Some results on the structure of Lipschitz-free spaces

Michal Doucha

Joint work with M. Cúth and P. Wojtaszczyk

Université de Franche-Comté, Besançon

December 1, 2015

Let (M, d, 0) be a pointed metric space. Consider the linear space $\operatorname{Lip}_0(M)$ of all real-valued Lipschitz functions on M that vanish at 0. The minimal Lipschitz constant is a norm that makes $\operatorname{Lip}_0(M)$ a Banach space.

Let (M, d, 0) be a pointed metric space. Consider the linear space $\operatorname{Lip}_0(M)$ of all real-valued Lipschitz functions on M that vanish at 0. The minimal Lipschitz constant is a norm that makes $\operatorname{Lip}_0(M)$ a Banach space.

There is a natural embedding $\delta : M \hookrightarrow \operatorname{Lip}_0(M)^*$ that sends each $x \in M$ to the evaluation functional δ_x , i.e. $\delta_x(f) := f(x)$ for every $f \in \operatorname{Lip}_0(M)$. It is an isometric embedding and we define the Lipschitz-free space over M, F(M), to be the Banach subspace $\operatorname{span}\{\delta_x : x \in M\}$.

• • = • • = •

Let (M, d, 0) be a pointed metric space. Consider the linear space $\operatorname{Lip}_0(M)$ of all real-valued Lipschitz functions on M that vanish at 0. The minimal Lipschitz constant is a norm that makes $\operatorname{Lip}_0(M)$ a Banach space.

There is a natural embedding $\delta : M \hookrightarrow \operatorname{Lip}_0(M)^*$ that sends each $x \in M$ to the evaluation functional δ_x , i.e. $\delta_x(f) := f(x)$ for every $f \in \operatorname{Lip}_0(M)$. It is an isometric embedding and we define the Lipschitz-free space over M, F(M), to be the Banach subspace $\operatorname{span}\{\delta_x : x \in M\}$. From that we get that for any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in M$ we have $\|\alpha_1 \delta_{x_1} + \ldots + \alpha_n \delta_{x_n}\| = \sup\{\alpha_1 f(x_1) + \ldots + \alpha_n f(x_n) : f \in \operatorname{Lip}_0(M), \|f\|_{\operatorname{Lip}_0} \leq 1\}$.

伺 ト イ ヨ ト イ ヨ ト

We again start with (M, d, 0). Consider the real vector space with the Hamel basis $M \setminus \{0\}$. For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in M$ set

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| := \inf\{|\beta_1| d(a_1, b_1) + \ldots + |\beta_m| d(a_m, b_m):$$

 $\alpha_1 x_1 + \ldots + \alpha_n x_n = \beta_1 (a_1 - b_1) + \ldots + \beta_m (a_m - b_m); \beta_i \in \mathbb{R}, a_i, b_i \in M \forall i \}.$

We again start with (M, d, 0). Consider the real vector space with the Hamel basis $M \setminus \{0\}$. For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in M$ set

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| := \inf\{|\beta_1| d(a_1, b_1) + \ldots + |\beta_m| d(a_m, b_m):$$

 $\alpha_1 x_1 + \ldots + \alpha_n x_n = \beta_1 (a_1 - b_1) + \ldots + \beta_m (a_m - b_m); \beta_i \in \mathbb{R}, a_i, b_i \in M \forall i \}.$

One can check that this formula actually gives a norm. We shall consider the completion.

We again start with (M, d, 0). Consider the real vector space with the Hamel basis $M \setminus \{0\}$. For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in M$ set

$$\|\alpha_1 x_1 + \ldots + \alpha_n x_n\| := \inf\{|\beta_1|d(a_1, b_1) + \ldots + |\beta_m|d(a_m, b_m):$$

 $\alpha_1 x_1 + \ldots + \alpha_n x_n = \beta_1 (a_1 - b_1) + \ldots + \beta_m (a_m - b_m); \beta_i \in \mathbb{R}, a_i, b_i \in M \forall i \}.$

One can check that this formula actually gives a norm. We shall consider the completion.

It is easy to show that both Banach spaces satisfy the following universal property:

Universal property of Lipschitz-free spaces

Let X be a Banach space and suppose $L: M \to X$ is a Lipschitz map such that L(0) = 0. Then there exists a unique linear map $\widehat{L}: F(M) \to X$ extending L, i.e., the following diagram commutes

and $\|\widehat{L}\| = \|L\|_{\operatorname{Lip}_0}$.

Universal property

Remark

The universal property clearly defines F(M) uniquely up to linear isometry, thus we conclude that both spaces are one and the same.

Remark

The universal property clearly defines F(M) uniquely up to linear isometry, thus we conclude that both spaces are one and the same.

