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Regular operators on classical LP(£2) spaces

Let 1 < p < oo, and (L, k) be two o-finite measure spaces
(k=1,2). An operator T : LP(Q1) — LP(£,) is called positive if
for f € LP(Q1), f > 0 pointwise, we always have Tf > 0 pointwise.

An operator T : LP(Q21) — LP(Q) is called regular if
T=T1—T,+ I( T3 — T4) with Ty, To, T3, T4 positive operators.

THEOREM: Let T : LP(Q21) — LP(22) be a regular operator, X a
Banach space and S : X — X a bounded operator. Then the
tensor product T ® S : LP(Q1) ® X C LP(21; X) — LP(Q2; X)
extends to a bounded operator on the Bochner space LP(1; X)
with || T @ S| < || T||reg ||S]|- Here,

[ Tlreg = suPnen [| T ® loge || Lo(qy;050)—s Lp(:00) < 00



Schatten classes and non-commutative LP(M) spaces

Let / be a non-empty index set and 1 < p < co. Then the
Schatten class 5,” is defined to be the class of all compact
operators T on £2 such that tr((T*T)P/?) < .

Sp° = {compact operators on ¢2}.

Let M C B(H) be a von Neumann algebra, i.e. weak* closed
involutive subalgebra of B(H). Assume that M is equipped with a
semifinite faithful normal trace 7 : My — [0, cc]. Then for

1 < p < o0, the non-commutative LP space is defined to be:
LP(M) = LP(M, 1) = completion of

[x € M x|l = 7((x"x)?/2)> < oo}.

L>®(M) := M.

For example, LP(Q) = LP(L>(RQ), [, -du), and S = LP(B({7),tr)
for1 < p < 0.



Completely bounded and completely positive mappings

SP and LP(M) are Banach spaces, but even more:
Let n € N. Define a norm on M, ® LP(M) = M,(LP(M)) by
[Pisier]

D¢l ma(Lo(myy = supdllac-x - Bllo(m ) = llexllgzos 18] 20 < 1}

LP(M) is called an operator space equipped with the sequence of
norms on M,(LP(M)), n € N.

A mapping u : LP(My) — LP(Mj) is called completely bounded if
the family of mappings

Up: Mn(Lp(Ml)) — Mn(Lp(MZ))7 [XIJ] = [U(X’J)]

satisfy ||ul|lcp = suppen || unl| < o0.

Further, u is called completely positive, if all the mappings u, are
positive, where x € M,(LP(M)) is defined to be positive if

x = y*y with y € M,(L?P(My)).



Completely positive mappings and classical LP() spaces

Let LP(M;) and LP(M,) be two non-commutative LP-spaces.

PROPOSITION: Let 1 < p < 0. Let u: LP(My) — LP(M,) be
positive. Then u is completely positive as soon as one of My, M is
commutative.

DEFINITION: Let 1 < p<ooand T : LP(My) — LP(M,) be a
bounded linear mapping. Then T is called decomposable if
T =T, — T+ i(T3— T4) with completely positive mappings
Ty, T, Ts, Ta.

The set of decomposable operators Dec(LP(My), LP(My)) is a
Banach space equipped with the norm

1T | dec :lilup inf{|| Tall + [ T2l + [ T3]l + | Tall -
<1

AT =T1— T+ /(T3 — T4)}



Properties of decomposable mappings

PROPOSITION: Let My, M, be QWEP von Neumann algebras.
Let 1 < p < oo. Then any decomposable map

T : LP(My) — LP(M,) is completely bounded and

I Tlleb < || T||dec- In particular, any completely positive mapping
T : LP(My) — LP(M,) is completely bounded.

THEOREM [Pisier|: Let My, M, be hyperfinite von Neumann
algebras. Then T : LP(M;) — LP(M) is decomposable if and only
if for any operator space E, T ® Ig : LP(My; E) — LP(My; E) is
bounded. In this case, in fact | T ® Ig|| < C|| T||dec < o0,

and suppen | T ® I, | o(miim)— e (mainga) = 11 T || dec-



Decomposable vs. completely bounded mappings

PROPOSITION [Haagerup p = 0o, A.-K.]: Let M have a finite

trace 7 and w1, ..., u, € M be arbitrary unitaries. Let 1 < p < cc.

Consider the map T : ¢f — LP(M) defined by T(ex) = ux. Then
_1

| Tl dec = np.

