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Introduction

INTERPOLATION AND SAMPLING

Let H be a reproducing kernel Hilbert space of analytic functions on
a domain, k) the reproducing kernel in A.

A sequence A C C is called sampling for H if

A 2
TS 'ﬁ(;') fen,

AEA

and interpolating if for every v = (va)aen € €2, there exists f € H
such that
AQY

DAy, AEA.
BN
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Introduction

FOCK SPACE

P2 = Af € Hol©): 1= = [ 1) am() < .
Scalar product :
)= = [ 5 dm(z)

Orthonormal basis :

Reproducing kernel :

k= (C) = Z er(Qer(z) = e

k>0

with norm ||k.||2 = k. (z) = el*I’.
Isometric translation :

T.f(Q) =2 (¢ —2),  feF2

4/17
Multiple sampling and interpolation



Introduction Interpolation and sampling
Classical interpolation and sampling
Multiples interpolation and sampling

CLASSICAL INTERPOLATION AND SAMPLING

Define lower and upper densities by

_ . ..n(r) N o nt(r)
D (A):hrrgggf 2 D (A):llﬂbgip 2

where n~(r) and nt(r) denote the smallest and the largest number of
points of A in a disk D(z,r), z € C.
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CLASSICAL INTERPOLATION AND SAMPLING

Define lower and upper densities by

- +
D~ (A) = liminf 2 gr) DH(A) = limsup )

r—00 T ’ r—00 r2

where n~(r) and nt(r) denote the smallest and the largest number of
points of A in a disk D(z,r), z € C.

Seip and Seip-Wallstén proved in 1992 :

THEOREM 1 (SEIP, SEIP-WALLSTEN, 1992)

A discrete set A is a set of sampling for F? if and only if it can be
expressed as a finite union of uniformly discrete sets and contains a
uniformly discrete subset A’ for which D~ (A") > 1.
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ing
nd sampling

Define lower and upper densities by

_ .. .n(r) N o nt(r)
D (A):hrrgggf 2 D (A):hyr’n_i}olp 2

where n~(r) and nt(r) denote the smallest and the largest number of
points of A in a disk D(z,r), z € C.

Seip and Seip-Wallstén proved in 1992 :

THEOREM 1 (SEIP, SEIP-WALLSTEN, 1992)

A discrete set A is a set of sampling for F? if and only if it can be
expressed as a finite union of uniformly discrete sets and contains a
uniformly discrete subset A’ for which D~ (A") > 1.

THEOREM 2 (SEIP, SEIP-WALLSTEN, 1992)

A discrete set A is a set of interpolation for F? if and only if it is
uniformly discrete and DT (A) < 1.
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CLASSICAL INTERPOLATION AND SAMPLING

Define lower and upper densities by

_ .. .n(r) N o nt(r)
D (A):hrrgggf 2 D (A):hyr’n_i}olp 2

where n~(r) and nt(r) denote the smallest and the largest number of
points of A in a disk D(z,r), z € C.

Seip and Seip-Wallstén proved in 1992 :

THEOREM 1 (SEIP, SEIP-WALLSTEN, 1992)

A discrete set A is a set of sampling for F? if and only if it can be
expressed as a finite union of uniformly discrete sets and contains a
uniformly discrete subset A’ for which D~ (A") > 1.

THEOREM 2 (SEIP, SEIP-WALLSTEN, 1992)

A discrete set A is a set of interpolation for F? if and only if it is
uniformly discrete and DT (A) < 1.

Observation : no simultaneous interpolation and sampling. 5/17
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interpolation and sampling
Multlpleb interpolation and sampling

MULTIPLE INTERPOLATION AND SAMPLING

Idea : Hermite type interpolation — more information in the nodes,
less nodes required.
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MULTIPLE INTERPOLATION AND SAMPLING

Idea : Hermite type interpolation — more information in the nodes,
less nodes required.

Observe : if f € F? then f(z) = > k>0 0kek(2) = X pso ak\j—%,
IfII? = Zk>0 |ax|*.

. . . _ _ f®)(0)
Equating with Taylor series (f,ex) = ar = ==~

V!
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MULTIPLE INTERPOLATION AND SAMPLING

Idea : Hermite type interpolation — more information in the nodes,
less nodes required.

