Multiple sampling and interpolation in the Fock space

A. Borichev, A. Hartmann, K. Kellay, & X. Massaneda

Équipe d'Analyse

Institut de Mathématiques de Bordeaux

Université de Bordeaux

Conférence du GDR AFHP, CIRM, 3/12/2015

PLAN

1 INTRODUCTION

- Interpolation and sampling
- Classical interpolation and sampling
- Multiples interpolation and sampling

2 UNBOUNDED MULTIPLICITIES

- Main results
- Proof of sampling/interpolation theorem
- No simultanous interpolation/sampling

3 UNIFORM NORM

• Remarks on results

INTERPOLATION AND SAMPLING

Let H be a reproducing kernel Hilbert space of analytic functions on a domain, k_{λ} the reproducing kernel in λ .

A sequence $\Lambda \subset \mathbb{C}$ is called *sampling* for H if

$$||f||^2 \simeq \sum_{\lambda \in \Lambda} \frac{|f(\lambda)|^2}{k_\lambda(\lambda)}, \quad f \in H,$$

and *interpolating* if for every $v = (v_{\lambda})_{\lambda \in \Lambda} \in \ell^2$, there exists $f \in H$ such that

$$\frac{f(\lambda)}{\|k_{\lambda}\|} = v_{\lambda}, \qquad \lambda \in \Lambda.$$

FOCK SPACE

$$\mathcal{F}^{2} = \{ f \in \operatorname{Hol}(\mathbb{C}) : \|f\|_{2}^{2} := \frac{1}{\pi} \int_{\mathbb{C}} |f(z)|^{2} e^{-|z|^{2}} dm(z) < \infty \}.$$

Scalar product :

$$\langle f,g \rangle = \frac{1}{\pi} \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-|z|^2} dm(z)$$

Orthonormal basis :

$$e_k(z) = \frac{z^k}{\sqrt{k!}}, \quad k \ge 0$$

Reproducing kernel :

$$k_z(\zeta) = \sum_{k \ge 0} e_k(\zeta) \overline{e_k(z)} = e^{\bar{z}\zeta}$$

with norm $||k_z||^2 = k_z(z) = e^{|z|^2}$.

Isometric translation :

$$T_z f(\zeta) = e^{\bar{z}\zeta - \frac{1}{2}|z|^2} f(\zeta - z), \qquad f \in \mathcal{F}^2.$$

Interpolation and sampling Classical interpolation and sampling Multiples interpolation and sampling

CLASSICAL INTERPOLATION AND SAMPLING

Define lower and upper densities by

$$D^{-}(\Lambda) = \liminf_{r \to \infty} \frac{n^{-}(r)}{r^2}, \qquad D^{+}(\Lambda) = \limsup_{r \to \infty} \frac{n^{+}(r)}{r^2},$$

where $n^{-}(r)$ and $n^{+}(r)$ denote the smallest and the largest number of points of Λ in a disk $D(z, r), z \in \mathbb{C}$.

Define lower and upper densities by

$$D^{-}(\Lambda) = \liminf_{r \to \infty} \frac{n^{-}(r)}{r^2}, \qquad D^{+}(\Lambda) = \limsup_{r \to \infty} \frac{n^{+}(r)}{r^2},$$

where $n^{-}(r)$ and $n^{+}(r)$ denote the smallest and the largest number of points of Λ in a disk $D(z, r), z \in \mathbb{C}$.

Seip and Seip-Wallstén proved in 1992 :

Define lower and upper densities by

$$D^{-}(\Lambda) = \liminf_{r \to \infty} \frac{n^{-}(r)}{r^2}, \qquad D^{+}(\Lambda) = \limsup_{r \to \infty} \frac{n^{+}(r)}{r^2},$$

where $n^{-}(r)$ and $n^{+}(r)$ denote the smallest and the largest number of points of Λ in a disk $D(z, r), z \in \mathbb{C}$.

Seip and Seip-Wallstén proved in 1992 :

Theorem 1 (Seip, Seip-Wallstén, 1992)

A discrete set Λ is a set of sampling for \mathcal{F}^2 if and only if it can be expressed as a finite union of uniformly discrete sets and contains a uniformly discrete subset Λ' for which $D^-(\Lambda') > 1$.

Define lower and upper densities by

$$D^{-}(\Lambda) = \liminf_{r \to \infty} \frac{n^{-}(r)}{r^2}, \qquad D^{+}(\Lambda) = \limsup_{r \to \infty} \frac{n^{+}(r)}{r^2},$$

where $n^{-}(r)$ and $n^{+}(r)$ denote the smallest and the largest number of points of Λ in a disk $D(z, r), z \in \mathbb{C}$.

Seip and Seip-Wallstén proved in 1992 :

Theorem 1 (Seip, Seip-Wallstén, 1992)

A discrete set Λ is a set of sampling for \mathcal{F}^2 if and only if it can be expressed as a finite union of uniformly discrete sets and contains a uniformly discrete subset Λ' for which $D^-(\Lambda') > 1$.

THEOREM 2 (SEIP, SEIP-WALLSTÉN, 1992)

A discrete set Λ is a set of interpolation for \mathcal{F}^2 if and only if it is uniformly discrete and $D^+(\Lambda) < 1$.

Define lower and upper densities by

$$D^{-}(\Lambda) = \liminf_{r \to \infty} \frac{n^{-}(r)}{r^2}, \qquad D^{+}(\Lambda) = \limsup_{r \to \infty} \frac{n^{+}(r)}{r^2},$$

where $n^{-}(r)$ and $n^{+}(r)$ denote the smallest and the largest number of points of Λ in a disk $D(z, r), z \in \mathbb{C}$.

Seip and Seip-Wallstén proved in 1992 :

Theorem 1 (Seip, Seip-Wallstén, 1992)

A discrete set Λ is a set of sampling for \mathcal{F}^2 if and only if it can be expressed as a finite union of uniformly discrete sets and contains a uniformly discrete subset Λ' for which $D^-(\Lambda') > 1$.