Remark

Since for every $f \in F(M)^*$ we have that $f \upharpoonright M \in \operatorname{Lip}_0(M)$ and $||f|| = ||f \upharpoonright M||_{\operatorname{Lip}_0}$, and conversely every $f \in \operatorname{Lip}_0(M)$ uniquely extends to $\hat{f} \in F(M)^*$ with $||f||_{\operatorname{Lip}_0} = ||\hat{f}||$, we conclude that the space $\operatorname{Lip}_0(M)$ is isometric to $F(M)^*$.

Remark

The universal property clearly defines F(M) uniquely up to linear isometry, thus we conclude that both spaces are one and the same.

Remark

Since for every $f \in F(M)^*$ we have that $f \upharpoonright M \in \operatorname{Lip}_0(M)$ and $||f|| = ||f \upharpoonright M||_{\operatorname{Lip}_0}$, and conversely every $f \in \operatorname{Lip}_0(M)$ uniquely extends to $\hat{f} \in F(M)^*$ with $||f||_{\operatorname{Lip}_0} = ||\hat{f}||$, we conclude that the space $\operatorname{Lip}_0(M)$ is isometric to $F(M)^*$.

Remark

From both definitions, perhaps easier from the first one, one can show that for a metric subspace $N \subseteq M$, F(N) is a subspace, resp. linearly isometric to a subspace, of F(M). That is not true, though, in the complex case. A lot of "small/simple" metric spaces give rise to a Lipschitz-free space that is isomorphic to ℓ_1 ; e.g. measure zero sets containing all the branching points in \mathbb{R} -trees (Godard), ultrametric spaces. We also mention the following result:

Theorem[P. Kaufmann]

For X a Banach space we have $F(X) \cong (\bigoplus_{n \in \mathbb{N}} F(X))_{\ell_1}$.

Perhaps it is possible to find ℓ_1 in every Lipschitz-free space.

Every infinite-dimensional Lipschitz-free space F(M), i.e. over an infinite M, contains a complemented copy of ℓ_1 .

Every infinite-dimensional Lipschitz-free space F(M), i.e. over an infinite M, contains a complemented copy of ℓ_1 .

Corrolaries

- Lip₀(M) contains a subspace isomorphic to ℓ_∞ (update: M. Cúth and M. Johanis proved that it contains ℓ_∞ isometrically).
- **2** No Lipschitz-free space is complemented in a C(K) space.
- Lip₀(M) is not weakly sequentially complete.
- F(M) is projectively universal separable Banach space.

Fact[Godefroy, Kalton]

If M is Lipschitz universal separable metric space, i.e. it contains a bi-Lipschitz copy of every separable metric space, then F(M) will be a linearly universal separable Banach space.

Fact[Godefroy, Kalton]

If M is Lipschitz universal separable metric space, i.e. it contains a bi-Lipschitz copy of every separable metric space, then F(M) will be a linearly universal separable Banach space.

Fact[Godard]

For a separable \mathbb{R} -tree T we have F(T) is isometric to L_1 .

Fact[Godefroy, Kalton]

If M is Lipschitz universal separable metric space, i.e. it contains a bi-Lipschitz copy of every separable metric space, then F(M) will be a linearly universal separable Banach space.

Fact[Godard]

For a separable \mathbb{R} -tree T we have F(T) is isometric to L_1 .

Fact

For every separable ultrametric space M, F(M) is isomorphic to ℓ_1 .

Problem

Are there actually Lipschitz-free spaces that are neither universal nor embed into L_1 ?

Problem

Are there actually Lipschitz-free spaces that are neither universal nor embed into L_1 ?

As mentioned, Lipschitz-free spaces over measure zero sets containing branching points in real trees and over ultrametric spaces are isometric to ℓ_1 .

Problem

Are there actually Lipschitz-free spaces that are neither universal nor embed into L_1 ?

As mentioned, Lipschitz-free spaces over measure zero sets containing branching points in real trees and over ultrametric spaces are isometric to ℓ_1 . We also know

Theorem[A. Dalet]

If K is a countable compact metric space, then F(K) is a dual space with the metric approximation property.

ゆ ト イヨ ト イヨト

Problem

Are there actually Lipschitz-free spaces that are neither universal nor embed into L_1 ?

As mentioned, Lipschitz-free spaces over measure zero sets containing branching points in real trees and over ultrametric spaces are isometric to ℓ_1 . We also know

Theorem[A. Dalet]

If K is a countable compact metric space, then F(K) is a dual space with the metric approximation property.

So we conjectured:

Conjecture

For K countable compact metric, F(K) is isomorphic to ℓ_1 .

Michal Doucha Joint work with M. Cúth and P. Wojtaszczyk Some results on the structure of Lipschitz-free spaces

There is a countable compact metric space K which is just one convergent sequence such that F(K) does not embed into L_1 .

There is a countable compact metric space K which is just one convergent sequence such that F(K) does not embed into L_1 .

