Fourier multipliers of the homogeneous Sobolev space $\dot{W}^{1,1}$

Aline Bonami

Université d'Orléans

Joint work in progress with S. Madan and P. Mohanty IIT Kanpur, India CIRM, November 30, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is a Fourier multiplier?

Let *B* a Banach space of tempered distributions such that $S(\mathbb{R}^d)$ is dense in *B*. Fourier multipliers of *B* are Fourier transforms of tempered distributions *S* such that for $f \in S(\mathbb{R}^d)$ the function f * S is in *B* and

$$||m|| := \sup_{\|f\|_B=1} |||S * f||_B < \infty.$$

Called Fourier multipliers because

.

$$\mathcal{F}(S*f) = m \times \mathcal{F}f$$

What is a Fourier multiplier?

Let *B* a Banach space of tempered distributions such that $S(\mathbb{R}^d)$ is dense in *B*. Fourier multipliers of *B* are Fourier transforms of tempered distributions *S* such that for $f \in S(\mathbb{R}^d)$ the function f * S is in *B* and

$$||m|| := \sup_{\|f\|_B=1} ||S * f||_B < \infty.$$

Called Fourier multipliers because

$$\mathcal{F}(S*f) = m \times \mathcal{F}f$$

Well-known:

Fourier multipliers of $L^1(\mathbb{R}^d)$ are Fourier transforms of bounded measures.

For p > 1, many sufficient conditions (Mihlin, Hörmander, Marcinkiewicz theorems). In particular any homogeneous function of degree 0, which is smooth outside of the origin, is a Fourier multiplier of $L^p(\mathbb{R}^d)$, p > 1, and also of $\mathcal{H}^1(\mathbb{R}^d)$. **The space** $W^{1,p}(\mathbb{R}^d)$ and the space $\dot{W}^{1,p}(\mathbb{R}^d)$. $W^{1,p}(\mathbb{R}^d)$ is the space of functions $f \in L^p$ such that ∇f is in L^p .

 $\|f\|_{W^{1,p}} := \|f\|_p + \|\nabla f\|_p.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The space $W^{1,p}(\mathbb{R}^d)$ and the space $\dot{W}^{1,p}(\mathbb{R}^d)$. $W^{1,p}(\mathbb{R}^d)$ is the space of functions $f \in L^p$ such that ∇f is in L^p .

$$\|f\|_{W^{1,p}} := \|f\|_p + \|\nabla f\|_p.$$

 $\dot{W}^{1,p}(\mathbb{R}^d)$ is the space of tempered distributions f such that their gradient is in $L^p(\mathbb{R}^d)$,

$$\|f\|_{\dot{W}^{1,p}} := \|\nabla f\|_{p}.$$

The space $W^{1,p}(\mathbb{R}^d)$ and the space $W^{1,p}(\mathbb{R}^d)$. $W^{1,p}(\mathbb{R}^d)$ is the space of functions $f \in L^p$ such that ∇f is in L^p .

$$\|f\|_{W^{1,p}} := \|f\|_p + \|\nabla f\|_p.$$

 $\dot{W}^{1,p}(\mathbb{R}^d)$ is the space of tempered distributions f such that their gradient is in $L^p(\mathbb{R}^d)$,

$$\|f\|_{\dot{W}^{1,p}} := \|\nabla f\|_{p}.$$

By Gagliardo-Nirenberg Inequality, a distribution $f \in \dot{W}^{1,1}(\mathbb{R}^d)$ is (up to a constant) in L^r , with $r = \frac{d}{d-1}$.

The space $W^{1,p}(\mathbb{R}^d)$ and the space $W^{1,p}(\mathbb{R}^d)$. $W^{1,p}(\mathbb{R}^d)$ is the space of functions $f \in L^p$ such that ∇f is in L^p .

$$\|f\|_{W^{1,p}} := \|f\|_p + \|\nabla f\|_p.$$

 $\dot{W}^{1,p}(\mathbb{R}^d)$ is the space of tempered distributions f such that their gradient is in $L^p(\mathbb{R}^d)$.

$$\|f\|_{\dot{W}^{1,p}} := \|\nabla f\|_p.$$

By Gagliardo-Nirenberg Inequality, a distribution $f \in \dot{W}^{1,1}(\mathbb{R}^d)$ is (up to a constant) in L^r , with $r = \frac{d}{d-1}$.