THEOREM 2 (SEIP, SEIP-WALLSTÉN, 1992)

A discrete set Λ is a set of interpolation for \mathcal{F}^2 if and only if it is uniformly discrete and $D^+(\Lambda) < 1$.

Observation : no simultaneous interpolation and sampling.

Idea : Hermite type interpolation — more information in the nodes, less nodes required.

Observe : if $f \in \mathcal{F}^2$ then $f(z) = \sum_{k \ge 0} a_k e_k(z) = \sum_{k \ge 0} a_k \frac{z^k}{\sqrt{k!}}$, $\|f\|^2 = \sum_{k \ge 0} |a_k|^2$.

Equating with Taylor series $\langle f, e_k \rangle = a_k = \frac{f^{(k)}(0)}{\sqrt{k!}}$

Note
$$T_{\lambda}e_0(z) = T_{\lambda}1(z) = e^{\overline{\lambda}z - \frac{1}{2}|\lambda|^2} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$$
, and $\langle f, T_{\lambda}e_0 \rangle = \frac{f(\lambda)}{\|k_{\lambda}\|}$.

Idea : Hermite type interpolation — more information in the nodes, less nodes required.

Observe : if $f \in \mathcal{F}^2$ then $f(z) = \sum_{k \ge 0} a_k e_k(z) = \sum_{k \ge 0} a_k \frac{z^k}{\sqrt{k!}},$ $\|f\|^2 = \sum_{k \ge 0} |a_k|^2.$

Equating with Taylor series $\langle f, e_k \rangle = a_k = \frac{f^{(k)}(0)}{\sqrt{k!}}$

Note
$$T_{\lambda}e_0(z) = T_{\lambda}1(z) = e^{\overline{\lambda}z - \frac{1}{2}|\lambda|^2} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$$
, and $\langle f, T_{\lambda}e_0 \rangle = \frac{f(\lambda)}{\|k_{\lambda}\|}$.

Idea : Hermite type interpolation — more information in the nodes, less nodes required.

Observe : if $f \in \mathcal{F}^2$ then $f(z) = \sum_{k \ge 0} a_k e_k(z) = \sum_{k \ge 0} a_k \frac{z^k}{\sqrt{k!}},$ $\|f\|^2 = \sum_{k \ge 0} |a_k|^2.$

Equating with Taylor series $\langle f, e_k \rangle = a_k = \frac{f^{(k)}(0)}{\sqrt{k!}}$

Note $T_{\lambda}e_0(z) = T_{\lambda}1(z) = e^{\overline{\lambda}z - \frac{1}{2}|\lambda|^2} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$, and $\langle f, T_{\lambda}e_0 \rangle = \frac{f(\lambda)}{\|k_{\lambda}\|}$.

Idea : Hermite type interpolation — more information in the nodes, less nodes required.

Observe : if $f \in \mathcal{F}^2$ then $f(z) = \sum_{k \ge 0} a_k e_k(z) = \sum_{k \ge 0} a_k \frac{z^k}{\sqrt{k!}},$ $\|f\|^2 = \sum_{k \ge 0} |a_k|^2.$

Equating with Taylor series $\langle f, e_k \rangle = a_k = \frac{f^{(k)}(0)}{\sqrt{k!}}$

Note
$$T_{\lambda}e_0(z) = T_{\lambda}1(z) = e^{\overline{\lambda}z - \frac{1}{2}|\lambda|^2} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$$
, and $\langle f, T_{\lambda}e_0 \rangle = \frac{f(\lambda)}{\|k_{\lambda}\|}$.

Idea : Hermite type interpolation — more information in the nodes, less nodes required.

Observe : if $f \in \mathcal{F}^2$ then $f(z) = \sum_{k \ge 0} a_k e_k(z) = \sum_{k \ge 0} a_k \frac{z^k}{\sqrt{k!}},$ $\|f\|^2 = \sum_{k \ge 0} |a_k|^2.$

Equating with Taylor series $\langle f, e_k \rangle = a_k = \frac{f^{(k)}(0)}{\sqrt{k!}}$

Note
$$T_{\lambda}e_0(z) = T_{\lambda}1(z) = e^{\overline{\lambda}z - \frac{1}{2}|\lambda|^2} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$$
, and $\langle f, T_{\lambda}e_0 \rangle = \frac{f(\lambda)}{\|k_{\lambda}\|}$.

Idea : Hermite type interpolation — more information in the nodes, less nodes required.

Observe : if $f \in \mathcal{F}^2$ then $f(z) = \sum_{k \ge 0} a_k e_k(z) = \sum_{k \ge 0} a_k \frac{z^k}{\sqrt{k!}},$ $\|f\|^2 = \sum_{k \ge 0} |a_k|^2.$

Equating with Taylor series $\langle f, e_k \rangle = a_k = \frac{f^{(k)}(0)}{\sqrt{k!}}$

Note
$$T_{\lambda}e_0(z) = T_{\lambda}1(z) = e^{\overline{\lambda}z - \frac{1}{2}|\lambda|^2} = \frac{k_{\lambda}}{\|k_{\lambda}\|}$$
, and $\langle f, T_{\lambda}e_0 \rangle = \frac{f(\lambda)}{\|k_{\lambda}\|}$.

