Approximative properties of polyanalytic polynomial modules

Konstantin Fedorovskiy

Bauman Moscow State Technical University & St. Petersburg State University

Functional Analysis, Harmonic Analysis and Probability CIRM, Marseille, November 30 – December 4, 2015

The talk is based on joint works with Anton Baranov (St. Petersburg State University) and Joan Carmona (Universitat Autònoma de Barcelona)

For integers m > 0 and $0 < k_1 < k_2 < \cdots < k_m$ let $\mathscr{P}(\overline{z}^{k_1}, \dots, \overline{z}^{k_m}) = \{ p_0 + \overline{z}^{k_1} p_1 + \dots + \overline{z}^{k_m} p_m \colon p_0, \dots, p_m \in \mathbb{C}[z] \};$

 $\mathscr{P}(z^{-1},...,z^{-m}) = \{p_0 + z^{-1}p_1 + \cdots + z^{-m}p_m \colon p_0,...,p_m \in \mathbb{C}[z]\}$

and let X be a compact set in \mathbb{C} .

Question (A. G. O'Farrell (in slightly different form), J. Carmona)

For which X the module $\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ is dense in C(X)?

- The roots of this question can be traced back to 1970–1980th, when several problems on density of rational modules were considered (O'Farrell, Verdera, Carmona, Trent, Wang);
- In the case $k_j = j$, for j = 1, ..., m and integer $n \ge 2$, one has the question about density in C(X) of the system of polyanalytic polynomials (of order m + 1);

For integers m > 0 and $0 < k_1 < k_2 < \cdots < k_m$ let

$$\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})=\big\{p_0+\overline{z}^{k_1}p_1+\cdots+\overline{z}^{k_m}p_m\colon p_0,\ldots,p_m\in\mathbb{C}[z]\big\};$$

and let X be a compact set in \mathbb{C} .

Question (A. G. O'Farrell (in slightly different form), J. Carmona)

For which X the module $\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ is dense in C(X)?

• In the most general form this question is states as the question of density in C(X) of the module

$$\{p_0(z)+w_1(z)p_1(z)+\cdots+w_m(z)p_m(z): p_0, p_1, \ldots, p_m \in \mathbb{C}[z]\},$$

where w_1, \ldots, w_m are given (sufficiently regular) functions (generators of the module under consideration).

For integers m > 0 and $0 < k_1 < k_2 < \cdots < k_m$ let

$$\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})=\big\{p_0+\overline{z}^{k_1}p_1+\cdots+\overline{z}^{k_m}p_m\colon p_0,\ldots,p_m\in\mathbb{C}[z]\big\};$$

and let X be a compact set in \mathbb{C} .

Question (A. G. O'Farrell (in slightly different form), J. Carmona)

For which X the module $\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ is dense in C(X)?

- The similar questions are also stated for the spaces of smooth and integrable functions on X instead of C(X).
- This question has very interesting relations with certain questions in the theory of model spaces $K_{\theta} = H^2 \ominus \theta H^2$:
 - existence of univalent functions in K_{θ} ;
 - boundary behavior of univalent functions in K_{θ} ;
 - taking roots in K_{θ} .



For integers m > 0 and $0 < k_1 < k_2 < \cdots < k_m$ let

$$\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})=\big\{p_0+\overline{z}^{k_1}p_1+\cdots+\overline{z}^{k_m}p_m\colon p_0,\ldots,p_m\in\mathbb{C}[z]\big\};$$

and let X be a compact set in \mathbb{C} .

Question (A. G. O'Farrell (in slightly different form), J. Carmona)

For which X the module $\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ is dense in C(X)?

Let $\mathscr{R}_{E}(\overline{z}^{k_{1}},\ldots,\overline{z}^{k_{m}})=\left\{g_{0}+\overline{z}^{k_{1}}g_{1}+\cdots+\overline{z}^{k_{m}}g_{m}\colon g_{0},\ldots,g_{m}\text{ are rational functions with poles outside a given set }E\subset\mathbb{C}\right\}.$

Question

For which X the module $\mathscr{R}_E(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ is dense in C(X)?

Examples: E = X, or $E = \overline{G}$ and $X = \partial G$, where G is a bounded simply connected domain in \mathbb{C} .

- $A(X, \overline{z}^d) = \{ f \in C(X) : f|_{X^{\circ}} = \overline{z}^d f_1 + f_0, \ f_0, f_1 \in Hol(X^{\circ}) \};$
- $P(X, \overline{z}^d) = C(X)$ -closure of $\{p|_X : p \in \mathscr{P}(\overline{z}^d)\}$;
- $R(X, \overline{z}^d) = C(X)$ -closure of $\{g|_X : g \in \mathcal{R}_X(\overline{z}^d)\}$.

Let $U \subset \mathbb{C}$ be on open set with $0 \notin U$.

If $f \in C(U)$ satisfy the elliptic PDE

$$\overline{\partial}\left(\frac{1}{\overline{z}^{d-1}}\overline{\partial}f\right)=0,$$
 (*)

where $\overline{\partial}$ be the standard Cauchy–Riemann operator, then f has the form $f = \overline{z}^d f_1 + f_0$ with $f_0, f_1 \in Hol(U)$.