Observe : if f € F? then f(z) = > k>0 0kek(2) = X pso ak\j—%,
If11? = Zk>0 [

. . . *) (o
Equating with Taylor series (f,ex) = ax = f\/%)
Note Theg(z) = Tx1(z) = e 73" = o and (f, Theo) = ﬁ‘éi?\
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MULTIPLE INTERPOLATION AND SAMPLING

Idea : Hermite type interpolation — more information in the nodes,
less nodes required.

Observe : if f € F? then f(z) = > ;g anen(z) = Xpso ak\j—%,
1f1I? = 2 k>0 |ax|?.
1 0)

Equating with Taylor series (f,ex) = ax = NG

Note Theo(z) = Tal(z) = eM— 2 = and (f, Theo) = £

HkA [N

Restriction operator :
R:F? — 1, [ — ((f,Taeo))x = (F(N)/[Ikxl)A
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MULTIPLE INTERPOLATION AND SAMPLING

Idea : Hermite type interpolation — more information in the nodes,
less nodes required.

Observe : if f € F? then f(z) = > k>0 0kek(2) = X pso ak\j—%,
IfII? = Zk>0 |ax|*.
£ (0)

Equating with Taylor series (f,ex) = ax = NG

and (f,Txeo) = ey

Note T}\QO(Z) = TAI(Z) = eXz—%‘Mz — ENE

”k)\
Restriction operator :

R:F?— 12, f— (£, Taeo))r = (FON)/ [ kall)a
Generalized restriction operator

Let X = {(A\,mx)} a divisor (A € A, my € N*).
R:F* — 1%, f— ((f, Ther))aen.0<k<ms—1
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NEW DEFINITION (SEIP, BREKKE-SEIP)

X is called sampling for F? if R is bounded and left-invertible :

my—1
115 = Z Z |(f, Trer)* = Z Hfll?:z/N;, fer,
AEA k=0 AEA
where Ny = {f € F2: f(\) = --- = f(ma=1()\) = 0}.
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NEW DEFINITION (SEIP, BREKKE-SEIP)

X is called sampling for F? if R is bounded and left-invertible :

my—1
115 = Z Z |(f, Trer)* = Z Hfll?:z/N;, fer,
AEA k=0 AEA
where Ny = {f € F2: f(\) = --- = f(ma=1()\) = 0}.

X is called interpolating for F? if R is onto : for every sequence
v = {v(k)} A h that
={v, ea such tha

k<my
my—1
k
3 =" 5" pi)? <
AEA k=0

there exists a function f € F2 such that

<f,T,\6k> Z'Ug\k)7 0 <k < my, A e A
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c i tion and sampling
Multlpleb interpolation and sampling

UNIFORMLY BOUNDED MULTIPLICITIES

Recall :
o X sampling if || f[13 < 3ycp va [(f, Taex)?,
o X interpolating if Y7, YA |v§\k)\2 < oo implies 3f € F2,
(f, Thex) = v,
o Densities: D~ (X) = liminf, o, 22 DH(X) = liminf, o, "

r
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UNIFORMLY BOUNDED MULTIPLICITIES

Recall :
o X sampling if || f[13 < 3ycp va [(f, Taex)?,
o X interpolating if Y7, YA |v§\k)\2 < oo implies 3f € F2,
(f, Thex) = v,
o Densities: D~ (X) = liminf, o, 22 DH(X) = liminf, o, "

r2

When sup, my < oo, then Brekke-Seip proved :
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UNIFORMLY BOUNDED MULTIPLICITIES

Recall :
o X sampling if || f[|3 = >2,c me— [(f, Taex)?,
o X interpolating if Y7, YA |v§\k)\2 < oo implies 3f € F2,
(f, Thex) = v,
@ Densities: D7 (X) = liminf, o — —(r) , DT (X) = liminf,_, nl(r)

r2 r2

When sup, my < oo, then Brekke-Seip proved :

THEOREM 3 (BREKKE-SEIP 1993)

A divisor X is of sampling for F? if and only if it can be expressed as
a finite union of uniformly discrete sets and contains a uniformly
discrete subdivisor X' for which D~(X') > 1.
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Recall :
o X sampling if || f]13 < Y ca 200 YO, Ther) 2,
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When sup, my < oo, then Brekke-Seip proved :
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A divisor X is of sampling for F? if and only if it can be expressed as
a finite union of uniformly discrete sets and contains a uniformly
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THEOREM 4 (BREKKE-SEIP 1993)