Restriction operator : $R: \mathcal{F}^2 \longrightarrow l^2, f \longmapsto (\langle f, T_\lambda e_0 \rangle)_\lambda = (f(\lambda)/||k_\lambda||)_\lambda$

Generalized restriction operator Let $X = \{(\lambda, m_{\lambda})\}$ a *divisor* $(\lambda \in \Lambda, m_{\lambda} \in \mathbb{N}^*)$. $\mathcal{R}: \mathcal{F}^2 \longrightarrow l^2, f \longmapsto (\langle f, T_{\lambda} e_k \rangle)_{\lambda \in \Lambda, 0 \le k \le m_{\lambda} - 1}$

Interpolation and sampling Classical interpolation and sampling Multiples interpolation and sampling

New definition (Seip, Brekke-Seip)

X is called *sampling* for \mathcal{F}^2 if \mathcal{R} is bounded and left-invertible :

$$\|f\|_2^2 \asymp \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda - 1} |\langle f, T_\lambda e_k \rangle|^2 = \sum_{\lambda \in \Lambda} \|f\|_{\mathcal{F}^2/N_\lambda^2}^2, \qquad f \in \mathcal{F}^2,$$

where $N_{\lambda} = \{ f \in \mathcal{F}^2 : f(\lambda) = \dots = f^{(m_{\lambda}-1)}(\lambda) = 0 \}.$

Interpolation and sampling Classical interpolation and sampling Multiples interpolation and sampling

New definition (Seip, Brekke-Seip)

X is called *sampling* for \mathcal{F}^2 if \mathcal{R} is bounded and left-invertible :

$$||f||_2^2 \asymp \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda - 1} |\langle f, T_\lambda e_k \rangle|^2 = \sum_{\lambda \in \Lambda} ||f||_{\mathcal{F}^2/N_\lambda^2}^2, \qquad f \in \mathcal{F}^2,$$

where $N_{\lambda} = \{f \in \mathcal{F}^2 : f(\lambda) = \dots = f^{(m_{\lambda}-1)}(\lambda) = 0\}.$ X is called *interpolating* for \mathcal{F}^2 if \mathcal{R} is onto : for every sequence $v = \{v_{\lambda}^{(k)}\}_{k < m_{\lambda}}^{\lambda \in \Lambda}$ such that

$$\|v\|_2^2 := \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda - 1} |v_\lambda^{(k)}|^2 < \infty$$

there exists a function $f \in \mathcal{F}^2$ such that

$$\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}, \qquad 0 \le k < m_{\lambda}, \quad \lambda \in \Lambda.$$

Interpolation and sampling Classical interpolation and sampling Multiples interpolation and sampling

UNIFORMLY BOUNDED MULTIPLICITIES

Recall:

- X sampling if $||f||_2^2 \approx \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.
- Densities: $D^-(X) = \liminf_{r \to \infty} \frac{n^-(r)}{r^2}, D^+(X) = \liminf_{r \to \infty} \frac{n^+(r)}{r^2}$

UNIFORMLY BOUNDED MULTIPLICITIES

Recall :

- X sampling if $||f||_2^2 \simeq \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

• Densities: $D^-(X) = \liminf_{r \to \infty} \frac{n^-(r)}{r^2}, D^+(X) = \liminf_{r \to \infty} \frac{n^+(r)}{r^2}$ When $\sup_{\lambda} m_{\lambda} < \infty$, then Brekke-Seip proved :

UNIFORMLY BOUNDED MULTIPLICITIES

Recall :

- X sampling if $||f||_2^2 \simeq \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

• Densities: $D^-(X) = \liminf_{r \to \infty} \frac{n^-(r)}{r^2}, D^+(X) = \liminf_{r \to \infty} \frac{n^+(r)}{r^2}$ When $\sup_{\lambda} m_{\lambda} < \infty$, then Brekke-Seip proved :

THEOREM 3 (BREKKE-SEIP 1993)

A divisor X is of sampling for \mathcal{F}^2 if and only if it can be expressed as a finite union of uniformly discrete sets and contains a uniformly discrete subdivisor X' for which $D^-(X') > 1$.

UNIFORMLY BOUNDED MULTIPLICITIES

Recall :

- X sampling if $||f||_2^2 \simeq \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

• Densities: $D^-(X) = \liminf_{r \to \infty} \frac{n^-(r)}{r^2}, D^+(X) = \liminf_{r \to \infty} \frac{n^+(r)}{r^2}$ When $\sup_{\lambda} m_{\lambda} < \infty$, then Brekke-Seip proved :

THEOREM 3 (BREKKE-SEIP 1993)

A divisor X is of sampling for \mathcal{F}^2 if and only if it can be expressed as a finite union of uniformly discrete sets and contains a uniformly discrete subdivisor X' for which $D^-(X') > 1$.

THEOREM 4 (BREKKE-SEIP 1993)

A divisor X is of interpolation for \mathcal{F}^2 if and only if it is uniformly discrete and $D^+(X) < 1$.

Uniformly bounded multiplicities

Recall :

- X sampling if $||f||_2^2 \approx \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

• Densities: $D^-(X) = \liminf_{r \to \infty} \frac{n^-(r)}{r^2}, D^+(X) = \liminf_{r \to \infty} \frac{n^+(r)}{r^2}$ When $\sup_{\lambda} m_{\lambda} < \infty$, then Brekke-Seip proved :

THEOREM 3 (BREKKE-SEIP 1993)

A divisor X is of sampling for \mathcal{F}^2 if and only if it can be expressed as a finite union of uniformly discrete sets and contains a uniformly discrete subdivisor X' for which $D^-(X') > 1$.

THEOREM 4 (BREKKE-SEIP 1993)

A divisor X is of interpolation for \mathcal{F}^2 if and only if it is uniformly discrete and $D^+(X) < 1$.

Again : no simultaneous interpolation & sampling.

UNBOUNDED MULTIPLICITIES : A MOTIVATION

Probably the only Hilbert space where the situation of unbounded multiplicities is completely understood : the Hardy space H^2 . Let $\Theta = \prod_{n \ge 1} \theta_n$ be an inner function. Define $\ell^2(H^2/\theta_n H^2) = \{(f_n)_n : f_n \in H^2, \sum_{n \ge 1} ||f_n||^2_{H^2/\theta_n H^2} < +\infty\}$. The sequence $(\theta_n)_n$ satisfies the generalized Carleson condition (or Carleson-Vasyunin condition) if $|\Theta(z)| \ge \delta \inf_n |\theta_n(z)|$, for some $\delta > 0$.