For p > 1 isomorphism between $\dot{W}^{1,p}$ and L^p given by

$$-(-\Delta)^{1/2} = \sum_{j=1}^d \left(\partial_{x_j}(-\Delta)^{-1/2}\right) \partial_{x_j} = \sum_{j=1}^d R_j \partial_{x_j}.$$

Recall: Riesz transforms are bounded on L^p for p > 1, not for p = 1.

Links between Fourier multipliers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma 1. For p > 1 Fourier multipliers of $\dot{W}^{1,p}(\mathbb{R}^d)$ coincide with Fourier multipliers of $L^p(\mathbb{R}^d)$. *Proof:* Commutation with the isomorphism.

Links between Fourier multipliers

Lemma 1. For p > 1 Fourier multipliers of $W^{1,p}(\mathbb{R}^d)$ coincide with Fourier multipliers of $L^p(\mathbb{R}^d)$. *Proof:* Commutation with the isomorphism.

Lemma 2. A Fourier multiplier of $W^{1,p}(\mathbb{R}^d)$ is a Fourier multiplier of $\dot{W}^{1,p}(\mathbb{R}^d)$. *Proof:* Write the inequality

$$\|\nabla(S*f)\|_p \leq C(\|f\|_p + \|\nabla f\|_p)$$

for $f_t(x) = f(x/t)$.

Links between Fourier multipliers

Lemma 1. For p > 1 Fourier multipliers of $W^{1,p}(\mathbb{R}^d)$ coincide with Fourier multipliers of $L^p(\mathbb{R}^d)$. *Proof:* Commutation with the isomorphism.

Lemma 2. A Fourier multiplier of $W^{1,p}(\mathbb{R}^d)$ is a Fourier multiplier of $\dot{W}^{1,p}(\mathbb{R}^d)$. *Proof:* Write the inequality

$$\|\nabla(S*f)\|_p \leq C(\|f\|_p + \|\nabla f\|_p)$$

for $f_t(x) = f(x/t)$.

Corollary. For p > 1 Fourier multipliers of $W^{1,p}(\mathbb{R}^d)$ also coincide with Fourier multipliers of $L^p(\mathbb{R}^d)$.

The case p = 1.

Lemma 3. Fourier multipliers of $W^{1,1}(\mathbb{R}^d)$ which have compact support are Fourier transforms of bounded measures. Proof: It is sufficient to test it on functions such that \hat{f} has compact support. By Bernstein Inequality

 $\|\nabla f\|_1 \leq C \|f\|_1.$

The case p = 1.

Lemma 3. Fourier multipliers of $W^{1,1}(\mathbb{R}^d)$ which have compact support are Fourier transforms of bounded measures. Proof: It is sufficient to test it on functions such that \hat{f} has compact support. By Bernstein Inequality

 $\|\nabla f\|_1 \leq C \|f\|_1.$

Lemma 4. Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ which vanish in a neighborhood of the origin are Fourier multipliers of $W^{1,1}(\mathbb{R}^d)$. Proof: It suffices to test it on f such that \hat{f} vanishes on a ball centered at 0. Then $||f||_1 \leq C ||\nabla f||_1$. Indeed,

$$\widehat{f}(\xi) = \psi(\xi) \sum_{j=1}^d \frac{\xi_j}{|\xi|^2} \widehat{\partial_{x_j} f}(\xi),$$

with ψ smooth, vanishing in a ball centered at 0 and equal to 1 in the doubled ball. But $\psi(\xi) \frac{\xi_j}{|\xi|^2}$ is the Fourier transform of a bounded measure.

The case p = 1-Second Part.

$$\mathcal{H}^1(\mathbb{R}^d) \subsetneqq (-\Delta)^{1/2} \dot{W}^{1,1}(\mathbb{R}^d).$$

・ロト・日本・モト・モート ヨー うへで

So Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ are Fourier multipliers of $\mathcal{H}^1(\mathbb{R}^d)$ but the converse is not true.