A divisor X is of interpolation for F? if and only if it is uniformly
discrete and DT (X) < 1.
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UNIFORMLY BOUNDED MULTIPLICITIES

Recall :
o X sampling if || f]13 < Y ca 200 YO, Ther) 2,
o X interpolating if Y, 7 |U§\k)‘2 < oo implies 3f € F2,
(f. Taer) = vi.
@ Densities: D7 (X) = liminf, ";§T’>,D+(X) = liminf, ”t#
When sup, my < oo, then Brekke-Seip proved :

THEOREM 3 (BREKKE-SEIP 1993)

A divisor X is of sampling for F? if and only if it can be expressed as
a finite union of uniformly discrete sets and contains a uniformly
discrete subdivisor X' for which D~(X') > 1.

THEOREM 4 (BREKKE-SEIP 1993)

A divisor X is of interpolation for F? if and only if it is uniformly
discrete and DT (X) < 1.

Again : no simultaneous interpolation & sampling
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Unbounded multiplicities

san

UNBOUNDED MULTIPLICITIES : A MOTIVATIO

Probably the only Hilbert space where the situation of unbounded
multiplicities is completely understood : the Hardy space H?2.

Let © = [],,~, 0 be an inner function.
Define EQ(HQ/GnHQ) ={(fa)n: fn € H272n21 ”f’n/H%ﬂ/GnH? < +oo}.

The sequence (6,,), satisfies the generalized Carleson condition (or
Carleson-Vasyunin condition) if |©(z)| > ¢ inf,, |6,,(2)], for some ¢ > 0.

THEOREM 5 (NIKOLSKI, VASYUNIN, 1978 (p = 2))

In the notation above, the following assertions are equivalent :

o The operator R : H?> — (*(H?/0,,H?), R(f) = (f + 0, H?) is
bounded and onto,

o (0,)n satisfies the generalized Carleson condition.

Note H?/0,H? = Ky, := H? © 0,,H?, and the isometry is given by
the orthogonal projection Py, : H?> — K, .

Special case : 0, = bf\"" which gives interpolation with unbounded

multiplicities. 9/17
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Unbounded multiplicities Proof c inter wtion theorem
»n/sampling

UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpola-
ting/sampling sequences, when sup, my = oo ?
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UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpola-
ting/sampling sequences, when sup, my = oo ?

Interpolation/sampling — same definitions :

o X sampling if || f[13 = 3ycp Zmr [(f, Trer)|?,
o X interpolating if ), Zm*f |’U)\ )\2 < oo implies 3f € F?,
(f, Trex) = v,
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UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpola-
ting/sampling sequences, when sup, my = oo ?

Interpolation/sampling — same definitions :
o X sampling if || f]13 =< 3>cx Zmr [(f, Txex) %,
o X interpolating if ), Zm*f |’U)\ )\2 < oo implies 3f € F?,
k
<f7 TA€]€> = 'Ug\ )
Geometric conditions — densities make no longer sense! (minimal

number of points in suitable disks tends to infinity even for fixed
radius).
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UNBOUNDED MULTIPLICITIES

Question : (Brekke-Seip) Are their simultaneous interpola-
ting/sampling sequences, when sup, my = oo ?

Interpolation/sampling — same definitions :

o X sampling if || f]13 =< 3>cx Zmr [(f, Txex) %,
o X interpolating if ), Zm*f |’U)\ )\2 < oo implies 3f € F?,
(f, Trex) = v,
Geometric conditions — densities make no longer sense! (minimal
number of points in suitable disks tends to infinity even for fixed
radius).
Consider covering/separation conditions :
@ Separation : D(A, /my + C) are separated (C' € R suitable).
e Covering : |, D(A, /my +C) =C\ K (C € R suitable, K
compact).
e Finite overlap condition : sup,cc Y ycp XD(2, ) (2) < 00

(A Carleson embedding type condition.)
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Introduction Main results
Unbounded multiplicities Proo ?
Uniform Norm

f sampling/interpolation theorem
No simultanous interpolation/sampling

MAIN RESULTS

Sampling results

THEOREM 6 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If X = {(\,mx)}ren is sampling for F2, then X satisfies the
finite overlap condition and there exists C' > 0 such that

U D\ vmx+C) =cC.