Theorem 5 (Nikolski, Vasyunin, 1978 (p=2))

In the notation above, the following assertions are equivalent :

- The operator $\mathcal{R}: H^2 \longrightarrow \ell^2(H^2/\theta_n H^2), \ \mathcal{R}(f) = (f + \theta_n H^2)$ is bounded and onto,
- $(\theta_n)_n$ satisfies the generalized Carleson condition.

Note $H^2/\theta_n H^2 = K_{\theta_n} := H^2 \ominus \theta_n H^2$, and the isometry is given by the orthogonal projection $P_{\theta_n} : H^2 \longrightarrow K_{\theta_n}$. Special case : $\theta_n = b_{\lambda_n}^{m_n}$ which gives interpolation with unbounded multiplicities.

UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpolating/sampling sequences, when $\sup_{\lambda} m_{\lambda} = \infty$?

UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpolating/sampling sequences, when $\sup_{\lambda} m_{\lambda} = \infty$?

 $Interpolation/sampling - same \ definitions:$

- X sampling if $||f||_2^2 \asymp \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpolating/sampling sequences, when $\sup_{\lambda} m_{\lambda} = \infty$?

 $Interpolation/sampling - same \ definitions:$

- X sampling if $||f||_2^2 \approx \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_\lambda 1} |\langle f, T_\lambda e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

Geometric conditions — densities make no longer sense! (minimal number of points in suitable disks tends to infinity even for fixed radius).

UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpolating/sampling sequences, when $\sup_{\lambda} m_{\lambda} = \infty$?

 $Interpolation/sampling - same \ definitions:$

- X sampling if $||f||_2^2 \approx \sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f, T_{\lambda} e_k \rangle|^2$,
- X interpolating if $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |v_{\lambda}^{(k)}|^2 < \infty$ implies $\exists f \in \mathcal{F}^2$, $\langle f, T_{\lambda} e_k \rangle = v_{\lambda}^{(k)}$.

Geometric conditions — densities make no longer sense! (minimal number of points in suitable disks tends to infinity even for fixed radius).

 $Consider \ covering/separation \ conditions:$

- Separation : $D(\lambda, \sqrt{m_{\lambda}} + C)$ are separated $(C \in \mathbb{R} \text{ suitable})$.
- Covering : $\bigcup_{\lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C} \setminus K \ (C \in \mathbb{R} \text{ suitable, } K \text{ compact}).$

• Finite overlap condition : $\sup_{z \in \mathbb{C}} \sum_{\lambda \in \Lambda} \chi_{D(\lambda, \sqrt{m_{\lambda}})}(z) < \infty$.

(A Carleson embedding type condition.)

MAIN RESULTS

Sampling results

THEOREM 6 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If $X = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda}$ is sampling for \mathcal{F}^2 , then X satisfies the finite overlap condition and there exists C > 0 such that

$$\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}.$$

(b) Conversely, if $X = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda}$ satisfies the finite overlap condition and there exists C = C(X) > 0, $K \subset \mathbb{C}$ compact such that

$$\bigcup_{\Lambda \in \Lambda : m_{\lambda} > \alpha C^{2}} D(\lambda, \sqrt{m_{\lambda}} - C) = \mathbb{C} \setminus K,$$

then X is sampling for \mathcal{F}^2 .

MAIN RESULTS — CONTINUED

Interpolation

THEOREM 7 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If X = {(λ, m_λ)}_{λ∈Λ} is an interpolating divisor for F², then there exists C > 0 such that the discs {D(λ, √m_λ - C)}_{λ∈Λ} are pairwise disjoint.
(b) Conversely, if the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint for C > 0 where the disk for C > 0 where the

for some C > 0, then X is an interpolating divisor for \mathcal{F}^2 .

MAIN RESULTS — CONTINUED

Interpolation

THEOREM 7 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If X = {(λ, m_λ)}_{λ∈Λ} is an interpolating divisor for F², then there exists C > 0 such that the discs {D(λ, √m_λ - C)}_{λ∈Λ} are pairwise disjoint.
(b) Conversely, if the disks {D(λ, √m_λ + C)}_{λ∈Λ} are pairwise disjoint

for some C > 0, then X is an interpolating divisor for \mathcal{F}^2 .

Consequence : The results on interpolation and sampling allow to deduce a partial answer to the question by Brekke and Seip :

MAIN RESULTS — CONTINUED

Interpolation

THEOREM 7 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If $X = \{(\lambda, m_{\lambda})\}_{\lambda \in \Lambda}$ is an interpolating divisor for \mathcal{F}^2 , then there exists C > 0 such that the discs $\{D(\lambda, \sqrt{m_{\lambda}} - C)\}_{\lambda \in \Lambda}$ are pairwise disjoint. (b) Conversely, if the disks $\{D(\lambda, \sqrt{m_{\lambda}} + C)\}_{\lambda \in \Lambda}$ are nairwise disjoint

(b) Conversely, if the disks $\{D(\lambda, \sqrt{m_{\lambda}} + C)\}_{\lambda \in \Lambda}$ are pairwise disjoint for some C > 0, then X is an interpolating divisor for \mathcal{F}^2 .

Consequence : The results on interpolation and sampling allow to deduce a partial answer to the question by Brekke and Seip :

COROLLARY 1 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

Suppose $\lim_{|\lambda|\to\infty} m_{\lambda} = +\infty$. Then X cannot be simultaneously interpolating and sampling for \mathcal{F}^2 .