The case p = 1-Second Part.

$$\mathcal{H}^1(\mathbb{R}^d) \subsetneqq (-\Delta)^{1/2} \dot{\mathcal{W}}^{1,1}(\mathbb{R}^d).$$

So Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ are Fourier multipliers of $\mathcal{H}^1(\mathbb{R}^d)$ but the converse is not true.

Lemma 5. For d = 1: Fourier multipliers of $W^{1,1}(\mathbb{R})$ and $\dot{W}^{1,1}(\mathbb{R})$ also coincide with Fourier multipliers of $L^1(\mathbb{R})$.

Proof. For $W^{1,1}(\mathbb{R})$ use the fact that $I + \frac{d}{dx} : W^{1,1}(\mathbb{R}) \mapsto L^1(\mathbb{R})$ is an isomorphism. For $\dot{W}^{1,1}(\mathbb{R})$, use homogeneity.

The case p = 1-Second Part.

$$\mathcal{H}^1(\mathbb{R}^d) \subsetneqq (-\Delta)^{1/2} \dot{\mathcal{W}}^{1,1}(\mathbb{R}^d).$$

So Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ are Fourier multipliers of $\mathcal{H}^1(\mathbb{R}^d)$ but the converse is not true.

Lemma 5. For d = 1: Fourier multipliers of $W^{1,1}(\mathbb{R})$ and $\dot{W}^{1,1}(\mathbb{R})$ also coincide with Fourier multipliers of $L^1(\mathbb{R})$.

Proof. For $W^{1,1}(\mathbb{R})$ use the fact that $I + \frac{d}{dx} : W^{1,1}(\mathbb{R}) \mapsto L^1(\mathbb{R})$ is an isomorphism. For $\dot{W}^{1,1}(\mathbb{R})$, use homogeneity.

So what interests us is the study of Fourier multipliers of $\dot{W}^{1,p}(\mathbb{R}^d)$ for p = 1 and d > 1.

New Fourier multipliers for d > 1

If μ is a bounded measure, $\hat{\mu}$ a Fourier multiplier of $\dot{W}^{1,p}(\mathbb{R}^d)$:

 $\partial_{x_j}(\mu * f) = \mu * (\partial_{x_j} f).$

Let d > 1. Assume that

$$\partial_{x_j} S = \sum_{k=1}^d \partial_{x_k} \mu_{k,j}.$$

Then $\partial_{x_j}(S * f) = \sum (\mu_{k,j} * \partial_{x_k} f)$, so $\mathcal{F}S$ is a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$.

New Fourier multipliers for d > 1

If μ is a bounded measure, $\hat{\mu}$ a Fourier multiplier of $\dot{W}^{1,p}(\mathbb{R}^d)$:

 $\partial_{x_j}(\mu * f) = \mu * (\partial_{x_j} f).$

Let d > 1. Assume that

$$\partial_{x_j} S = \sum_{k=1}^d \partial_{x_k} \mu_{k,j}.$$

Then $\partial_{x_j}(S * f) = \sum (\mu_{k,j} * \partial_{x_k} f)$, so $\mathcal{F}S$ is a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$. For d > 1, there exists such distributions S that are not bounded measures.

Theorem [Poornima 1983]. For d > 1 there exists Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ which are not Fourier transforms of bounded measures.

There exists a function f on \mathbb{R}^2 such that $\frac{\partial^2}{\partial x_1^2} f$ and $\frac{\partial^2}{\partial x_2^2} f$ are integrable but $\frac{\partial^2}{\partial x_1 \partial x_2} f$ is not. Proved by Ornstein in 1962. New proof by Conti, Faraco & Maggi, 2004, generalized by Kirchheim & Kristensen 2015. Extended by Kazaniecki, Stolyarov and Wojciechowski, 2015.