Remark

As Tony Procházka observed, this convergent sequence can be taken from \mathbb{R}^2 . And as Gilles Lancien observed, F(K) does not even bi-Lipschitz-embed into L_1 .

For every n, $F(\mathbb{R}^n)$ is weakly sequentially complete. In particular, it is not universal.

Moreover, it has been known (attributed to Naor and Schechtman) that $F(\mathbb{R}^2)$ does not embed into L_1 .

For every n, $F(\mathbb{R}^n)$ is weakly sequentially complete. In particular, it is not universal.

Moreover, it has been known (attributed to Naor and Schechtman) that $F(\mathbb{R}^2)$ does not embed into L_1 .

Proof ideas

We use the results of Bourgain that $C^1([0,1]^n)^*$ is weakly sequentially complete.

Then we define a mapping from $[0, 1]^n$ into $C^1([0, 1]^m)^*$ by sending $x \in [0, 1]^n$ to its evaluation functional. We check that this is Lipschitz, thus extends to a linear operator on $F([0, 1]^n)$, and then we check that this operator is actually an isomorphic embedding. $F([0, 1]^n)$ is isomorphic to $F(\mathbb{R}^n)$.

・ 同・ ・ ヨ・

Dutrieux and Ferenczi asked whether F(M) is linearly universal if and only M is bi-Lipschitz universal.

For M just a metric space, the answer is known to be 'no'.

Theorem[Dutrieux, Lancien]

There exists a compact metric space K such that every Banach space X that contains an isometric copy of K is universal. In particular, F(K) is universal.

Dutrieux and Ferenczi asked whether F(M) is linearly universal if and only M is bi-Lipschitz universal.

For M just a metric space, the answer is known to be 'no'.

Theorem[Dutrieux, Lancien]

There exists a compact metric space K such that every Banach space X that contains an isometric copy of K is universal. In particular, F(K) is universal.

Theorem[Kaufmann]

For every Banach space X, $F(X) \cong F(B_X)$. In particular, for a universal Banach space X, $F(B_X)$ is universal.

伺下 イヨト イヨト

However, the following seems to be open.

Question

For a Banach space X, is F(X) universal if and only if X is bi-Lipschitz universal?

However, the following seems to be open.

Question

For a Banach space X, is F(X) universal if and only if X is bi-Lipschitz universal?

Prove for some infinite-dimensional Banach space X that F(X) is not universal; e.g. for ℓ_1 .

However, the following seems to be open.

Question

For a Banach space X, is F(X) universal if and only if X is bi-Lipschitz universal?

Prove for some infinite-dimensional Banach space X that F(X) is not universal; e.g. for ℓ_1 .

Poblem

How many universal Lipschitz-free space are there?

Let \mathbb{P} be the Pełczyński universal basis space. Then $F(\mathbb{P})$ and \mathbb{P} are isomorphic.

However, the following seems to be open.

Question

For a Banach space X, is F(X) universal if and only if X is bi-Lipschitz universal?

Prove for some infinite-dimensional Banach space X that F(X) is not universal; e.g. for ℓ_1 .

Poblem

How many universal Lipschitz-free space are there?

Let \mathbb{P} be the Pełczyński universal basis space. Then $F(\mathbb{P})$ and \mathbb{P} are isomorphic.

Let \mathbb{U} be the Urysohhn universal metric space. $F(\mathbb{U})$ is universal and it was proved by Fonf and Wojtaszczyk that these spaces are not isomorphic.

伺 ト イヨト イヨト

However, the following seems to be open.

Question

For a Banach space X, is F(X) universal if and only if X is bi-Lipschitz universal?

Prove for some infinite-dimensional Banach space X that F(X) is not universal; e.g. for ℓ_1 .

Poblem

How many universal Lipschitz-free space are there?

Let \mathbb{P} be the Pełczyński universal basis space. Then $F(\mathbb{P})$ and \mathbb{P} are isomorphic.

Let \mathbb{U} be the Urysohhn universal metric space. $F(\mathbb{U})$ is universal and it was proved by Fonf and Wojtaszczyk that these spaces are not isomorphic.

It was proved by Aharoni that c_0 is bi-Lipschitz universal separable metric space.

Is, for instance, $F(c_0)$ isomorphic to some known universal space? Is it isomorphic to \mathbb{P} or $F(\mathbb{U})$?

伺 ト イヨト イヨト

Is, for instance, $F(c_0)$ isomorphic to some known universal space? Is it isomorphic to \mathbb{P} or $F(\mathbb{U})$?

Does the Kaufmann's theorem hold true even for general metric space?

Question

Does there exist for every metric space M a bounded metric space B such that F(M) and F(B) are isomorphic? For separable M, can B be even taken compact?

♬▶ ◀ 늘 ▶ ◀