IDEAS OF PROOF

Key ingredients :

Key ingredients :

• estimates on the incomplete Gamma-function :

$$\lambda_k(x) = \frac{1}{k!} \int_0^x y^k e^{-y} dy, \, \omega_k(x) = e^{-x} \sum_{s=0}^k \frac{x^s}{s!}.$$

 $\lambda_k(k-t\sqrt{k}) \geq \varepsilon, \ \omega_k(k+t\sqrt{k}) \geq \varepsilon, \ \lambda_k(m-t\sqrt{m}) \leq \varepsilon \lambda_k(m) \ (t^2 \leq m \leq k)$

Key ingredients :

- estimates on the incomplete Gamma-function : $\lambda_k(x) = \frac{1}{k!} \int_0^x y^k e^{-y} dy, \ \omega_k(x) = e^{-x} \sum_{s=0}^k \frac{x^s}{s!}.$ $\lambda_k(k-t\sqrt{k}) \ge \varepsilon, \ \omega_k(k+t\sqrt{k}) \ge \varepsilon, \ \lambda_k(m-t\sqrt{m}) \le \varepsilon\lambda_k(m) \ (t^2 \le m \le k)$
- Local norm $\sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \le C \int_{D(\lambda, \sqrt{m}-A)} |f(z)|^2 e^{-|z|^2} dm(z)$

Key ingredients :

- estimates on the incomplete Gamma-function : $\lambda_k(x) = \frac{1}{k!} \int_0^x y^k e^{-y} dy, \ \omega_k(x) = e^{-x} \sum_{s=0}^k \frac{x^s}{s!}.$ $\lambda_k(k-t\sqrt{k}) \ge \varepsilon, \ \omega_k(k+t\sqrt{k}) \ge \varepsilon, \ \lambda_k(m-t\sqrt{m}) \le \varepsilon\lambda_k(m) \ (t^2 \le m \le k)$
- Local norm $\sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \le C \int_{D(\lambda, \sqrt{m}-A)} |f(z)|^2 e^{-|z|^2} dm(z)$
- The above implies

Lemma 1

$$\begin{split} &If \sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \ \text{small and } \int_{D(\sqrt{m})} |f(z)|^2 e^{-|z|^2} dm \leq 1, \ \text{then} \\ &\int_{D(\sqrt{m}-C)} |f(z)|^2 e^{-|z|^2} dm \ \text{small.} \end{split}$$

Key ingredients :

- estimates on the incomplete Gamma-function : $\lambda_k(x) = \frac{1}{k!} \int_0^x y^k e^{-y} dy, \ \omega_k(x) = e^{-x} \sum_{s=0}^k \frac{x^s}{s!}.$ $\lambda_k(k-t\sqrt{k}) \ge \varepsilon, \ \omega_k(k+t\sqrt{k}) \ge \varepsilon, \ \lambda_k(m-t\sqrt{m}) \le \varepsilon\lambda_k(m) \ (t^2 \le m \le k)$
- Local norm $\sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \le C \int_{D(\lambda, \sqrt{m}-A)} |f(z)|^2 e^{-|z|^2} dm(z)$
- The above implies

Lemma 1

$$\begin{split} &If \sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \text{ small and } \int_{D(\sqrt{m})} |f(z)|^2 e^{-|z|^2} dm \leq 1, \text{ then } \\ &\int_{D(\sqrt{m}-C)} |f(z)|^2 e^{-|z|^2} dm \text{ small.} \end{split}$$

• Zero-sets :

THEOREM 8 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

If $\mathbb{C} \setminus \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}})$ is compact, then X is not a zero-divisor of \mathcal{F}^{∞}

IDEAS OF PROOF

Key ingredients :

- estimates on the incomplete Gamma-function : $\lambda_k(x) = \frac{1}{k!} \int_0^x y^k e^{-y} dy, \ \omega_k(x) = e^{-x} \sum_{s=0}^k \frac{x^s}{s!}.$ $\lambda_k(k-t\sqrt{k}) \ge \varepsilon, \ \omega_k(k+t\sqrt{k}) \ge \varepsilon, \ \lambda_k(m-t\sqrt{m}) \le \varepsilon\lambda_k(m) \ (t^2 \le m \le k)$
- Local norm $\sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \leq C \int_{D(\lambda, \sqrt{m} A)} |f(z)|^2 e^{-|z|^2} dm(z)$
- The above implies

Lemma 1

$$\begin{split} &If \sum_{k=0}^{m-1} |\langle f, T_{\lambda} e_k \rangle|^2 \text{ small and } \int_{D(\sqrt{m})} |f(z)|^2 e^{-|z|^2} dm \leq 1, \text{ then } \\ &\int_{D(\sqrt{m}-C)} |f(z)|^2 e^{-|z|^2} dm \text{ small.} \end{split}$$

• Zero-sets :

THEOREM 8 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

If $\mathbb{C} \setminus \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}})$ is compact, then X is not a zero-divisor of \mathcal{F}^{∞}

• $\overline{\partial}$ -methods.

13/17

Main results **Proof of sampling/interpolation theorem** No simultanous interpolation/sampling

SAMPLING THEOREM

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

• Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}})) \to \infty$

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

Sufficient condition : $\mathbb{C} \setminus \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} - C)$ compact for sufficiently big C.

• Suppose $||f_n|| = 1$, $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \to 0$.

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

- Suppose $||f_n|| = 1$, $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \to 0$.
- Can assume $f_n \xrightarrow{w} f$.

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

- Suppose $||f_n|| = 1$, $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \to 0$.
- Can assume $f_n \xrightarrow{w} f$.
- If $f \neq 0$, then X zero variety for $\mathcal{F}^2 \subset \mathcal{F}^{\infty}$, contradicting Thm 8.

