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Regular operators on classical Lp(Ω) spaces

Let 1 ≤ p ≤ ∞, and (Ωk , µk) be two σ-finite measure spaces
(k = 1, 2). An operator T : Lp(Ω1)→ Lp(Ω2) is called positive if
for f ∈ Lp(Ω1), f ≥ 0 pointwise, we always have Tf ≥ 0 pointwise.

An operator T : Lp(Ω1)→ Lp(Ω2) is called regular if
T = T1 − T2 + i(T3 − T4) with T1,T2,T3,T4 positive operators.

THEOREM: Let T : Lp(Ω1)→ Lp(Ω2) be a regular operator, X a
Banach space and S : X → X a bounded operator. Then the
tensor product T ⊗ S : Lp(Ω1)⊗ X ⊂ Lp(Ω1; X )→ Lp(Ω2; X )
extends to a bounded operator on the Bochner space Lp(Ω1; X )
with ‖T ⊗ S‖ ≤ ‖T‖reg ‖S‖. Here,
‖T‖reg = supn∈N ‖T ⊗ I`∞n ‖Lp(Ω1;`∞n )→Lp(Ω2;`∞n ) <∞.



Schatten classes and non-commutative Lp(M) spaces

Let I be a non-empty index set and 1 ≤ p <∞. Then the
Schatten class Sp

I is defined to be the class of all compact
operators T on `2

I such that tr((T ∗T )p/2) <∞.
S∞I = {compact operators on `2

I }.

Let M ⊂ B(H) be a von Neumann algebra, i.e. weak∗ closed
involutive subalgebra of B(H). Assume that M is equipped with a
semifinite faithful normal trace τ : M+ → [0,∞]. Then for
1 ≤ p <∞, the non-commutative Lp space is defined to be:
Lp(M) = Lp(M, τ) = completion of

{x ∈ M : ‖x‖Lp(M) = τ((x∗x)p/2)
1
p <∞}.

L∞(M) := M.

For example, Lp(Ω) = Lp(L∞(Ω),
∫

Ω ·dµ), and Sp
I = Lp(B(`2

I ), tr)
for 1 ≤ p <∞.



Completely bounded and completely positive mappings

Sp
I and Lp(M) are Banach spaces, but even more:

Let n ∈ N. Define a norm on Mn ⊗ Lp(M) = Mn(Lp(M)) by
[Pisier]

‖[xij ]‖Mn(Lp(M)) = sup{‖α · x · β‖Lp(Mn(M)) : ‖α‖
S2p
n
, ‖β‖

S2p
n
≤ 1}.

Lp(M) is called an operator space equipped with the sequence of
norms on Mn(Lp(M)), n ∈ N.
A mapping u : Lp(M1)→ Lp(M2) is called completely bounded if
the family of mappings

un : Mn(Lp(M1))→ Mn(Lp(M2)), [xij ] 7→ [u(xij)]

satisfy ‖u‖cb = supn∈N ‖un‖ <∞.
Further, u is called completely positive, if all the mappings un are
positive, where x ∈ Mn(Lp(M1)) is defined to be positive if
x = y∗y with y ∈ Mn(L2p(M1)).



Completely positive mappings and classical Lp(Ω) spaces

Let Lp(M1) and Lp(M2) be two non-commutative Lp-spaces.

PROPOSITION: Let 1 ≤ p ≤ ∞. Let u : Lp(M1)→ Lp(M2) be
positive. Then u is completely positive as soon as one of M1,M2 is
commutative.

DEFINITION: Let 1 ≤ p ≤ ∞ and T : Lp(M1)→ Lp(M2) be a
bounded linear mapping. Then T is called decomposable if
T = T1 − T2 + i(T3 − T4) with completely positive mappings
T1,T2,T3,T4.
The set of decomposable operators Dec(Lp(M1), Lp(M2)) is a
Banach space equipped with the norm

‖T‖dec = sup
|λ|≤1

inf{‖T1‖+ ‖T2‖+ ‖T3‖+ ‖T4‖ :

λT = T1 − T2 + i(T3 − T4)}.



