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Joint work in progress with S. Madan and P. Mohanty
IIT Kanpur, India

CIRM, November 30, 2015



What is a Fourier multiplier?
Let B a Banach space of tempered distributions such that S(Rd)
is dense in B. Fourier multipliers of B are Fourier transforms of
tempered distributions S such that for f ∈ S(Rd) the function
f ∗ S is in B and

‖m‖ := sup
‖f ‖B=1

‖|S ∗ f ‖B <∞.

Called Fourier multipliers because

F(S ∗ f ) = m ×F f

.

Well-known:
Fourier multipliers of L1(Rd) are Fourier transforms of bounded
measures.

For p > 1, many sufficient conditions (Mihlin, Hörmander,
Marcinkiewicz theorems). In particular any homogeneous function
of degree 0, which is smooth outside of the origin, is a Fourier
multiplier of Lp(Rd), p > 1, and also of H1(Rd).
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The space W 1,p(Rd) and the space Ẇ 1,p(Rd).
W 1,p(Rd) is the space of functions f ∈ Lp such that ∇f is in Lp.

‖f ‖W 1,p := ‖f ‖p + ‖∇f ‖p.

Ẇ 1,p(Rd) is the space of tempered distributions f such that their
gradient is in Lp(Rd),

‖f ‖Ẇ 1,p := ‖∇f ‖p.

By Gagliardo-Nirenberg Inequality, a distribution f ∈ Ẇ 1,1(Rd) is
(up to a constant) in Lr , with r = d

d−1 .

For p > 1 isomorphism between Ẇ 1,p and Lp given by

−(−∆)1/2 =
d∑

j=1

(
∂xj (−∆)−1/2

)
∂xj =

d∑
j=1

Rj∂xj .

Recall: Riesz transforms are bounded on Lp for p > 1, not for
p = 1.



The space W 1,p(Rd) and the space Ẇ 1,p(Rd).
W 1,p(Rd) is the space of functions f ∈ Lp such that ∇f is in Lp.

‖f ‖W 1,p := ‖f ‖p + ‖∇f ‖p.
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Links between Fourier multipliers

Lemma 1. For p > 1 Fourier multipliers of Ẇ 1,p(Rd) coincide
with Fourier multipliers of Lp(Rd).
Proof: Commutation with the isomorphism.

Lemma 2. A Fourier multiplier of W 1,p(Rd) is a Fourier multiplier
of Ẇ 1,p(Rd).
Proof: Write the inequality

‖∇(S ∗ f )‖p ≤ C (‖f ‖p + ‖∇f ‖p)

for ft(x) = f (x/t).

Corollary. For p > 1 Fourier multipliers of W 1,p(Rd) also coincide
with Fourier multipliers of Lp(Rd).
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of Ẇ 1,p(Rd).
Proof: Write the inequality

‖∇(S ∗ f )‖p ≤ C (‖f ‖p + ‖∇f ‖p)

for ft(x) = f (x/t).

Corollary. For p > 1 Fourier multipliers of W 1,p(Rd) also coincide
with Fourier multipliers of Lp(Rd).



Links between Fourier multipliers

Lemma 1. For p > 1 Fourier multipliers of Ẇ 1,p(Rd) coincide
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The case p = 1.
Lemma 3. Fourier multipliers of W 1,1(Rd) which have compact
support are Fourier transforms of bounded measures.
Proof: It is sufficient to test it on functions such that f̂ has
compact support. By Bernstein Inequality

‖∇f ‖1 ≤ C‖f ‖1.

Lemma 4. Fourier multipliers of Ẇ 1,1(Rd) which vanish in a
neighborhood of the origin are Fourier multipliers of W 1,1(Rd).
Proof: It suffices to test it on f such that f̂ vanishes on a ball
centered at 0. Then ‖f ‖1 ≤ C‖∇f ‖1. Indeed,

f̂ (ξ) = ψ(ξ)
d∑

j=1

ξj
|ξ|2

∂̂xj f (ξ),

with ψ smooth,vanishing in a ball centered at 0 and equal to 1 in

the doubled ball. But ψ(ξ)
ξj
|ξ|2 is the Fourier transform of a

bounded measure.
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The case p = 1–Second Part.