For d=1 one has bianalytic functions $\overline{z}f_1(z)+f_0(z)$.

One has $P(X, \overline{z}^d) \subset R(X, \overline{z}^d) \subset A(X, \overline{z}^d)$.

- $\bullet \ A(X,\overline{z}^d) = \big\{ f \in C(X) \colon f|_{X^\circ} = \overline{z}^d f_1 + f_0, \ f_0, f_1 \in Hol(X^\circ) \big\};$
- $P(X, \overline{z}^d) = C(X)$ -closure of $\{p|_X : p \in \mathscr{P}(\overline{z}^d)\}$;
- $R(X, \overline{z}^d) = C(X)$ -closure of $\{g|_X : g \in \mathcal{R}_X(\overline{z}^d)\}$.

Theorem (Baranov–Carmona–F., J. Approx. Theor. 2016)

For any compact set $X \subset \mathbb{C}$ and for any integer $d \geqslant 1$ one has $A(X, \overline{z}^d) = R(X, \overline{z}^d)$.

For d = 1 it was proved by M. Mazalov [Mazalov, Sb. Math. 2004].

The proof of this theorem in the general case may be obtained following the same scheme, as in the proof of Mazalov's theorem.

Main difficulty: (*) is not an equation with constant coefficients.

But one can define Vitushkin localization operator for solutions of (*), and the properties of this operator, which are important for the proof are similar to the bianalytic case.

- $\bullet \ A(X,\overline{z}^d) = \big\{ f \in C(X) \colon f|_{X^{\circ}} = \overline{z}^d f_1 + f_0, \ f_0, f_1 \in Hol(X^{\circ}) \big\};$
- $P(X, \overline{z}^d) = C(X)$ -closure of $\{p|_X : p \in \mathscr{P}(\overline{z}^d)\}$;
- $R(X, \overline{z}^d) = C(X)$ -closure of $\{g|_X : g \in \mathcal{R}_X(\overline{z}^d)\}$.

X is a Carathéodory compact set if $\partial X = \partial \widehat{X}$, where \widehat{X} us the union of X and all bounded connected components of $\mathbb{C} \setminus X$.

Theorem (Baranov–Carmona–F., J. Approx. Theor. 2016)

Let X be a Carathéodory compact set and $d \geqslant 2$ be an integer. Then $A(X, \overline{z}^d) = P(X, \overline{z}^d)$ if and only if each bounded connected component of the set $\mathbb{C} \setminus X$ is not a d-Nevanlinna domain.

For d=1 it was proved in [Carmona–F.–Paramonov, Sb. Math. 2002].

d-Nevanlinna domain: this concept is the special analytic characteristic of bounded simply connected domains.

d-Nevanlinna domains: definition and examples

Definition

A bounded simply connected domain G in $\mathbb C$ is called d-Nevanlinna domain if there exist two functions $u,v\in H^\infty(G)$ such that $v\not\equiv 0$ and $\overline{z}^d=u/v$ a.e. on ∂G in the sense of conformal mappings.

It means that the equality of angular boundary values

$$\overline{\varphi(\zeta)}^d = \frac{(u \circ \varphi)(\zeta)}{(v \circ \varphi)(\zeta)}$$

holds a.e. on the unit circle \mathbb{T} , where φ is some conformal mapping from the unit disk \mathbb{D} onto G.

Classes ND_d and $ND := ND_1$.

It is clear that $ND \subset ND_d \subset ND_{kd}$ for any integer $k \ge 1$.

d-Nevanlinna domains: definition and examples

Definition

A bounded simply connected domain G in $\mathbb C$ is called d-Nevanlinna domain if there exist two functions $u,v\in H^\infty(G)$ such that $v\not\equiv 0$ and $\overline{z}^d=u/v$ a.e. on ∂G in the sense of conformal mappings.

```
For d = 1 one has the concept of a Nevanlinna domain. See: [F., Math. Notes 1996],
```

[Carmona-F.-Paramonov, Sb. Math 2002],

[F., Proc. Steklov Inst. Math. 2006],

[Baranov-F., Sb. Math. 2011],

[Mazalov-F.-Paramonov, Russian Math. Surveys 2012]

[Mazalov, Algebra i Analiz 2015; St. Petersburg Math. J. 2016]

 ND_d -domains may have very irregular (nowhere analytic, non smooth and, even, non rectifiable) boundaries.