AEA

(b) Conwversely, if X = {(\,m))}ren satisfies the finite overlap
condition and there exists C = C(X) > 0, K C C compact such that

U DOvma-C)=C\K,

AEA :myA>aC?

then X is sampling for F2.
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Mai esults
Unbounded multiplicities Pr f sampling/interpolation theorem

No simultanous interpolation/sampling

MAIN RESULTS — CONTINUED

Interpolation

THEOREM 7 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If X = {(X\,mx)}rea is an interpolating divisor for F2, then there
exists C > 0 such that the discs {D(\,\/mx — C)}xea are pairwise
disjoint.

(b) Conversely, if the disks {D(X, /mx + C)}xen are pairwise disjoint
for some C > 0, then X is an interpolating divisor for F2.
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(a) If X = {(X\,mx)}rea is an interpolating divisor for F2, then there
exists C > 0 such that the discs {D(\,\/mx — C)}xea are pairwise
disjoint.

(b) Conversely, if the disks {D(X, /mx + C)}xen are pairwise disjoint
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Consequence : The results on interpolation and sampling allow to
deduce a partial answer to the question by Brekke and Seip :
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Main results
Unbounded multiplicities Proof of sampling/interpolation theorem

No simultanous interpolation/sampling

MAIN RESULTS — CONTINUED

Interpolation

THEOREM 7 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

(a) If X = {(X\,mx)}rea is an interpolating divisor for F2, then there
exists C > 0 such that the discs {D(\,\/mx — C)}xea are pairwise
disjoint.

(b) Conversely, if the disks {D(X, /mx + C)}xen are pairwise disjoint
for some C > 0, then X is an interpolating divisor for F2.

Consequence : The results on interpolation and sampling allow to
deduce a partial answer to the question by Brekke and Seip :

COROLLARY 1 (BORICHEV-H-KELLAY-MASSANEDA, 2015)

Suppose l)\l‘im my = +oo. Then X cannot be simultaneously
—00

interpolating and sampling for F2.
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Unbounded multiplicities oof of interpolation theorem
anous interpolation/samplin

IDEAS OF PROOF

Key ingredients :
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Unbounded multiplicities samp interpolation th
s interpolation/sampling

IDEAS OF PROOF

Key ingredients :
@ estimates on the incomplete Gamma-function :
T _ — k s
Ai(z) = % fo yre Vdy, wyp(x) = e7® Yo

M (k=tVE) > &, wi(k+tVE) > e, Mp(m—ty/m) < elp(m) (12 <m < k)
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Unbounded multiplicities

IDEAS OF PROOF

Key ingredients :
@ estimates on the incomplete Gamma-function :
T _ — k s
Ai(z) = % fo yre Vdy, wyp(x) = e7® Yo

M (k=tVE) > &, wi(k+tVE) > e, Mp(m—ty/m) < elp(m) (12 <m < k)

m—1

e Local norm 373" [(f, Thex)|* < CfD(A_,\/m,A) |f(z)‘2€—|2|2dm(z)
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Unbounded multiplicities

IDEAS OF PROOF

Key ingredients :

@ estimates on the incomplete Gamma-function :
1 rx _ _ k s
Me(2) = 74 fo yre Vdy, wyp(x) = e7® Yo

M (k=tVE) > &, wi(k+tVE) > e, Mp(m—ty/m) < elp(m) (12 <m < k)

o Local norm Y7 |(f, Then) 2 < € [y gy 1F(2)[2e 1 dim(2)
@ The above implies

IF S 1 Ther) |2 small and fD(\/E) |F(2)|2e 12 dm < 1, then
2

Ipm-cyf(2) el dm small.
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Unbounded multiplicities

IDEAS OF PROOF

Key ingredients :
e estimates on the incomplete Gamma-function :
() = g Jy e vy, wi(w) = e 0 &7
Me(k—tVE) > &, wi(k+tVE) > e, Ap(m—ty/m) < ehg(m) (12 < m < k)

o Local norm Y77 [(f, Ther)|? < CfD()\_\/mfA) |f(2)|2e7 12 dm(2)
@ The above implies

If o050 [(f, Taew) 2 small and [1 |f(2)Pe~*Fdm < 1, then
|2

Ipm-cyf(2) el dm small.