Properties of decomposable mappings

PROPOSITION: Let M1, M2 be QWEP von Neumann algebras.
Let 1 < p <∞. Then any decomposable map
T : Lp(M1)→ Lp(M2) is completely bounded and
‖T‖cb ≤ ‖T‖dec . In particular, any completely positive mapping
T : Lp(M1)→ Lp(M2) is completely bounded.

THEOREM [Pisier]: Let M1, M2 be hyperfinite von Neumann
algebras. Then T : Lp(M1)→ Lp(M2) is decomposable if and only
if for any operator space E , T ⊗ IE : Lp(M1; E )→ Lp(M2; E ) is
bounded. In this case, in fact ‖T ⊗ IE‖ ≤ C‖T‖dec <∞,
and supn∈N ‖T ⊗ IMn‖Lp(M1;Mn)→Lp(M2;Mn)

∼= ‖T‖dec .



Decomposable vs. completely bounded mappings

PROPOSITION [Haagerup p =∞, A.-K.]: Let M have a finite
trace τ and u1, . . . , un ∈ M be arbitrary unitaries. Let 1 ≤ p ≤ ∞.
Consider the map T : `pn → Lp(M) defined by T (ek) = uk . Then

‖T‖dec ∼= n1− 1
p .

Consider now Fn the free group of n generators g1, g2, . . . , gn, and
VN(Fn) the group von Neumann algebra, contained in
B(`2(Fn)), generated by the unitary elements λs(f ) = f (s−1·).

THEOREM [Haagerup p =∞, A.-K.]: Let 1 ≤ p ≤ ∞. Let n ≥ 2
be an integer. The map Tn : `pn → Lp(VN(Fn)), ek 7→ λgk satisfies

‖Tn‖cb ≤ (2
√

n − 1)1− 1
p and ‖Tn‖dec ∼= n1− 1

p . In particular,
‖Tn‖dec/‖Tn‖cb →∞ as n→∞.



Open questions

Question 1: Let R be the hyperfinite factor of type II1 and let
U1, . . . ,Un ∈ R be a sequence of self-adjoint anticommuting
operators. Suppose 1 ≤ p ≤ ∞. Consider the map T : `pn → Lp(R)
defined by T (ek) = Uk .
What are the values of ‖T‖, ‖T‖dec , ‖T‖cb ?

Question 2: Let 1 ≤ p ≤ ∞. Do we have for every map
T : `p2 → Lp(M) the equalities ‖T‖ = ‖T‖cb = ‖T‖dec ?
True for p =∞ [Haagerup].

Question 3: Let 1 ≤ p ≤ ∞. Suppose that for every map
T : `p3 → Lp(M) we have ‖T‖ = ‖T‖cb = ‖T‖dec .
Is M necessarily hyperfinite?
Even open for p =∞.



Definition of Schur multipliers

Let I be some index set, 1 ≤ p ≤ ∞, and φ : I × I → C be a
bounded function. A mapping Mφ : Sp

I → Sp
I is called Sp-Schur

multiplier if it is of the form Mφ([xij ]) = [φ(i , j)xij ].



Complementation of Schur multipliers

THEOREM [A.-K.]: Let I be some index set. For a completely
bounded mapping S : Sp

I → Sp
I let

φS : I × I → C, (i , j) 7→ tr(S(eij)eji ). Then the linear mapping

PI : CB(Sp
I )→ CB(Sp

I ), S 7→ MφS

has the following properties:

1. PI takes its values in the completely bounded Sp-Schur
multipliers.

2. PI is contractive.

3. PI (S) = S as soon as S is already a cb Sp-Schur multiplier.

4. PI (S) is completely positive as soon as S is completely
positive.



Proof of Complementation of Schur multipliers

PROOF: Let ∆ : B(`2
I )→ B(`2

I )⊗B(`2
I ) be the normal

∗-isomorphism which preserves the traces onto the sub von
Neumann algebra ∆(B(`2

I )) ⊆ B(`2
I )⊗B(`2

I ) such that

∆(eij) = eij ⊗ eij , (i , j ∈ I ).

