It is well known that the injection $f \in H^p \mapsto f \in \mathcal{B}^q$ is

- bounded if and only if $q \leq 2p$.
- compact if and only if q < 2p.

Let $p, q \geq 1$ with $q \leq 2p$.

• $H^p \hookrightarrow \mathcal{B}^q$ is *r*-summing for some $r \ge 1$ if and only if $q < \max(2, p)$. Moreover

GDR AFHP 2015

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.	Réclame O
Applic	ations							

 $\ \, \forall \ \, p_2 \geq p_1 > 1 \, , \quad C_{\varphi} \ \, \text{is r-summing on H^{p_2}} \Longrightarrow C_{\varphi} \ \, \text{is r-summing on H^{p_1}} .$

2 From Hardy to Bergman

By definition, the norm on the Bergman space \mathcal{B}^q (= \mathcal{A}^q) is the same than the norm on $L^q(\mathbb{D}, \mathcal{A})$.

Let $p, q \ge 1$. It is well known that the injection $f \in H^p \mapsto f \in \mathcal{B}^q$ is

- bounded if and only if $q \leq 2p$.
- compact if and only if q < 2p.

Let $p, q \geq 1$ with $q \leq 2p$.

• $H^p \hookrightarrow \mathcal{B}^q$ is *r*-summing for some $r \ge 1$ if and only if $q < \max(2, p)$.

Moreover

- As soon as q < 2, it is 1-summing
- When $2 \le q < p$, it is (at least) *q*-summing.

GDR AFHP 2015

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl.		Réclame
								٠	

Merci à vous !

Preliminary	Compactness	N vs C	Schatten Classes	Approx. numbers	Abs. summing operators	Abs. summing C_{φ}	Appl. O	Réclame ●
Réclan	าย							

Mini-Cours du GDR AFHP à **Lens** du 23 au 25 mai 2016

- Béatrice Vedel: ondelettes
- Valentin Ferenczi: sous-groupes d'isométries
- Eric Ricard: espaces L^p non commutatifs