There exists a function f on \mathbb{R}^2 such that $\frac{\partial^2}{\partial x_1^2} f$ and $\frac{\partial^2}{\partial x_2^2} f$ are integrable but $\frac{\partial^2}{\partial x_1 \partial x_2} f$ is not. Proved by Orostain in 1062. New proof by Conti Earson & M

Proved by Ornstein in 1962. New proof by Conti, Faraco & Maggi, 2004, generalized by Kirchheim & Kristensen 2015. Extended by Kazaniecki, Stolyarov and Wojciechowski, 2015.

As a consequence there are distributions of strictly positive order whose derivatives are of order $\leq 1.$

There exists a function f on \mathbb{R}^2 such that $\frac{\partial^2}{\partial x_1^2} f$ and $\frac{\partial^2}{\partial x_2^2} f$ are integrable but $\frac{\partial^2}{\partial x_1 \partial x_2} f$ is not.

Proved by Ornstein in 1962. New proof by Conti, Faraco & Maggi, 2004, generalized by Kirchheim & Kristensen 2015. Extended by Kazaniecki, Stolyarov and Wojciechowski, 2015.

As a consequence there are distributions of strictly positive order whose derivatives are of order \leq 1.

For Poornima's Theorem in Dimension 2, take $S = \frac{\partial^2}{\partial x_1 \partial x_2} f$.

There exists a function f on \mathbb{R}^2 such that $\frac{\partial^2}{\partial x_1^2} f$ and $\frac{\partial^2}{\partial x_2^2} f$ are integrable but $\frac{\partial^2}{\partial x_1 \partial x_2} f$ is not.

Proved by Ornstein in 1962. New proof by Conti, Faraco & Maggi, 2004, generalized by Kirchheim & Kristensen 2015. Extended by Kazaniecki, Stolyarov and Wojciechowski, 2015.

As a consequence there are distributions of strictly positive order whose derivatives are of order \leq 1.

For Poornima's Theorem in Dimension 2, take $S = \frac{\partial^2}{\partial x_1 \partial x_2} f$.

Ornstein: more generally, non L^1 -inequality for $P_1(D), \dots, P_L(D)$ and Q(D) linearly independent, homogeneous polynomials of same degree.

No non constant homogeneous Fourier multipliers.

Theorem. [B. & Poornima 1987] For d > 1 non constant homogeneous functions of degree 0 are not Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$.

Proof for even spherical harmonics $Q(\xi)/|\xi|^{2N}$: Start from counterexamples of Ornstein with the polynomials $\xi_j|\xi|^{2N}, j = 1, \cdots, d$ and $Q_k(\xi) = \xi_k Q(\xi)$. There exists g with

$$\|\nabla(Q(D)g)\|_1 = \infty \qquad \qquad \|\nabla(\Delta^N g)\|_1 = 1.$$

No non constant homogeneous Fourier multipliers.

Theorem. [B. & Poornima 1987] For d > 1 non constant homogeneous functions of degree 0 are not Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$.

Proof for even spherical harmonics $Q(\xi)/|\xi|^{2N}$: Start from counterexamples of Ornstein with the polynomials $\xi_j |\xi|^{2N}, j = 1, \cdots, d$ and $Q_k(\xi) = \xi_k Q(\xi)$. There exists g with

$$\|
abla(Q(D)g)\|_1 = \infty \qquad \qquad \|
abla(\Delta^N g)\|_1 = 1.$$

Theorem [Kazaniecki & Wojciechowski 2014.] Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ are continuous functions on \mathbb{R}^d .

De Leeuw type theorems.

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to any affine subspace of dimension k identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^k)$. Sufficient to consider $\xi'' = a$, with $\xi'' = \xi - \xi'$ and ξ' the projection of ξ on the subspace generated by the k first coordinates. Sufficient to restrict to a = 0 and $a = (0, 0, \dots, 1)$.

De Leeuw type theorems.

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to any affine subspace of dimension k identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^k)$. Sufficient to consider $\xi'' = a$, with $\xi'' = \xi - \xi'$ and ξ' the projection of ξ on the subspace generated by the k first coordinates. Sufficient to restrict to a = 0 and $a = (0, 0, \dots, 1)$.

