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Interpolation and sampling

Let H be a reproducing kernel Hilbert space of analytic functions on
a domain, kλ the reproducing kernel in λ.

A sequence Λ ⊂ C is called sampling for H if

‖f‖2 �
∑
λ∈Λ

|f(λ)|2

kλ(λ)
, f ∈ H,

and interpolating if for every v = (vλ)λ∈Λ ∈ `2, there exists f ∈ H
such that

f(λ)

‖kλ‖
= vλ, λ ∈ Λ.
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Fock space

F2 = {f ∈ Hol(C) : ‖f‖22 :=
1

π

∫
C
|f(z)|2e−|z|

2

dm(z) <∞}.

Scalar product :

〈f, g〉 =
1

π

∫
C
f(z)g(z)e−|z|

2

dm(z)

Orthonormal basis :

ek(z) =
zk√
k!
, k ≥ 0

Reproducing kernel :

kz(ζ) =
∑
k≥0

ek(ζ)ek(z) = ez̄ζ

with norm ‖kz‖2 = kz(z) = e|z|
2

.

Isometric translation :

Tzf(ζ) = ez̄ζ−
1
2 |z|

2

f(ζ − z), f ∈ F2.
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Classical interpolation and sampling

Define lower and upper densities by

D−(Λ) = lim inf
r→∞

n−(r)

r2
, D+(Λ) = lim sup

r→∞

n+(r)

r2
,

where n−(r) and n+(r) denote the smallest and the largest number of
points of Λ in a disk D(z, r), z ∈ C.

Seip and Seip-Wallstén proved in 1992 :

Theorem 1 (Seip, Seip-Wallstén, 1992)

A discrete set Λ is a set of sampling for F2 if and only if it can be
expressed as a finite union of uniformly discrete sets and contains a
uniformly discrete subset Λ′ for which D−(Λ′) > 1.

Theorem 2 (Seip, Seip-Wallstén, 1992)

A discrete set Λ is a set of interpolation for F2 if and only if it is
uniformly discrete and D+(Λ) < 1.

Observation : no simultaneous interpolation and sampling.
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Multiple interpolation and sampling

Idea : Hermite type interpolation — more information in the nodes,
less nodes required.

Observe : if f ∈ F2 then f(z) =
∑
k≥0 akek(z) =

∑
k≥0 ak

zk√
k!
,

‖f‖2 =
∑
k≥0 |ak|2.

Equating with Taylor series 〈f, ek〉 = ak = f(k)(0)√
k!

Note Tλe0(z) = Tλ1(z) = eλz−
1
2 |λ|

2

= kλ
‖kλ‖ , and 〈f, Tλe0〉 = f(λ)

‖kλ‖ .

Restriction operator :
R : F2 −→ l2, f 7−→ (〈f, Tλe0〉)λ = (f(λ)/‖kλ‖)λ

Generalized restriction operator
Let X = {(λ,mλ)} a divisor (λ ∈ Λ, mλ ∈ N∗).
R : F2 −→ l2, f 7−→ (〈f, Tλek〉)λ∈Λ,0≤k≤mλ−1
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New definition (Seip, Brekke-Seip)

X is called sampling for F2 if R is bounded and left-invertible :

‖f‖22 �
∑
λ∈Λ

mλ−1∑
k=0

|〈f, Tλek〉|2 =
∑
λ∈Λ

‖f‖2F2/N2
λ
, f ∈ F2,

where Nλ = {f ∈ F2 : f(λ) = · · · = f (mλ−1)(λ) = 0}.

X is called interpolating for F2 if R is onto : for every sequence
v = {v(k)

λ } λ∈Λ
k<mλ

such that

‖v‖22 :=
∑
λ∈Λ

mλ−1∑
k=0

|v(k)
λ |

2 <∞

there exists a function f ∈ F2 such that

〈f, Tλek〉 = v
(k)
λ , 0 ≤ k < mλ, λ ∈ Λ.
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Uniformly bounded multiplicities

Recall :
X sampling if ‖f‖22 �

∑
λ∈Λ

∑mλ−1
k=0 |〈f, Tλek〉|2,

X interpolating if
∑
λ∈Λ

∑mλ−1
k=0 |v(k)

λ |2 <∞ implies ∃f ∈ F2,
〈f, Tλek〉 = v

(k)
λ .

Densities: D−(X) = lim infr→∞
n−(r)
r2 , D+(X) = lim infr→∞

n+(r)
r2

When supλmλ <∞, then Brekke-Seip proved :

Theorem 3 (Brekke-Seip 1993)

A divisor X is of sampling for F2 if and only if it can be expressed as
a finite union of uniformly discrete sets and contains a uniformly
discrete subdivisor X ′ for which D−(X ′) > 1.

Theorem 4 (Brekke-Seip 1993)

A divisor X is of interpolation for F2 if and only if it is uniformly
discrete and D+(X) < 1.