H1(Rd) $ (−∆)1/2Ẇ 1,1(Rd).

So Fourier multipliers of Ẇ 1,1(Rd) are Fourier multipliers of
H1(Rd) but the converse is not true.

Lemma 5. For d = 1: Fourier multipliers of W 1,1(R) and
Ẇ 1,1(R) also coincide with Fourier multipliers of L1(R).

Proof. For W 1,1(R) use the fact that I + d
dx : W 1,1(R) 7→ L1(R) is

an isomorphism. For Ẇ 1,1(R), use homogeneity.

So what interests us is the study of Fourier multipliers of
Ẇ 1,p(Rd) for p = 1 and d > 1.
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New Fourier multipliers for d > 1

If µ is a bounded measure, µ̂ a Fourier multiplier of Ẇ 1,p(Rd):

∂xj (µ ∗ f ) = µ ∗ (∂xj f ).

Let d > 1. Assume that

∂xj S =
d∑

k=1

∂xkµk,j .

Then ∂xj (S ∗ f ) =
∑

(µk,j ∗ ∂xk f ), so FS is a Fourier multiplier of

Ẇ 1,1(Rd).

For d > 1, there exists such distributions S that are not bounded
measures.

Theorem [Poornima 1983]. For d > 1 there exists Fourier
multipliers of Ẇ 1,1(Rd) which are not Fourier transforms of
bounded measures.
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Ornstein’s non-inequalities for differential operators.

There exists a function f on R2 such that ∂2

∂x2
1

f and ∂2

∂x2
2

f are

integrable but ∂2

∂x1∂x2
f is not.

Proved by Ornstein in 1962. New proof by Conti, Faraco & Maggi,
2004, generalized by Kirchheim & Kristensen 2015. Extended by
Kazaniecki, Stolyarov and Wojciechowski, 2015.

As a consequence there are distributions of strictly positive order
whose derivatives are of order ≤ 1.

For Poornima’s Theorem in Dimension 2, take S = ∂2

∂x1∂x2
f .

Ornstein: more generally, non L1-inequality for P1(D), · · · ,PL(D)
and Q(D) linearly independent, homogeneous polynomials of same
degree.
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No non constant homogeneous Fourier multipliers.

Theorem. [B. & Poornima 1987] For d > 1 non constant
homogeneous functions of degree 0 are not Fourier multipliers of
Ẇ 1,1(Rd).

Proof for even spherical harmonics Q(ξ)/|ξ|2N :
Start from counterexamples of Ornstein with the polynomials
ξj |ξ|2N , j = 1, · · · , d and Qk(ξ) = ξkQ(ξ). There exists g with

‖∇(Q(D)g)‖1 =∞ ‖∇(∆Ng)‖1 = 1.

Theorem [Kazaniecki & Wojciechowski 2014.] Fourier multipliers
of Ẇ 1,1(Rd) are continuous functions on Rd .
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De Leeuw type theorems.

Theorem. The restriction of a Fourier multiplier of Ẇ 1,1(Rd) to
any affine subspace of dimension k identifies with a Fourier
multiplier of Ẇ 1,1(Rk).
Sufficient to consider ξ′′ = a, with ξ′′ = ξ− ξ′ and ξ′ the projection
of ξ on the subspace generated by the k first coordinates.
Sufficient to restrict to a = 0 and a = (0, 0, · · · , 1).

Hint of the proof, k = 1, a = 0. One considers integrals∫
R

m(ξ1, 0)ξ1f̂ (ξ1)ĥ(ξ1)dξ1

as the limit of

1

λd−1

∫
Rd

m(ξ1, ξ
′)ξ1f̂ (ξ1)ĥ(ξ1)ϕ2(ξ′/λ)dξ1dξ′.