Let E be the normal conditional expectation of B(`2
I )⊗B(`2

I ) onto
∆(B(`2

I )) that leaves tr⊗ tr invariant. For any i , j , k, l ∈ I we have
E(eij ⊗ ekl) = δikδjleij ⊗ eij . Set now PI (S) = ∆−1E(S ⊗ IdSp

I
)∆.

If S completely positive, then also PI (S) is. Moreover,

‖PI (S)‖cb,Sp
I →Sp

I
≤ ‖∆−1E(S ⊗ IdSp

I
)∆‖cb

≤ ‖S‖cb,Sp
I →Sp

I
.

Finally check that PI (S) is a Schur multiplier and PI (S) = S if S
is already a Schur multiplier.



Consequences of the complementation

COROLLARY: Let I be an index set, 1 < p <∞ and
φ : I × I → C a bounded function. Then Mφ is a decomposable
Sp-Schur multiplier if and only if Mφ is a bounded Schur
multiplier B(`2

I )→ B(`2
I ).

Proof: “=⇒”: Let Mφ : Sp
I → Sp

I be decomposable. Then
Mφ = R1 − R2 + i(R3 − R4) with completely positive Rk . Thus,
Mφ = PI (Mφ) = PI (R1)− PI (R2) + i(PI (R3)− PI (R4)). Now each
PI (Rk) is a completely positive Sp-Schur multiplier, which is
known to be bounded on B(`2

I ). Thus, also Mφ = PI (Mφ) is
bounded on B(`2

I ).
“⇐=”: Mφ bounded on B(`2

I ) =⇒ completely bounded on
B(`2

I ) =⇒ decomposable on B(`2
I ) =⇒ decomposable on Sp

I .



Strongly non decomposable operators

DEFINITION ([Arendt-Voigt 1991] in the case of Fourier
multipliers on abelian groups): Let T : Lp(M1)→ Lp(M2) be
completely bounded. T is called CB strongly non decomposable
if T does not belong to Dec(Lp(M1), Lp(M2)), closure in
CB(Lp(M1), Lp(M2)).

PROPOSITION [A.-K.]: Let 1 < p <∞. The triangular truncation
Sp
Z → Sp

Z, [xij ] 7→ [δi≤jxij ] is CB strongly non decomposable.
[Neuwirth Habilitation thesis, Bozejko-Fendler 84].



Definition of Fourier multipliers I

Goal: define non-commutative Fourier multipliers.
Let m : R→ C be a bounded measurable function. An Lp-Fourier
multiplier on R is a mapping of the form

Tmf = F−1[mf̂ ] =

∫
R

m(s)f̂ (s)e is(·)ds

which extends boundedly to Lp(R)→ Lp(R). For s ∈ R, consider
χs : L2(R)→ L2(R), f 7→ e is(·)f (·), which is a unitary mapping.
We have χs1χs2 = χs1+s2 , so

χ : R→ B(L2(R)), s 7→ χs

is a group homomorphism with values in the unitaries.



Definition of Fourier multipliers II

Now replace in the above R by a locally compact group G (not
necessarily abelian), equipped with left Haar measure. We put for
s ∈ G

λs : L2(G )→ L2(G ), f 7→ f (s−1·).

Then λs1λs2 = λs1s2 , so that λ : G → B(L2(G )) is a
homomorphism. We set M = VN(G ) the von Neumann algebra
generated by {λs : s ∈ G}. Let now m : G → C be a bounded
measurable function. VN(G ) is equipped with the functional
τ(λg ) = δge , which extends to a trace if G is unimodular. For f
belonging to a dense subset of Lp(VN(G )), we can write
f =

∫
G f̂ (s)λsds for some bounded measurable function

f̂ : G → C. An Lp-Fourier multiplier on G is a mapping of the form

Tmf =

∫
G

m(s)f̂ (s)λsds

which extends to a bounded operator on Lp(VN(G )).