Hint of the proof, k = 1, a = 0. One considers integrals

$$\int_{\mathbb{R}} m(\xi_1,0)\xi_1\widehat{f}(\xi_1)\widehat{h}(\xi_1)d\xi_1$$

as the limit of

$$\frac{1}{\lambda^{d-1}}\int_{\mathbb{R}^d} m(\xi_1,\xi')\xi_1\widehat{f}(\xi_1)\widehat{h}(\xi_1)\varphi^2(\xi'/\lambda)d\xi_1d\xi'.$$

De Leeuw type theorems.

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to any affine subspace of dimension k identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^k)$. Sufficient to consider $\xi'' = a$, with $\xi'' = \xi - \xi'$ and ξ' the projection of ξ on the subspace generated by the k first coordinates. Sufficient to restrict to a = 0 and $a = (0, 0, \dots, 1)$.

Hint of the proof, k = 1, a = 0. One considers integrals

$$\int_{\mathbb{R}} m(\xi_1,0)\xi_1\widehat{f}(\xi_1)\widehat{h}(\xi_1)d\xi_1$$

as the limit of

$$\frac{1}{\lambda^{d-1}}\int_{\mathbb{R}^d} m(\xi_1,\xi')\xi_1\widehat{f}(\xi_1)\widehat{h}(\xi_1)\varphi^2(\xi'/\lambda)d\xi_1d\xi'.$$

For $a \neq 0$, the restriction is a Fourier multiplier of the non homogeneous space $W^{1,1}$. Surjectivity?

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to \mathbb{Z}^d identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{T}^d)$. Moreover there is surjectivity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to \mathbb{Z}^d identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{T}^d)$. Moreover there is surjectivity.

May be used to construct new examples by constructing them first on \mathbb{Z}^d .

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to \mathbb{Z}^d identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{T}^d)$. Moreover there is surjectivity.

May be used to construct new examples by constructing them first on \mathbb{Z}^d .

By Gagliardo-Nirenberg Inequality, $\dot{W}^{1,1}(\mathbb{R}^d)$ is contained in $L^{\frac{d}{d-1}}(\mathbb{R}^d)$. (Improved into the Lorentz space $L^{\frac{d}{d-1},1}(\mathbb{R}^d)$), see also Schikorra, Spector & Van Schaftingen for Riesz potentials.) This, with fractional integration, gives for \mathbb{T}^d the corollary

$$\sum_{n \neq 0} \frac{|\widehat{f}(n)|^2}{|n|^{d-2}} \leq C \|f\|_{W^{1,1}(\mathbb{T}^d)}^2.$$

Theorem. The restriction of a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{R}^d)$ to \mathbb{Z}^d identifies with a Fourier multiplier of $\dot{W}^{1,1}(\mathbb{T}^d)$. Moreover there is surjectivity.

May be used to construct new examples by constructing them first on \mathbb{Z}^d .

By Gagliardo-Nirenberg Inequality, $\dot{W}^{1,1}(\mathbb{R}^d)$ is contained in $L^{\frac{d}{d-1}}(\mathbb{R}^d)$. (Improved into the Lorentz space $L^{\frac{d}{d-1},1}(\mathbb{R}^d)$), see also Schikorra, Spector & Van Schaftingen for Riesz potentials.) This, with fractional integration, gives for \mathbb{T}^d the corollary

$$\|\sum_{n\neq 0} \frac{n_j \varepsilon_n \widehat{f}(n)}{|n|^{d/2}} e^{in.x} \|_1^2 \leq \sum_{n\neq 0} \frac{|\widehat{f}(n)|^2}{|n|^{d-2}} \leq C \|f\|_{W^{1,1}(\mathbb{T}^d)}^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. There are Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$, which are not Fourier transforms of distributions S such that one can write $\partial_{x_j}S = \sum_{k=1}^d \partial_{x_k}\mu_{k,j}$.

Theorem. There are Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$, which are not Fourier transforms of distributions S such that one can write $\partial_{x_j}S = \sum_{k=1}^d \partial_{x_k}\mu_{k,j}$.