Again : no simultaneous interpolation & sampling.
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Unbounded multiplicities : a motivation

Probably the only Hilbert space where the situation of unbounded
multiplicities is completely understood : the Hardy space H2.
Let Θ =

∏
n≥1 θn be an inner function.

Define `2(H2/θnH
2) = {(fn)n : fn ∈ H2,

∑
n≥1 ‖fn‖2H2/θnH2 < +∞}.

The sequence (θn)n satisfies the generalized Carleson condition (or
Carleson-Vasyunin condition) if |Θ(z)| ≥ δ infn |θn(z)|, for some δ > 0.

Theorem 5 (Nikolski, Vasyunin, 1978 (p = 2))

In the notation above, the following assertions are equivalent :
The operator R : H2 −→ `2(H2/θnH

2), R(f) = (f + θnH
2) is

bounded and onto,
(θn)n satisfies the generalized Carleson condition.

Note H2/θnH
2 = Kθn := H2 	 θnH2, and the isometry is given by

the orthogonal projection Pθn : H2 −→ Kθn .
Special case : θn = bmnλn which gives interpolation with unbounded
multiplicities. 9/17
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Unbounded multiplicities

Question : (Brekke-Seip) Are their simultaneous interpola-
ting/sampling sequences, when supλmλ =∞ ?

Interpolation/sampling — same definitions :
X sampling if ‖f‖22 �

∑
λ∈Λ

∑mλ−1
k=0 |〈f, Tλek〉|2,

X interpolating if
∑
λ∈Λ

∑mλ−1
k=0 |v(k)

λ |2 <∞ implies ∃f ∈ F2,
〈f, Tλek〉 = v

(k)
λ .

Geometric conditions — densities make no longer sense ! (minimal
number of points in suitable disks tends to infinity even for fixed
radius).

Consider covering/separation conditions :
Separation : D(λ,

√
mλ + C) are separated (C ∈ R suitable).

Covering :
⋃
λD(λ,

√
mλ + C) = C \K (C ∈ R suitable, K

compact).
Finite overlap condition : supz∈C

∑
λ∈Λ χD(λ,

√
mλ)(z) <∞.

(A Carleson embedding type condition.)

10/17
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Sampling results

Theorem 6 (Borichev-H-Kellay-Massaneda, 2015)

(a) If X = {(λ,mλ)}λ∈Λ is sampling for F2, then X satisfies the
finite overlap condition and there exists C > 0 such that⋃
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√
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D(λ,
√
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then X is sampling for F2.
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Main results — continued

Interpolation

Theorem 7 (Borichev-H-Kellay-Massaneda, 2015)

(a) If X = {(λ,mλ)}λ∈Λ is an interpolating divisor for F2, then there
exists C > 0 such that the discs {D(λ,

√
mλ − C)}λ∈Λ are pairwise

disjoint.
(b) Conversely, if the disks {D(λ,

√
mλ +C)}λ∈Λ are pairwise disjoint

for some C > 0, then X is an interpolating divisor for F2.

Consequence : The results on interpolation and sampling allow to
deduce a partial answer to the question by Brekke and Seip :

Corollary 1 (Borichev-H-Kellay-Massaneda, 2015)

Suppose lim
|λ|→∞

mλ = +∞. Then X cannot be simultaneously

interpolating and sampling for F2.
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Ideas of proof

Key ingredients :

estimates on the incomplete Gamma-function :
λk(x) = 1

k!

∫ x
0
yke−ydy, ωk(x) = e−x

∑k
s=0

xs

s! .

λk(k−t
√
k) ≥ ε, ωk(k+t

√
k) ≥ ε, λk(m−t

√
m) ≤ ελk(m) (t2 ≤ m ≤ k)

Local norm
∑m−1
k=0 |〈f, Tλek〉|2 ≤ C

∫
D(λ,

√
m−A)

|f(z)|2e−|z|2dm(z)

The above implies

Lemma 1

If
∑m−1
k=0 |〈f, Tλek〉|2 small and

∫
D(
√
m)
|f(z)|2e−|z|2dm ≤ 1, then∫

D(
√
m−C)

|f(z)|2e−|z|2dm small.

Zero-sets :

Theorem 8 (Borichev-H-Kellay-Massaneda, 2015)

If C\
⋃
λ∈ΛD(λ,

√
mλ) is compact, then X is not a zero-divisor of F∞

∂-methods.
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Sampling theorem

Necessary condition :
⋃
λ∈ΛD(λ,

√
mλ + C) = C (*).

Finite overlap condition required for Carleson-type embedding
(boundedness of generalized restriction operator)
If (*) not satisfied, then ∃zn,dist(zn,

⋃
λ∈ΛD(λ,

√
mλ))→∞

The function fn := Tzn1 cannot be sampled :∑
λ

∑mλ−1
k=0 |〈fn, Tλek〉|2 .

∑
λ

∫
D(λ,

√
mλ)

e|zn−w|
2

dm(w).