Complementation of Fourier multipliers

THEOREM: Let G be a discrete group. For a completely bounded
mapping S : Lp(VN(G ))→ Lp(VN(G )) let
mS : G → C, s 7→ τ(S(λs)λ∗s ). Then the linear mapping

PG : CB(Lp(VN(G )))→ CB(Lp(VN(G ))), S 7→ TmS

has the following properties:

1. PG takes its values in the completely bounded Lp-Fourier
multipliers.

2. PG is contractive.

3. PG (S) = S as soon as S is already a cb Lp-Fourier multiplier.

4. PG (S) is completely positive as soon as S is completely
positive.



Application: Strongly non decomposable Fourier multipliers

QUESTION: Given a locally compact group G and 1 < p <∞,
does there exist a CB strongly non decomposable Fourier multiplier
on Lp(VN(G ))?

PROPOSITION [Arendt-Voigt 1991]: Let G be an abelian group.
If Tm : Lp(VN(G ))→ Lp(VN(G )) belongs to Dec(Lp(VN(G ))),
then m : G → C is continuous.

EXAMPLE [Arendt-Voigt 1991]: Let G = R. Then the Fourier
multiplier Tm with symbol m(t) = sign(t) is CB strongly non
decomposable.



Strongly non decomposable Fourier multipliers

PROPOSITION [A.-K.]: Let 1 < p <∞, n ∈ N and G = Fn the
free group of n generators. Then there exists a CB strongly non
decomposable self-adjoint Fourier multiplier on Lp(VN(Fn)).

PROOF: We can choose the Fourier multiplier on Lp(VN(Fn)) a
non-commutative Riesz transform from [Junge Mei Parcet 2014]:
The symbol is m(g) = 〈b(g), h〉H/

√
ψ(g) for some representing

real Hilbert space H, a “length function” ψ : G → R+, and an
affine representation b : G → H,
b(g j1

i1
. . . g jN

iN
) = j1hi1 + . . .+ jNhiN . Since m is real valued, Tm is

self-adjoint. Moreover, m(gn
1 ) = sign(n), so that

limn m(gn
1 ) = 1 6= −1 = limn m(g−n1 ). This implies that Tm is CB

strongly non decomposable [Bozejko-Fendler 84].



Complementation of Fourier multipliers for non-discrete
groups

The complementation of Fourier multipliers
PG : CB(Lp(VN(G )))→ CB(Lp(VN(G ))) assumed that G is
discrete.
G discrete =⇒ τ(λg ) = δge is finite
=⇒ λg generating VN(G ) belong to Lp(VN(G )).
=⇒ ∆ : VN(G )→ VN(G )⊗VN(G ), λg 7→ λg ⊗ λg extends
naturally to a bounded operator on Lp(VN(G )).
This breaks down if G is not discrete and p 6=∞.
But: some non-discrete groups admit an approximation by discrete
groups.
DEFINITION: [Caspers Parcet Perrin Ricard 2014]: Let G be a
locally compact group. G is called ADS (approximable by discrete
subgroups) if there exists a family of lattices (Γj)j≥1 in G and
associated fundamental domains (Xj)j≥1 which form a
neighborhood basis of the identity. In this case, G is unimodular.



Fourier multiplier complementation for ADS groups

THEOREM [A.-K.]: Let G be an amenable ADS group. Assume
that the fundamental domains are symmetric, i.e. µ(X−1

j ∆Xj) = 0,
where µ is left Haar measure. Assume moreover that

1

µ(Xj)

∫
G

µ(Xj ∩ γXjg)2

µ(Xj)2
dµ(g)→ c (j →∞) (1)

for some c > 0, uniformly in γ ∈ Γj .
Then for 1 ≤ p ≤ ∞ there exists a linear mapping

PG : CB(Lp(VN(G )))→ CB(Lp(VN(G )))

of norm at most 1
c with the properties:

1. PG (T ) is a Fourier multiplier.

2. If T is completely positive, then PG (T ) is completely positive.

3. If T = Tm is a Fourier multiplier on Lp(VN(G )) with
uniformly continuous symbol m : G → C, then PG (Tm) = Tm.



More on ADS groups

COROLLARY: Let G0 be a discrete amenable group and G1 an
LCA group which is ADS, satisfying (1) for some c > 0, for
example G1 = Rn with c = ( 2

3 )n. Let G0 act on G1 via a suitable
homomorphism φ : G0 → Aut(G1). Then the semidirect product
G = G0 nφ G1 is amenable ADS and (1) holds. Consequently, the
above Theorem applies.