Recall that Poornima's multipliers are such that $\partial_{x_j} S = \sum_{k=1}^d \partial_{x_k} \mu_{k,j}$ or, equivalently, that $\partial_{x_j} S$ belongs to the dual of

$$\dot{\mathcal{C}}_0^1 = \{f \in \mathcal{C}^1 ; \ \partial_{x_j} f \in \mathcal{C}_0, j = 1, \cdots, d\}.$$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Theorem. There are Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$, which are not Fourier transforms of distributions S such that one can write $\partial_{x_j}S = \sum_{k=1}^d \partial_{x_k}\mu_{k,j}$.

Recall that Poornima's multipliers are such that $\partial_{x_j}S = \sum_{k=1}^d \partial_{x_k}\mu_{k,j}$ or, equivalently, that $\partial_{x_j}S$ belongs to the dual of

$$\dot{\mathcal{C}}_0^1 = \{ f \in \mathcal{C}^1 ; \ \partial_{x_j} f \in \mathcal{C}_0, j = 1, \cdots, d \}.$$

Proof on \mathbb{T}^d . For every choice of ε_n of modulus 1 the sequence $\varepsilon_n |n|^{-d/2}$ is uniformly a Fourier multiplier of $W^{1,1}(\mathbb{T}^d)$. Assume it is uniformly a Poornima's multiplier on \mathbb{T}^d . Then $\varepsilon_n n_j |n|^{-d/2}$ are Fourier coefficients of an element of the dual of \mathcal{C}^1 , so that

$$|\sum n_j \varepsilon_n |n|^{-d/2} \widehat{f}(n)| \leq C ||f||_{\mathcal{C}^1}.$$

Contradiction with the existence of C^1 functions such that $\sum |n|^{-d/2+1} |\hat{f}(n)| = \infty.$

Theorem. There are Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$, which are not Fourier transforms of distributions S such that one can write $\partial_{x_j}S = \sum_{k=1}^d \partial_{x_k}\mu_{k,j}$.

Recall that Poornima's multipliers are such that $\partial_{x_j}S = \sum_{k=1}^d \partial_{x_k}\mu_{k,j}$ or, equivalently, that $\partial_{x_j}S$ belongs to the dual of

$$\dot{\mathcal{C}}_0^1 = \{ f \in \mathcal{C}^1 ; \ \partial_{x_j} f \in \mathcal{C}_0, j = 1, \cdots, d \}.$$

Proof on \mathbb{T}^d . For every choice of ε_n of modulus 1 the sequence $\varepsilon_n |n|^{-d/2}$ is uniformly a Fourier multiplier of $W^{1,1}(\mathbb{T}^d)$. Assume it is uniformly a Poornima's multiplier on \mathbb{T}^d . Then $\varepsilon_n n_j |n|^{-d/2}$ are Fourier coefficients of an element of the dual of \mathcal{C}^1 , so that

$$|\sum n_j \varepsilon_n |n|^{-d/2} \widehat{f}(n)| \leq C ||f||_{\mathcal{C}^1}.$$

Contradiction with the existence of C^1 functions such that $\sum |n|^{-d/2+1} |\hat{f}(n)| = \infty.$

Also, for almost every choice of $\varepsilon_n = \pm 1$ the multiplier is not the sequence of Fourier coefficients of a measure $\omega \to \langle \overline{\omega} \rangle \langle \overline{\omega} \rangle \langle \overline{\omega} \rangle \langle \overline{\omega} \rangle \langle \overline{\omega} \rangle$

Continuity of Fourier multipliers.

Theorem [Kazaniecki & Wojciechowski 2014.] Fourier multipliers of $\dot{W}^{1,1}(\mathbb{R}^d)$ are continuous functions on \mathbb{R}^d . Proof.

- First easy step: they are continuous outside 0 and bounded by the norm of the operator.
 Indeed, if m is a multiplier and ψ is supported in a shell
 r ≤ |ξ| ≤ R, then mψ is the Fourier transform of a measure, thus continuous.
- They are continuous on each line and all values at 0 are the same.
- By contradiction, we would find a sequence of points ξ_j with rational coordinates such that ξ_j/|ξ| converges and values for even and odd indices do not converge to the same limit.