Sufficient condition : C \
⋃
λ∈ΛD(λ,

√
mλ − C) compact for

sufficiently big C.
Suppose ‖fn‖ = 1,

∑
λ∈Λ

∑mλ−1
k=0 |〈fn, Tλek〉|2 → 0.

Can assume fn
w−→ f .

If f 6= 0, then X zero variety for F2 ⊂ F∞, contradicting Thm 8.
If f = 0 : 1 =

∫
C |fn(z)|2e−|z|2dm(z) ≤

o(1) +
∑
λ∈Λ

∫
D(λ,

√
mλ−C)

|fn(z)|2e−|z|2dm(z).
Good points : fix M , and define Λ1 by λ ∈ Λ1 when∫
D(λ,

√
mλ)
|fn(z)|2e−|z|2dm(z) ≤M

∑mλ−1
k=0 |〈fn, Tλek〉|2

Bad points :
∫
... > M

∑
... use Lemma 1.
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If (*) not satisfied, then ∃zn,dist(zn,

⋃
λ∈ΛD(λ,

√
mλ))→∞

The function fn := Tzn1 cannot be sampled :∑
λ

∑mλ−1
k=0 |〈fn, Tλek〉|2 .

∑
λ

∫
D(λ,

√
mλ)

e|zn−w|
2

dm(w).

Sufficient condition : C \
⋃
λ∈ΛD(λ,

√
mλ − C) compact for

sufficiently big C.
Suppose ‖fn‖ = 1,

∑
λ∈Λ

∑mλ−1
k=0 |〈fn, Tλek〉|2 → 0.

Can assume fn
w−→ f .

If f 6= 0, then X zero variety for F2 ⊂ F∞, contradicting Thm 8.

If f = 0 : 1 =
∫
C |fn(z)|2e−|z|2dm(z) ≤

o(1) +
∑
λ∈Λ

∫
D(λ,

√
mλ−C)

|fn(z)|2e−|z|2dm(z).
Good points : fix M , and define Λ1 by λ ∈ Λ1 when∫
D(λ,

√
mλ)
|fn(z)|2e−|z|2dm(z) ≤M

∑mλ−1
k=0 |〈fn, Tλek〉|2

Bad points :
∫
... > M

∑
... use Lemma 1.
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Main results
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No simultanous interpolation/sampling

Interpolation theorem

Sufficient condition : the disks D(λ,
√
mλ + C) are pairwise disjoint

Based on ∂-methods
Smooth interpolating function F (z) =

∑
λ∈ΛQ(z)η(|z − λ| − rλ),

rλ =
√
mλ + C, supp η ⊂ (−∞, 0), η ≡ 1 on (−∞,−C), |η′| . 1,

requires the construction of a well-behaved weight function
ψ(z) = |z|2 + v(z), where

v(z) =
∑
λ∈Λ

mλ

[
log
|z − λ|2

mλ
+ 1− |z − λ|

2

mλ

]
χDλ(z),

and Dλ = D(λ,
√
mλ) ⊂ D′λ = D(λ, rλ =

√
mλ + C).

Then ∆ψ = 4πmλδλ on Dλ, and ∆ψ = 4 outside the disks Dλ.
Necessary condition : the disks D(λ,

√
mλ − C) are pairwise disjoint

When D(wk, k) ⊂ D(λk,
√
λk − k) ∩D(µk,

√
µk − k), interpolate

the data (fk), where fk ∈ Nλk , fk − Twk1 ∈ Nµk , ‖fk‖ ≤ C.
By Lemma 1,∫
D(λk,

√
λk−k)

|fk|2e|z|
2

dm+
∫
D(µk,

√
µk−k)

|fk − Twk1|2e|z|2dm→ 0

But
∫
D(wk,1)

|Twk1|2e|z|2dm = c > 0.
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Introduction
Unbounded multiplicities

Uniform Norm

Main results
Proof of sampling/interpolation theorem
No simultanous interpolation/sampling

Proof of non existence of simultaneous
sampling & interpolation

Here is a simple geometric argument.

Suppose the sequence is simultaneously
interpolating and sampling.

By sampling, up to a constant,
three disks meet at a point z. The worst
case is when they meet on the circle

Consider the hexagon z1z13z3z23z2z12.
The sum of its angles is 4π.

The angles in zij are at most π. So there
is an angle π missing, and one of the six angles αij is at least π/6.

Hence, the width of the intersection between circle i and circle j is
bounded below by a cst times the least radius, which tends to infinity.

So the disks cannot be separated by an additive constant.
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Remarks on results

Final remark : Uniform norm

Let
F∞ = {f ∈ Hol(C) : ‖f‖∞ := sup |f(z)|e−|z|

2/2 <∞}.

We get analogous results for sampling and interpolation in F∞.

Most of the proofs adapt to p = +∞.

Delicate part : sufficient condition for interpolation.

Adapts a clever trick by Berndtsson (J. Geom. Anal. 1997) to get
uniform estimates for optimal L2 solutions (which exist for finite
sequences + normal families).

Again, there are no simultaneously interpolating and sampling
sequences in that case.
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