@ Zero-sets :

THEOREM 8 (BORICHEV-H-KELLAY-MASSANEDA, 2015)
If C\Uyep D(A, v/my) is compact, then X is not a zero-divisor of F>°
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Unbounded multiplicities

IDEAS OF PROOF

Key ingredients :
e estimates on the incomplete Gamma-function :
() = g Jy e vy, wi(w) = e 0 &7
Me(k—tVE) > &, wi(k+tVE) > e, Ap(m—ty/m) < ehg(m) (12 < m < k)

o Local norm Y77 [(f, Ther)|? < CfD()\_\/mfA) |f(2)|2e7 12 dm(2)
@ The above implies

If o050 [(f, Taew) 2 small and [1 |f(2)Pe~*Fdm < 1, then
|2

Ipm-cyf(2) el dm small.

@ Zero-sets :

THEOREM 8 (BORICHEV-H-KELLAY-MASSANEDA, 2015)
If C\Uyep D(A, v/my) is compact, then X is not a zero-divisor of F>°

e O-methods. 18/17
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Main results
Unbounded multiplicities Proof of sampling/interpolation theorem
No simultanous interpolation/sampling

SAMPLING THEOREM

Necessary condition : [J,c, D(A, /mx + C) = C (¥).
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Necessary condition : [J,c, D(A, /mx + C) = C (¥).
o Finite overlap condition required for Carleson-type embedding
(boundedness of generalized restriction operator)
o If (*) not satisfied, then 3z,,dist(z,,Uycp D(A, /M) — 00
e The function f, := T, 1 cannot be sampled :

my—1 Zn—w|?
A 2ok20 [(frs Trew)|* S Do fD(A,m)e‘ »=F dm(w).
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Main results
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SAMPLING THEOREM

Necessary condition : [J,c, D(A, /mx + C) = C (¥).

o Finite overlap condition required for Carleson-type embedding

(boundedness of generalized restriction operator)
o If (*) not satisfied, then 3z,,dist(z,,Uycp D(A, /M) — 00
e The function f, := T, 1 cannot be sampled :
A 20 s Taer) P S 25 Sga, €7 dm(w).

Sufficient condition : C\ ,c D(A, /mx — C) compact for
sufficiently big C.
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Necessary condition : [J,c, D(A, /mx + C) = C (¥).
o Finite overlap condition required for Carleson-type embedding
(boundedness of generalized restriction operator)
o If (*) not satisfied, then 3z,,dist(z,,Uycp D(A, /M) — 00
o The function fn :=1T,,1 cannot be sampled :
m - 2
2o ) |<fn7T>\€k>‘ S2a fD(A7\/m—A)€‘Z’L vl dm(w).
Sufficient condltlon : C\ Uyea DA, y/my — C) compact for
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o Suppose || full = 1, Ynea v [(fn Thew)? — 0.
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Main results
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SAMPLING THEOREM

Necessary condition : [J,c, D(A, /mx + C) = C (¥).
o Finite overlap condition required for Carleson-type embedding

(boundedness of generalized restriction operator)

o If (*) not satisfied, then 3z,,dist(z,,Uycp D(A, /M) — 00
e The function f, := T, 1 cannot be sampled :

ST s a2 € o S €5~ dm(w).
Sufficient condltlon : C\ Uyea DA, y/my — C) compact for
sufficiently big C'.

o Suppose || full = L, Xaen 20 ' 1{fu Tren)? = 0.
e Can assume f, —» f.
o If f # 0, then X zero variety for 72 C F>°, contradicting Thm 8.
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SAMPLING THEOREM

Necessary condition : [J,c, D(A, /mx + C) = C (¥).
o Finite overlap condition required for Carleson-type embedding

(boundedness of generalized restriction operator)

o If (*) not satisfied, then 3z,,dist(z,,Uycp D(A, /M) — 00
e The function f, := T, 1 cannot be sampled :
m Zn—w|?

2o o ' |<fmT>\€k>| DI fD(A,m) el vl dm(w).
Sufficient condltlon : C\ Uyea DA, y/my — C) compact for
sufficiently big C'.