 $ND_d = \{G = f(\mathbb{D}): f^d \text{ admits a pseudocontinuation}\}\$ $ND_d = \{G = f(\mathbb{D}): f^d \in K_{\Theta} \text{ and } f \text{ univalent in } \mathbb{D}\}.$

d-Nevanlinna domains: definition and examples

Examples:

Let $G_{a,b}$ be the domain bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Let $G_{a,b}'$ be the image of $D_{a,b}$ under the inversion $z\mapsto 1/z$

- \mathbb{D} , $G'_{a,b} \in ND$; therefore, for any $d \geqslant 1$, $P(\partial \mathbb{D}, \overline{z}^d) \neq C(\partial \mathbb{D})$ and $P(\partial G'_{a,b}, \overline{z}^d) \neq C(\partial G'_{a,b})$;
- $G_{a,b} \notin ND_d$ for any integer $d \geqslant 1$, and hence $P(\partial G_{a,b}, \overline{z}^d) = C(\partial G_{a,b});$
- Any bounded simply connected domain bounded by *polygonal* line does not belong to ND_d for any $d \ge 1$.

Let
$$\psi_k(z) = \sqrt[k]{a-z}$$
, $a > 1$, and $B_k = \psi_k(\mathbb{D})$.

• $B_k \notin ND$, but $B_k \in ND_k$;

 $B_k \in ND_m$ for any $m \in k\mathbb{Z}$, but $B_k \notin ND_m$ for any $m \notin k\mathbb{Z}$.

$$P(\partial B_k, \overline{z}^m) \neq C(\partial B_k)$$
 for $m \in k\mathbb{Z}$, but $P(\partial B_k, \overline{z}^m) = C(\partial B_k)$ for $m \notin k\mathbb{Z}$.

Approximation by $\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ and $\mathscr{R}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$

$$R(X,Y,\overline{z}^{k_1},\ldots,\overline{z}^{k_m}) := C(X)\text{-clos. } \{g|_X \colon g \in \mathscr{R}_Y(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})\}$$

$$P(X,\overline{z}^{k_1},\ldots,\overline{z}^{k_m}) := C(X)\text{-clos. } \{g|_X \colon g \in \mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})\}$$

Recall, that a bounded simply connected domain G is called a Carathéodory domain, if $\partial G = \partial G_{\infty}$, where G_{∞} is unbounded connected component of the set $\mathbb{C} \setminus \overline{G}$.

Theorem (Baranov–Carmona–F., J. Approx. Theor. 2016)

Let G be a Carathéodory domain, let $k_1 < \cdots < k_m$ are positive integers, and let $d = \gcd(k_1, \ldots, k_m)$. TFAE:

- 3 *G* is not a *d*-Nevanlinna domain.

If \overline{G} does not separate the plane (i.e. if the set $\mathbb{C} \setminus \overline{G}$ is connected), then $R(\partial G, \overline{G}, \ldots) = P(\partial G, \ldots)$ and $R(\partial G, \overline{G}, \overline{z}^d) = P(\partial G, \overline{z}^d)$.

Approximation by $\mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$ and $\mathscr{R}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$

$$R(X,Y,\overline{z}^{k_1},\ldots,\overline{z}^{k_m}) := C(X)\text{-clos. } \{g|_X \colon g \in \mathscr{R}_Y(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})\}$$

$$P(X,\overline{z}^{k_1},\ldots,\overline{z}^{k_m}) := C(X)\text{-clos. } \{g|_X \colon g \in \mathscr{P}(\overline{z}^{k_1},\ldots,\overline{z}^{k_m})\}$$

Theorem (Baranov–Carmona–F., J. Approx. Theor. 2016)

Let G be a Carathéodory domain, let $k_1 < \cdots < k_m$ are positive integers, and let $d = \gcd(k_1, \ldots, k_m)$. TFAE:

- \odot G is not a d-Nevanlinna domain.

Proposition

Let Γ be a rect. simply closed curve, and k_1,\ldots,k_m,d be as before. If $\widehat{\Gamma} \in ND_d$, then there exists a measure ν on Γ such that i) $\nu \perp P(\Gamma,\overline{z}^{sd})$ for all positive integers s with $sd < k_m$, but ii) $\nu \not\perp P(\Gamma,\overline{z}^{k_m})$ (and hence $\nu \not\perp P(\Gamma,\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$).

Let
$$R(X, \overline{z}^{k_1}, \dots, \overline{z}^{k_m}) = R(X, X, \overline{z}^{k_1}, \dots, \overline{z}^{k_m}).$$

Proposition

Let X be a Carathéodory compact set in \mathbb{C} . If $G \notin ND_d$ for any bounded connected component G of $\mathbb{C} \setminus X$, then

$$R(X,\overline{z}^{k_1},\ldots,\overline{z}^{k_m})=P(X,\overline{z}^{k_1},\ldots,\overline{z}^{k_m}).$$

Conversely, if there exists some bounded connected component G of the set $\mathbb{C} \setminus X$ such that $G \in ND_d$, then

$$R(X, \overline{z}^{k_1}, \dots, \overline{z}^{k_m}) \neq P(X, \overline{z}^{k_1}, \dots, \overline{z}^{k_m}).$$

Question

Is it true, that

$$R(X,\overline{z}^{k_1},\ldots,\overline{z}^{k_m})=A(X,\overline{z}^{k_1},\ldots,\overline{z}^{k_m})$$

at least for Carathéodory compact sets?

m=1: the answer is affirmative [Carmona, J. Approx. Theor. 1985].