Consider now F, the free group of n generators g1, g2, ...,84n, and

VN(F,) the group von Neumann algebra, contained in
B(¢%(F,)), generated by the unitary elements \s(f) = f(s~1.).

THEOREM [Haagerup p = 00, A-K.]: Let 1 < p < 0. Let n > 2
be an integer. The map T, : £h — LP(VN(F,)), ex — \q, satisfies

L 1
IThlles < Qm)l_; and || Th||dec = n'~5. In particular,
|| Tanec/H Tn”cb — 00 as h — 0O.



Open questions

Question 1: Let R be the hyperfinite factor of type /l; and let

Ui, ..., U, € R be a sequence of self-adjoint anticommuting
operators. Suppose 1 < p < co. Consider the map T : ¢f — LP(R)
defined by T(ex) = Uk.

What are the values of | T||, || Tlldecs | Tlleb ?

Question 2: Let 1 < p < co. Do we have for every map
T : €2p — LP(M) the equalities || T|| = || Tlleb = || T |l dec ?
True for p = oo [Haagerup].

Question 3: Let 1 < p < oo. Suppose that for every map
T : 5 — LP(M) we have | T|| = | Tlleo = || Tl dec-

Is M necessarily hyperfinite?

Even open for p = oc.



Definition of Schur multipliers

Let / be some index set, 1 < p<oo,and ¢:/ x| — C be a
bounded function. A mapping My : S — SP is called SP-Schur
multiplier if it is of the form My([x;]) = [&(i,)xi]-



Complementation of Schur multipliers

THEOREM [A.-K.]: Let | be some index set. For a completely
bounded mapping S : S — S let
¢s I x 1 = C, (i,j) — tr(S(ejj)eji). Then the linear mapping

Py : CB(SP) — CB(SF), S+ My,

has the following properties:
1. Py takes its values in the completely bounded SP-Schur
multipliers.
2. Py is contractive.
3. Pi(S) = S as soon as S is already a cb SP-Schur multiplier.

4. Py(S) is completely positive as soon as S is completely
positive.



Proof of Complementation of Schur multipliers

PROOF: Let A : B(¢?) — B(£2)@B(¢?) be the normal
x-isomorphism which preserves the traces onto the sub von
Neumann algebra A(B(¢2)) C B(¢2)®@B(¢?) such that

A(eij):eij®efj7 (Ia.lel)

Let E be the normal conditional expectation of B(¢2)@B(¢?) onto
A(B(£2)) that leaves tr @ tr invariant. For any i,j, k,/ € | we have
E(e,-j & ek/) = (5,';(5]/6,'] & ejj. Set now P/(S) = AflE(S & IdS,p)A'
If S completely positive, then also P;(S) is. Moreover,
1PUS) lapspssp < 16 E(S & lds) Ao
< |[Slep,sp—s 57

Finally check that P;(S) is a Schur multiplier and P/(S) =S if S
is already a Schur multiplier.



Consequences of the complementation

COROLLARY: Let / be an index set, 1 < p < oo and
¢ I x I — C a bounded function. Then My is a decomposable

SP-Schur multiplier if and only if My is a bounded Schur
multiplier B((?) — B({?).

Proof: “=": Let My : S — Sf be decomposable. Then

Mg = Ry — Ro + i(R3 — R4) with completely positive Ry. Thus,
M¢ = P/(M¢) = P/(Rl) — P/(R2) + i(P/(R3) — P/(R4)). Now each
Pi(Rx) is a completely positive SP-Schur multiplier, which is
known to be bounded on B(¢?). Thus, also My = P;(Mj) is
bounded on B(¢3).

“<=": M, bounded on B({?) = completely bounded on

B(¢?) => decomposable on B(¢?) = decomposable on Sf.



Strongly non decomposable operators

DEFINITION ([Arendt-Voigt 1991] in the case of Fourier
multipliers on abelian groups): Let T : LP(M;) — LP(M,) be
completely bounded. T is called CB strongly non decomposable
if T does not belong to Dec(LP(M;y), LP(M,)), closure in
CB(LP(My), LP(M3)).

PROPOSITION [A.-K.]: Let 1 < p < oo. The triangular truncation
5P — SP, [xj] — [di<jxij] is CB strongly non decomposable.
[Neuwirth Habilitation thesis, Bozejko-Fendler 84].