OPEN QUESTION: Find non-abelian Lie groups satisfying (1).



Existence of strongly non regular Fourier multipliers

QUESTION: Let G be a locally compact abelian group and
1 < p <∞. Does there exist a strongly non regular Fourier
multiplier (snrFm) on Lp(G ), i.e. a bounded Lp Fourier multiplier
not belonging to Dec(Lp(G )) ?
Observations:

1. If G is finite, then a finite dimension argument shows that no
strongly non regular Fourier multiplier can exist.

2. If G = R,Z or T, then by [Arendt-Voigt 1991], the Hilbert
transform is an example of a strongly non regular Fourier
multiplier on Lp(G ).

3. For LCA groups, VN(G ) = L∞(Ĝ ), where Ĝ is again an LCA
group, the Pontryagin dual.



Structure Theorems of stongly non regular Fourier
multipliers

IDEA: Try to pass from a snrFm on a subgroup/quotient group to
a snrFm on the whole group. For H ⊆ G ,
H⊥ = {ξ ∈ Ĝ : 〈ξ, h〉 = 1 for all h ∈ H}.

PROPOSITION: Let G be a LCA group and H a compact
subgroup of G . If m : H⊥ → C is a complex function, we denote
by m̃ : Ĝ → C the extension of m which is zero off H⊥. If Tm

induces a snrFm Tm : Lp(G/H)→ Lp(G/H), then m̃ induces a
snrFm Tm̃ : Lp(G )→ Lp(G ).

PARTS OF THE PROOF: Suppose that Tm̃ belongs to
Dec(Lp(G )). Let ε > 0. There exist some positive maps
Rj : Lp(G )→ Lp(G ) and a bounded map R : Lp(G )→ Lp(G ) of
norm < ε such that Tm̃ = R1 − R2 + i(R3 − R4) + R. Using
complementation we can assume that Rj and R are Fourier
multipliers.
Show that Rj and R pass to the quotient group G/H.



Structure Theorems of strongly non regular Fourier
multipliers

PROPOSITION: Let G be a LCA group and H be a closed
subgroup of G . Denote π : Ĝ → Ĝ/H⊥ the canonical map. Let
m : Ĥ → C be a complex function. Then m ◦ π : Ĝ → C induces a
snrFm Lp(G )→ Lp(G ) if and only if m : Ĥ → C induces a snrFm
Lp(H)→ Lp(H).

PROPOSITION: Let G be an infinite compact abelian group.
Then there exists a snrFm Lp(G )→ Lp(G ), 1 < p <∞.

PARTS OF THE PROOF: G compact =⇒ Ĝ discrete. If Ĝ
contains an element of infinite order, then Ĝ ⊇ Z. Use
[Arendt-Voigt 1991] and the above structure proposition to find a
snrFm. Otherwise, Ĝ is torsion. Use abstract Paley-Littlewood
multiplier theory to find a snrFm of the form
m =

∑∞
n=0 1Y2n+1 − 1Y2n , where (Yn)n is an increasing exhaustive

sequence of finite subgroups of Ĝ .



Existence of strongly non regular Fourier multipliers

PROPOSITION: Let G be an infinite discrete abelian group. Then
there exists a strongly non regular Fourier multiplier on
Lp(G ), 1 < p <∞.

THEOREM: Let G be an infinite LCA group. Then there exists a
strongly non regular Fourier multiplier on Lp(G ), 1 < p <∞.

PARTS OF THE PROOF: The General Structure Theorem for
LCA groups says that G is isomorphic with Rn × G0 with n ≥ 0
and G0 is an LCA group containing a compact subgroup K such
that G0/K is discrete.
Distinguish 3 cases:
1.) if n ≥ 1, then use the Hilbert transform on R and the structure
proposition above.
2.) If n = 0, then G ∼= G0. If K is infinite, then use the above
proposition for infinite compact groups.
3.) If K is finite, then G0 itself must be discrete, so use the above
proposition for infinite discrete groups.



Thank you for your attention