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

- Suppose $||f_n|| = 1$, $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \to 0$.
- Can assume $f_n \xrightarrow{w} f$.
- If $f \neq 0$, then X zero variety for $\mathcal{F}^2 \subset \mathcal{F}^{\infty}$, contradicting Thm 8.
- If f = 0: $1 = \int_{\mathbb{C}} |f_n(z)|^2 e^{-|z|^2} dm(z) \le o(1) + \sum_{\lambda \in \Lambda} \int_{D(\lambda, \sqrt{m_\lambda} C)} |f_n(z)|^2 e^{-|z|^2} dm(z).$

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

- Suppose $||f_n|| = 1$, $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \to 0$.
- Can assume $f_n \xrightarrow{w} f$.
- If $f \neq 0$, then X zero variety for $\mathcal{F}^2 \subset \mathcal{F}^{\infty}$, contradicting Thm 8.
- If $f = 0: 1 = \int_{\mathbb{C}} |f_n(z)|^2 e^{-|z|^2} dm(z) \le o(1) + \sum_{\lambda \in \Lambda} \int_{D(\lambda, \sqrt{m_\lambda} C)} |f_n(z)|^2 e^{-|z|^2} dm(z).$
- Good points : fix \dot{M} , and define Λ_1 by $\lambda \in \Lambda_1$ when $\int_{D(\lambda,\sqrt{m_{\lambda}})} |f_n(z)|^2 e^{-|z|^2} dm(z) \leq M \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2$

Necessary condition : $\bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_{\lambda}} + C) = \mathbb{C}$ (*).

- Finite overlap condition required for Carleson-type embedding (boundedness of generalized restriction operator)
- If (*) not satisfied, then $\exists z_n, \operatorname{dist}(z_n, \bigcup_{\lambda \in \Lambda} D(\lambda, \sqrt{m_\lambda})) \to \infty$
- The function $f_n := T_{z_n} 1$ cannot be sampled : $\sum_{\lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \lesssim \sum_{\lambda} \int_{D(\lambda, \sqrt{m_{\lambda}})} e^{|z_n - w|^2} dm(w).$

- Suppose $||f_n|| = 1$, $\sum_{\lambda \in \Lambda} \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2 \to 0$.
- Can assume $f_n \xrightarrow{w} f$.
- If $f \neq 0$, then X zero variety for $\mathcal{F}^2 \subset \mathcal{F}^{\infty}$, contradicting Thm 8.
- If $f = 0: 1 = \int_{\mathbb{C}} |f_n(z)|^2 e^{-|z|^2} dm(z) \le o(1) + \sum_{\lambda \in \Lambda} \int_{D(\lambda, \sqrt{m_\lambda} C)} |f_n(z)|^2 e^{-|z|^2} dm(z).$
- Good points : fix \dot{M} , and define Λ_1 by $\lambda \in \Lambda_1$ when $\int_{D(\lambda,\sqrt{m_{\lambda}})} |f_n(z)|^2 e^{-|z|^2} dm(z) \leq M \sum_{k=0}^{m_{\lambda}-1} |\langle f_n, T_{\lambda} e_k \rangle|^2$
- Bad points : $\int \dots > M \sum \dots$ use Lemma 1.

Main results **Proof of sampling/interpolation theorem** No simultanous interpolation/sampling

INTERPOLATION THEOREM

Sufficient condition : the disks $D(\lambda, \sqrt{m_{\lambda}} + C)$ are pairwise disjoint

Main results **Proof of sampling/interpolation theorem** No simultanous interpolation/sampling

INTERPOLATION THEOREM

Sufficient condition : the disks $D(\lambda, \sqrt{m_{\lambda}} + C)$ are pairwise disjoint

• Based on $\overline{\partial}$ -methods

Sufficient condition : the disks $D(\lambda,\sqrt{m_\lambda}+C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z-\lambda|-r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C$, $\operatorname{supp} \eta \subset (-\infty, 0), \ \eta \equiv 1 \text{ on } (-\infty, -C), \ |\eta'| \leq 1$,

Sufficient condition : the disks $D(\lambda,\sqrt{m_\lambda}+C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z \lambda| r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C, \operatorname{supp} \eta \subset (-\infty, 0), \ \eta \equiv 1 \text{ on } (-\infty, -C), \ |\eta'| \lesssim 1,$
- requires the construction of a well-behaved weight function $\psi(z) = |z|^2 + v(z)$, where

$$v(z) = \sum_{\lambda \in \Lambda} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{m_{\lambda}} + 1 - \frac{|z - \lambda|^2}{m_{\lambda}} \right] \chi_{D_{\lambda}(z)},$$

and $D_{\lambda} = D(\lambda, \sqrt{m_{\lambda}}) \subset D'_{\lambda} = D(\lambda, r_{\lambda} = \sqrt{m_{\lambda}} + C).$

Sufficient condition : the disks $D(\lambda,\sqrt{m_\lambda}+C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z \lambda| r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C, \operatorname{supp} \eta \subset (-\infty, 0), \ \eta \equiv 1 \text{ on } (-\infty, -C), \ |\eta'| \lesssim 1,$
- requires the construction of a well-behaved weight function $\psi(z) = |z|^2 + v(z)$, where

$$v(z) = \sum_{\lambda \in \Lambda} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{m_{\lambda}} + 1 - \frac{|z - \lambda|^2}{m_{\lambda}} \right] \chi_{D_{\lambda}(z)},$$

and $D_{\lambda} = D(\lambda, \sqrt{m_{\lambda}}) \subset D'_{\lambda} = D(\lambda, r_{\lambda} = \sqrt{m_{\lambda}} + C).$ • Then $\Delta \psi = 4\pi m_{\lambda} \delta_{\lambda}$ on D_{λ} , and $\Delta \psi = 4$ outside the disks D_{λ} .