Definition of Fourier multipliers |

Goal: define non-commutative Fourier multipliers.
Let m: R — C be a bounded measurable function. An LP-Fourier
multiplier on R is a mapping of the form

Tonf = FYmf] = / m(s)F(s)e ) ds
R

which extends boundedly to LP(R) — LP(R). For s € R, consider
xs : L2(R) = [3(R), f — e*0)f(.), which is a unitary mapping.
We have Xs1 Xs2 = Xsi+s25 SO

x : R = B(L3(R)), s — xs

is a group homomorphism with values in the unitaries.



Definition of Fourier multipliers |l

Now replace in the above R by a locally compact group G (not
necessarily abelian), equipped with left Haar measure. We put for
seG

As 1 L2(G) = [3(G), f— f(s71).
Then A As, = A5y, 50 that A : G — B(L?(G)) is a
homomorphism. We set M = VN(G) the von Neumann algebra
generated by {\s : s € G}. Let now m: G — C be a bounded
measurable function. VN(G) is equipped with the functional
T(Ag) = Oge, which extends to a trace if G is unimodular. For f
belonging to a dense subset of LP(VN(G)), we can write
f=Jc f(s)Asds for some bounded measurable function
f: G — C. An LP-Fourier multiplier on G is a mapping of the form

Tmf:/Gm(s)rA‘(s)/\sds

which extends to a bounded operator on LP(VN(G)).



Complementation of Fourier multipliers

THEOREM: Let G be a discrete group. For a completely bounded
mapping S : LP(VN(G)) — LP(VN(G)) let
ms : G — C, s+ 7(5(X\s)A}). Then the linear mapping

Pc : CB(LP(VN(G))) — CB(LP(VN(G))), S — Tms

has the following properties:
1. Pg takes its values in the completely bounded LP-Fourier
multipliers.
2. P¢ is contractive.
3. Pg(S) = S as soon as S is already a cb LP-Fourier multiplier.

4. Pg(S) is completely positive as soon as S is completely
positive.



Application: Strongly non decomposable Fourier multipliers

QUESTION: Given a locally compact group G and 1 < p < oo,
does there exist a CB strongly non decomposable Fourier multiplier
on LP(VN(G))?

PROPOSITION [Arendt-Voigt 1991]: Let G be an abelian group.
If T : LP(VN(G)) — LP(VN(G)) belongs to Dec(LP(VN(G))),
then m: G — C is continuous.

EXAMPLE [Arendt-Voigt 1991]: Let G = R. Then the Fourier
multiplier T, with symbol m(t) = sign(t) is CB strongly non
decomposable.



Strongly non decomposable Fourier multipliers

PROPOSITION [A-K.]: Let 1 < p < o0, n€ Nand G =T, the
free group of n generators. Then there exists a CB strongly non
decomposable self-adjoint Fourier multiplier on LP(VN(F,)).

PROOF: We can choose the Fourier multiplier on LP(VN(F,)) a
non-commutative Riesz transform from [Junge Mei Parcet 2014]:
The symbol is m(g) = (b(g), h)n/\/¥(g) for some representing
real Hilbert space H, a “length function” ¥ : G — R, and an
affine representation b: G — H,

b(g‘i’l1 . gflo’) = j1hi, + ...+ jnhiy. Since m is real valued, T, is
self-adjoint. Moreover, m(g{') = sign(n), so that

lim, m(gy) =1%# —1=lim,m(g; "). This implies that T, is CB
strongly non decomposable [Bozejko-Fendler 84].



Complementation of Fourier multipliers for non-discrete
groups

The complementation of Fourier multipliers

Pg : CB(LP(VN(G))) — CB(LP(VN(G))) assumed that G is
discrete.

G discrete = 7()\g) = 0ge is finite

= )g generating VN(G) belong to LP(VN(G)).

= A :VN(G) = VN(G)®VN(G), A\g — Ay ® A\g extends
naturally to a bounded operator on LP(VN(G)).

This breaks down if G is not discrete and p # cc.

But: some non-discrete groups admit an approximation by discrete
groups.

DEFINITION: [Caspers Parcet Perrin Ricard 2014]: Let G be a
locally compact group. G is called ADS (approximable by discrete
subgroups) if there exists a family of lattices (I';);j>1 in G and
associated fundamental domains (X;);>1 which form a
neighborhood basis of the identity. In this case, G is unimodular.