The main point.

For c_k a lacunary sequence, the (eventually infinite) Riesz product $\prod (1 + \cos c_k \cdot x)$ is a positive measure of mass 1 on \mathbb{T}^d .

Lemma (Latala 2013)

For a sequence $c_j \in \mathbb{T}^d$ sufficiently lacunary,

$$\sum_{j=0}^{J}(-1)^j\cos c_j\cdot x\prod_{1< k< j}(1+\cos c_k\cdot x)$$

has L^1 norm bounded below by CJ.

The main point.

For c_k a lacunary sequence, the (eventually infinite) Riesz product $\prod (1 + \cos c_k \cdot x)$ is a positive measure of mass 1 on \mathbb{T}^d .

Lemma (Latala 2013)

For a sequence $c_j \in \mathbb{T}^d$ sufficiently lacunary,

$$\sum_{j=0}^J (-1)^j \cos c_j \cdot x \prod_{1 < k < j} (1 + \cos c_k \cdot x)$$

has L^1 norm bounded below by CJ.

In fact result on the torus \mathbb{T}^{∞} , where we replace $c_k.x$ by independent variables.

Condition $|c_{k+1}| > M|c_k|$ and $\sum_{k=1}^{\infty} \left(\frac{|c_{k+1}|}{|c_k|}\right)^2 < \infty$.

The context of Uchiyama's Theorem

Theorem. [Uchiyama 1982] Let m_1, m_2, \dots, m_L homogenous of degree 0 functions which are smooth outside 0. Then the space of distributions f such that $m_j \hat{f} \in L^1$ for all j coincides with \mathcal{H}^1 if and only if, for all $\xi \neq 0$, the two vectors

$$(m_j(\xi))_{j=1}^L$$
 and $(m_j(-\xi))_{j=1}^L$

are not colinear.

What can one say in the other cases?

In our case, $m_j(\xi) = \frac{\xi_j}{|\xi|}$.

The context of Uchiyama's Theorem

Theorem. [Uchiyama 1982] Let m_1, m_2, \dots, m_L homogenous of degree 0 functions which are smooth outside 0. Then the space of distributions f such that $m_j \hat{f} \in L^1$ for all j coincides with \mathcal{H}^1 if and only if, for all $\xi \neq 0$, the two vectors

$$(m_j(\xi))_{j=1}^L$$
 and $(m_j(-\xi))_{j=1}^L$

are not colinear.

What can one say in the other cases?

In our case, $m_j(\xi) = \frac{\xi_j}{|\xi|}$.

In Ornstein's counter-example, $m_j(\xi) = \frac{\xi_j^2}{|\xi|^2}$. Then other *m*, which are not linearly dependent, do not lead to L^1 functions.

The context of Uchiyama's Theorem

Theorem. [Uchiyama 1982] Let m_1, m_2, \dots, m_L homogenous of degree 0 functions which are smooth outside 0. Then the space of distributions f such that $m_j \hat{f} \in L^1$ for all j coincides with \mathcal{H}^1 if and only if, for all $\xi \neq 0$, the two vectors

$$(m_j(\xi))_{j=1}^L$$
 and $(m_j(-\xi))_{j=1}^L$

are not colinear.

What can one say in the other cases?

In our case, $m_j(\xi) = \frac{\xi_j}{|\xi|}$.

In Ornstein's counter-example, $m_j(\xi) = \frac{\xi_j^2}{|\xi|^2}$. Then other *m*, which are not linearly dependent, do not lead to L^1 functions. Same question with different choices, such as the two multipliers 1 and $\xi_1/|\xi|$ in two dimensions?

Higher order Sobolev spaces

All Fourier multipliers of $\dot{W}^{k,1}(\mathbb{R}^d)$ are Fourier multipliers of $\dot{W}^{k+1,1}(\mathbb{R}^d)$. Counter-example to prove that the two spaces are not the same?

・ロト・日本・モート モー うへぐ