Sufficient condition : the disks $D(\lambda,\sqrt{m_\lambda}+C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z \lambda| r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C$, supp $\eta \subset (-\infty, 0), \ \eta \equiv 1$ on $(-\infty, -C), \ |\eta'| \lesssim 1$,
- requires the construction of a well-behaved weight function $\psi(z) = |z|^2 + v(z)$, where

$$v(z) = \sum_{\lambda \in \Lambda} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{m_{\lambda}} + 1 - \frac{|z - \lambda|^2}{m_{\lambda}} \right] \chi_{D_{\lambda}(z)},$$

and $D_{\lambda} = D(\lambda, \sqrt{m_{\lambda}}) \subset D'_{\lambda} = D(\lambda, r_{\lambda} = \sqrt{m_{\lambda}} + C).$

• Then $\Delta \psi = 4\pi m_{\lambda} \delta_{\lambda}$ on D_{λ} , and $\Delta \psi = 4$ outside the disks D_{λ} .

Necessary condition : the disks $D(\lambda, \sqrt{m_{\lambda}} - C)$ are pairwise disjoint

Sufficient condition : the disks $D(\lambda,\sqrt{m_\lambda}+C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z \lambda| r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C$, supp $\eta \subset (-\infty, 0), \ \eta \equiv 1$ on $(-\infty, -C), \ |\eta'| \lesssim 1$,
- requires the construction of a well-behaved weight function $\psi(z) = |z|^2 + v(z)$, where

$$v(z) = \sum_{\lambda \in \Lambda} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{m_{\lambda}} + 1 - \frac{|z - \lambda|^2}{m_{\lambda}} \right] \chi_{D_{\lambda}(z)},$$

and $D_{\lambda} = D(\lambda, \sqrt{m_{\lambda}}) \subset D'_{\lambda} = D(\lambda, r_{\lambda} = \sqrt{m_{\lambda}} + C).$

• Then $\Delta \psi = 4\pi m_\lambda \delta_\lambda$ on D_λ , and $\Delta \psi = 4$ outside the disks D_λ .

Necessary condition : the disks $D(\lambda, \sqrt{m_{\lambda}} - C)$ are pairwise disjoint

• When $D(w_k, k) \subset D(\lambda_k, \sqrt{\lambda_k} - k) \cap D(\mu_k, \sqrt{\mu_k} - k)$, interpolate the data (f_k) , where $f_k \in N_{\lambda_k}$, $f_k - T_{w_k} 1 \in N_{\mu_k}$, $||f_k|| \leq C$.

Sufficient condition : the disks $D(\lambda,\sqrt{m_\lambda}+C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z \lambda| r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C, \text{ supp } \eta \subset (-\infty, 0), \ \eta \equiv 1 \text{ on } (-\infty, -C), \ |\eta'| \lesssim 1,$
- requires the construction of a well-behaved weight function $\psi(z) = |z|^2 + v(z)$, where

$$v(z) = \sum_{\lambda \in \Lambda} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{m_{\lambda}} + 1 - \frac{|z - \lambda|^2}{m_{\lambda}} \right] \chi_{D_{\lambda}(z)},$$

and $D_{\lambda} = D(\lambda, \sqrt{m_{\lambda}}) \subset D'_{\lambda} = D(\lambda, r_{\lambda} = \sqrt{m_{\lambda}} + C).$

• Then $\Delta \psi = 4\pi m_\lambda \delta_\lambda$ on D_λ , and $\Delta \psi = 4$ outside the disks D_λ .

Necessary condition : the disks $D(\lambda,\sqrt{m_\lambda}-C)$ are pairwise disjoint

- When $D(w_k, k) \subset D(\lambda_k, \sqrt{\lambda_k} k) \cap D(\mu_k, \sqrt{\mu_k} k)$, interpolate the data (f_k) , where $f_k \in N_{\lambda_k}, f_k T_{w_k} 1 \in N_{\mu_k}, ||f_k|| \leq C$.
- By Lemma 1, $\int_{D(\lambda_k,\sqrt{\lambda_k}-k)} |f_k|^2 e^{|z|^2} dm + \int_{D(\mu_k,\sqrt{\mu_k}-k)} |f_k - T_{w_k} 1|^2 e^{|z|^2} dm \to 0$

Sufficient condition : the disks $D(\lambda, \sqrt{m_{\lambda}} + C)$ are pairwise disjoint

- Based on $\overline{\partial}$ -methods
- Smooth interpolating function $F(z) = \sum_{\lambda \in \Lambda} Q(z)\eta(|z \lambda| r_{\lambda}),$ $r_{\lambda} = \sqrt{m_{\lambda}} + C, \text{ supp } \eta \subset (-\infty, 0), \ \eta \equiv 1 \text{ on } (-\infty, -C), \ |\eta'| \lesssim 1,$
- requires the construction of a well-behaved weight function $\psi(z) = |z|^2 + v(z)$, where

$$v(z) = \sum_{\lambda \in \Lambda} m_{\lambda} \left[\log \frac{|z - \lambda|^2}{m_{\lambda}} + 1 - \frac{|z - \lambda|^2}{m_{\lambda}} \right] \chi_{D_{\lambda}(z)},$$

and $D_{\lambda} = D(\lambda, \sqrt{m_{\lambda}}) \subset D'_{\lambda} = D(\lambda, r_{\lambda} = \sqrt{m_{\lambda}} + C).$

• Then $\Delta \psi = 4\pi m_\lambda \delta_\lambda$ on D_λ , and $\Delta \psi = 4$ outside the disks D_λ .

Necessary condition : the disks $D(\lambda,\sqrt{m_\lambda}-C)$ are pairwise disjoint

- When $D(w_k, k) \subset D(\lambda_k, \sqrt{\lambda_k} k) \cap D(\mu_k, \sqrt{\mu_k} k)$, interpolate the data (f_k) , where $f_k \in N_{\lambda_k}, f_k T_{w_k} 1 \in N_{\mu_k}, ||f_k|| \leq C$.
- By Lemma 1, $\int_{D(\lambda_k,\sqrt{\lambda_k}-k)} |f_k|^2 e^{|z|^2} dm + \int_{D(\mu_k,\sqrt{\mu_k}-k)} |f_k - T_{w_k}1|^2 e^{|z|^2} dm \to 0$

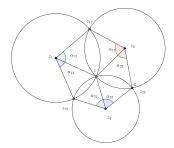
• But
$$\int_{D(w_k,1)} |T_{w_k}1|^2 e^{|z|^2} dm = c > 0.$$

15/17

Main results Proof of sampling/interpolation theorem No simultanous interpolation/sampling

PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

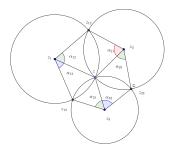


Main results Proof of sampling/interpolation theorem No simultanous interpolation/sampling

PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

Suppose the sequence is simultaneously interpolating and sampling.