Fourier multiplier complementation for ADS groups

THEOREM [A.-K.]: Let G be an amenable ADS group. Assume
that the fundamental domains are symmetric, i.e. M(Xj_lAXj) =0,
where p is left Haar measure. Assume moreover that

i )2

for some ¢ > 0, uniformly in v € T};.
Then for 1 < p < oo there exists a linear mapping

P : CB(LP(VN(G))) — CB(LP(VN(G)))

of norm at most % with the properties:
1. Pg(T) is a Fourier multiplier.
2. If T is completely positive, then Pg(T) is completely positive.

3. If T = T, is a Fourier multiplier on LP(VN(G)) with
uniformly continuous symbol m: G — C, then Pg(Ty) = Tp.



More on ADS groups

COROLLARY: Let Gy be a discrete amenable group and G; an
LCA group which is ADS, satisfying (1) for some ¢ > 0, for
example G; = R" with ¢ = (%)" Let Gy act on Gj via a suitable
homomorphism ¢ : Go — Aut(Gy). Then the semidirect product
G = Gg X4 Gy is amenable ADS and (1) holds. Consequently, the

above Theorem applies.

OPEN QUESTION: Find non-abelian Lie groups satisfying (1).



Existence of strongly non regular Fourier multipliers

QUESTION: Let G be a locally compact abelian group and

1 < p < c0. Does there exist a strongly non regular Fourier
multiplier (snrFm) on LP(G), i.e. a bounded LP Fourier multiplier
not belonging to Dec(LP(G)) ?

Observations:

1. If G is finite, then a finite dimension argument shows that no
strongly non regular Fourier multiplier can exist.

2. If G=R,Z or T, then by [Arendt-Voigt 1991], the Hilbert
transform is an example of a strongly non regular Fourier
multiplier on LP(G).

3. For LCA groups, VN(G) = L>(G), where G is again an LCA
group, the Pontryagin dual.



Structure Theorems of stongly non regular Fourier
multipliers

IDEA: Try to pass from a snrFm on a subgroup/quotient group to
a snrFm on the whole group. For H C G,
H-={¢ec G: (¢ h) =1forall he H}.

PROPOSITION: Let G be a LCA group and H a compact
subgroup of G. If m: H- — C is a complex function, we denote
by m : G — C the extension of m which is zero off H-. If T,,
induces a sntFm T, : LP(G/H) — LP(G/H), then f induces a
sntFm Ti @ LP(G) — LP(G).

PARTS OF THE PROOF: Suppose that Ty belongs to
Dec(LP(G)). Let € > 0. There exist some positive maps

R; : LP(G) — LP(G) and a bounded map R : LP(G) — LP(G) of
norm < e such that T, = Ry — Ro + I(R3 — R4) 4+ R. Using
complementation we can assume that R; and R are Fourier
multipliers.

Show that R; and R pass to the quotient group G/H.



Structure Theorems of strongly non regular Fourier
multipliers

PROPOSITION: Let G be a LCA group and H be a closed
subgroup of G. Denote 7 : G — G/HL the canonical map. Let
m: H — C be a complex function. Then mo 7 : G — C induces a
snrFm LP(G) — LP(G) if and only if m: H — C induces a snrFm
LP(H) — LP(H).

PROPOSITION: Let G be an infinite compact abelian group.
Then there exists a snrFm LP(G) — LP(G), 1 < p < 0.

PARTS OF THE PROOF: G compact = G discrete. If G
contains an element of infinite order, then G D Z. Use
[Arendt-Voigt 1991] and the above structure proposition to find a
snrFm. Otherwise, G is torsion. Use abstract Paley-Littlewood
multiplier theory to find a snrFm of the form

m=>3> "1y, ., —ly,,, where (Y,), is an increasing exhaustive
sequence of finite subgroups of G.



Existence of strongly non regular Fourier multipliers

PROPOSITION: Let G be an infinite discrete abelian group. Then
there exists a strongly non regular Fourier multiplier on
LP(G), 1< p < .

THEOREM: Let G be an infinite LCA group. Then there exists a
strongly non regular Fourier multiplier on LP(G), 1 < p < c0.

PARTS OF THE PROOF: The General Structure Theorem for
LCA groups says that G is isomorphic with R" x Gg with n >0
and Gy is an LCA group containing a compact subgroup K such
that Go/K is discrete.

Distinguish 3 cases:

1.) if n > 1, then use the Hilbert transform on R and the structure
proposition above.

2.) If n =0, then G = Gy. If K is infinite, then use the above
proposition for infinite compact groups.

3.) If K is finite, then Gy itself must be discrete, so use the above
proposition for infinite discrete groups.



Thank you for your attention