Suppose || fall = 1, Caen 52 [{Fns Trex)[* = 0.
Can assume f, — f.
If f 20, then X zero Varlety for F2 C F>°, contradicting Thm 8.
IFf=0:1=[.|fu(2)e* dm(z) <
2
o(1) + > sea fD(A,m—C) | fu(2)2e™ 1 dm(z).
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Can assume f, — f.
If f 20, then X zero Varlety for F2 C F>°, contradicting Thm 8.
IFf=0:1=[.|fu(2)e* dm(z) <
2

o(1) + > sea fD(A,m—C) | fu(2)2e™ 1 dm(z).
e Good points : fix M, a2nd define A; by A €1A1 when

Son e n(D2e = dm(z) < M S5 (o, Tren)
e Bad points : [... > M} ... use Lemma 1.
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Main results
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No simultanous interpolation/sampling

INTERPOLATION THEOREM

Sufficient condition : the disks D(), \/my + C) are pairwise disjoint
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INTERPOLATION THEOREM

Sufficient condition : the disks D(A, \/mx + C) are pairwise disjoint
e Based on d-methods
e Smooth interpolating function F(z) = >\, Q(2)n(|z — A| —72),
™ = m+ C, suppn C (70070)’ n=1on (700’ 70)7 |77/‘ /S 1,
@ requires the construction of a well-behaved weight function
¥(z) = |2]? + v(z), where

- /\|2 [z = AP
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XeA A

and Dy = D(\,/my) C Dl)\ =D(\ry=mx+ C).
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@ requires the construction of a well-behaved weight function
¥(z) = |2]? + v(z), where
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v(z) = ZmA [log +1
XeA A
and Dy = D(\,/my) C D\ = D(A\,ry = /mx +C).
o Then Ay = 4mm 6y on Dy, and Ay = 4 outside the disks D,.
Necessary condition : the disks D(A, \/mx — C) are pairwise disjoint

=P
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INTERPOLATION THEOREM

Sufficient condition : the disks D(A, \/mx + C) are pairwise disjoint
e Based on d-methods
e Smooth interpolating function F(z) = >\, Q(2)n(|z — A| —72),
™ = m+ C, suppn C (70070)’ n=1on (700’ 70)7 |77/‘ /S 1,
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and Dy = D(\,/my) C D\ = D(A\,ry = /mx +C).

o Then Ay = 4mm 6y on Dy, and Ay = 4 outside the disks D,.
Necessary condition : the disks D(A, \/mx — C) are pairwise disjoint

e When D(wy, k) C D(Ag, VA — k) N D (g, \/fir — k), interpolate

the data (fz), where fi € Na,, fx —Tw,1 € Ny, || full < C.
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o Then Ay = 4mm 6y on Dy, and Ay = 4 outside the disks D,.
Necessary condition : the disks D(A, \/mx — C) are pairwise disjoint

e When D(wy, k) C D(Ag, VA — k) N D (g, \/fir — k), interpolate

the data (fz), where fi € Na,, fx —Tw,1 € Ny, || full < C.
e By Lemma 1, ) )

fD(Ak,\/E—k) | fe|2el*"dm + fD(uk,\/;Tk—k) |fe — T, 1)%el* dm — 0
o But [} Ty, 112e* dm = ¢ > 0.

Multiple sampling and interpolation
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Here is a simple geometric argument.
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PROOF OF NON EXISTENCE OF SIMULTANEOUS
SAMPLING & INTERPOLATION

Here is a simple geometric argument.

Suppose the sequence is simultaneously
interpolating and sampling.

By sampling, up to a constant,
three disks meet at a point z. The worst
case is when they meet on the circle

Consider the hexagon z12z132322322212-
The sum of its angles is 4.

The angles in z;; are at most . So there
is an angle 7 missing, and one of the six angles «;; is at least 7/6.

Hence, the width of the intersection between circle 4 and circle j is
bounded below by a cst times the least radius, which tends to infinity.

So the disks cannot be separated by an additive constant.
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Remarks on results
Uniform Norm

FINAL REMARK : UNIFORM NORM

Let .
F ={f €Hol(C) : || flloc :=sup|f(2)e”1*"/* < oo}.

We get analogous results for sampling and interpolation in F°°.
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FINAL REMARK : UNIFORM NORM

Let .
F ={f €Hol(C) : || flloc :=sup|f(2)e”1*"/* < oo}.

We get analogous results for sampling and interpolation in F°°.
Most of the proofs adapt to p = +oo.
Delicate part : sufficient condition for interpolation.

Adapts a clever trick by Berndtsson (J. Geom. Anal. 1997) to get
uniform estimates for optimal L? solutions (which exist for finite
sequences + normal families).

Again, there are no simultaneously interpolating and sampling
sequences in that case.
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