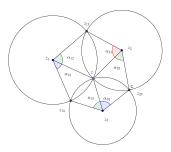
Main results Proof of sampling/interpolation theorem No simultanous interpolation/sampling

PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

Suppose the sequence is simultaneously interpolating and sampling.

By sampling, up to a constant, three disks meet at a point z. The worst case is when they meet on the circle



Main results Proof of sampling/interpolation theorem No simultanous interpolation/sampling

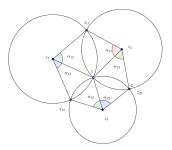
PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

Suppose the sequence is simultaneously interpolating and sampling.

By sampling, up to a constant, three disks meet at a point z. The worst case is when they meet on the circle

Consider the hexagon $z_1 z_{13} z_3 z_{23} z_2 z_{12}$. The sum of its angles is 4π .



Main results Proof of sampling/interpolation theorem No simultanous interpolation/sampling

PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

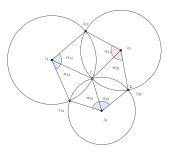
Suppose the sequence is simultaneously interpolating and sampling.

By sampling, up to a constant, three disks meet at a point z. The worst case is when they meet on the circle

Consider the hexagon $z_1 z_{13} z_3 z_{23} z_2 z_{12}$. The sum of its angles is 4π .

The angles in z_{ij} are at most π . So there

is an angle π missing, and one of the six angles α_{ij} is at least $\pi/6$.



Main results Proof of sampling/interpolation theorem No simultanous interpolation/sampling

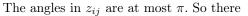
PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

Suppose the sequence is simultaneously interpolating and sampling.

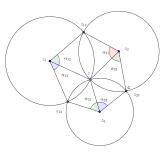
By sampling, up to a constant, three disks meet at a point z. The worst case is when they meet on the circle

Consider the hexagon $z_1 z_{13} z_3 z_{23} z_2 z_{12}$. The sum of its angles is 4π .



is an angle π missing, and one of the six angles α_{ij} is at least $\pi/6$.

Hence, the width of the intersection between circle i and circle j is bounded below by a cst times the least radius, which tends to infinity.



Unbounded multiplicities Uniform Norm

Proof of sampling/interpolation theorem No simultanous interpolation/sampling

a₁₂

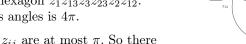
PROOF OF NON EXISTENCE OF SIMULTANEOUS SAMPLING & INTERPOLATION

Here is a simple geometric argument.

Suppose the sequence is simultaneously interpolating and sampling.

By sampling, up to a constant, three disks meet at a point z. The worst case is when they meet on the circle

Consider the hexagon $z_1 z_{13} z_3 z_{23} z_{23} z_{212}$. The sum of its angles is 4π .



The angles in z_{ij} are at most π . So there

is an angle π missing, and one of the six angles α_{ij} is at least $\pi/6$.

Hence, the width of the intersection between circle i and circle j is bounded below by a cst times the least radius, which tends to infinity.

So the disks cannot be separated by an additive constant.

Let

$$\mathcal{F}^{\infty} = \{ f \in \operatorname{Hol}(\mathbb{C}) : \|f\|_{\infty} := \sup |f(z)|e^{-|z|^2/2} < \infty \}.$$

We get analogous results for sampling and interpolation in \mathcal{F}^{∞} .

Let

$$\mathcal{F}^{\infty} = \{ f \in \operatorname{Hol}(\mathbb{C}) : \|f\|_{\infty} := \sup |f(z)|e^{-|z|^2/2} < \infty \}.$$

We get analogous results for sampling and interpolation in \mathcal{F}^{∞} . Most of the proofs adapt to $p = +\infty$.

Let

$$\mathcal{F}^{\infty} = \{ f \in \operatorname{Hol}(\mathbb{C}) : \|f\|_{\infty} := \sup |f(z)|e^{-|z|^2/2} < \infty \}.$$

We get analogous results for sampling and interpolation in \mathcal{F}^{∞} . Most of the proofs adapt to $p = +\infty$.

Delicate part : sufficient condition for interpolation.

Let

$$\mathcal{F}^{\infty} = \{ f \in \operatorname{Hol}(\mathbb{C}) : \|f\|_{\infty} := \sup |f(z)|e^{-|z|^2/2} < \infty \}.$$

We get analogous results for sampling and interpolation in \mathcal{F}^{∞} . Most of the proofs adapt to $p = +\infty$.

Delicate part : sufficient condition for interpolation.

Adapts a clever trick by Berndtsson (J. Geom. Anal. 1997) to get uniform estimates for optimal L^2 solutions (which exist for finite sequences + normal families).

Let

$$\mathcal{F}^{\infty} = \{ f \in \operatorname{Hol}(\mathbb{C}) : \|f\|_{\infty} := \sup |f(z)|e^{-|z|^2/2} < \infty \}.$$

We get analogous results for sampling and interpolation in \mathcal{F}^{∞} . Most of the proofs adapt to $p = +\infty$.

Delicate part : sufficient condition for interpolation.

Adapts a clever trick by Berndtsson (J. Geom. Anal. 1997) to get uniform estimates for optimal L^2 solutions (which exist for finite sequences + normal families).

Again, there are **no** simultaneously interpolating and sampling sequences in that case.