For a 6= 0, the restriction is a Fourier multiplier of the non
homogeneous space W 1,1. Surjectivity?
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Restriction theorem on Zd

Theorem. The restriction of a Fourier multiplier of Ẇ 1,1(Rd) to
Zd identifies with a Fourier multiplier of Ẇ 1,1(Td). Moreover
there is surjectivity.

May be used to construct new examples by constructing them first
on Zd .
By Gagliardo-Nirenberg Inequality, Ẇ 1,1(Rd) is contained in

L
d

d−1 (Rd). (Improved into the Lorentz space L
d

d−1
,1(Rd)), see also

Schikorra, Spector & Van Schaftingen for Riesz potentials.)
This, with fractional integration, gives for Td the corollary

∑
n 6=0

|f̂ (n)|2

|n|d−2
≤ C‖f ‖2

W 1,1(Td ).
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New Fourier multipliers.
Theorem. There are Fourier multipliers of Ẇ 1,1(Rd), which are
not Fourier transforms of distributions S such that one can
write ∂xj S =

∑d
k=1 ∂xkµk,j .

Recall that Poornima’s multipliers are such that
∂xj S =

∑d
k=1 ∂xkµk,j or, equivalently, that ∂xj S belongs to the

dual of
Ċ1

0 = {f ∈ C1 ; ∂xj f ∈ C0, j = 1, · · · , d}.

Proof on Td . For every choice of εn of modulus 1 the sequence
εn|n|−d/2 is uniformly a Fourier multiplier of W 1,1(Td). Assume it
is uniformly a Poornima’s multiplier on Td . Then εnnj |n|−d/2 are
Fourier coefficients of an element of the dual of C1, so that

|
∑

njεn|n|−d/2f̂ (n)| ≤ C‖f ‖C1 .

Contradiction with the existence of C1 functions such that∑
|n|−d/2+1|f̂ (n)| =∞.

Also, for almost every choice of εn = ±1 the multiplier is not the
sequence of Fourier coefficients of a measure.
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|
∑

njεn|n|−d/2f̂ (n)| ≤ C‖f ‖C1 .

Contradiction with the existence of C1 functions such that∑
|n|−d/2+1|f̂ (n)| =∞.

Also, for almost every choice of εn = ±1 the multiplier is not the
sequence of Fourier coefficients of a measure.



Continuity of Fourier multipliers.

Theorem [Kazaniecki & Wojciechowski 2014.] Fourier multipliers
of Ẇ 1,1(Rd) are continuous functions on Rd .
Proof.

I First easy step: they are continuous outside 0 and bounded by
the norm of the operator.
Indeed, if m is a multiplier and ψ is supported in a shell
r ≤ |ξ| ≤ R, then mψ is the Fourier transform of a measure,
thus continuous.

I They are continuous on each line and all values at 0 are the
same.

I By contradiction, we would find a sequence of points ξj with
rational coordinates such that ξj/|ξ| converges and values for
even and odd indices do not converge to the same limit.



The main point.

For ck a lacunary sequence, the (eventually infinite) Riesz product∏
(1 + cos ck · x) is a positive measure of mass 1 on Td .

Lemma (Latala 2013)

For a sequence cj ∈ Td sufficiently lacunary,

J∑
j=0

(−1)j cos cj · x
∏

1<k<j

(1 + cos ck · x)

has L1 norm bounded below by CJ.

In fact result on the torus T∞, where we replace ck .x by
independent variables.

Condition |ck+1| > M|ck | and
∑(

|ck+1|
|ck |

)2
<∞.
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The context of Uchiyama’s Theorem

Theorem.[Uchiyama 1982] Let m1,m2, · · · ,mL homogenous of
degree 0 functions which are smooth outside 0. Then the space of
distributions f such that mj f̂ ∈ L1 for all j coincides with H1 if
and only if, for all ξ 6= 0, the two vectors

(mj(ξ))Lj=1 and (mj(−ξ))Lj=1

are not colinear.

What can one say in the other cases?

In our case, mj(ξ) =
ξj
|ξ| .

In Ornstein’s counter-example, mj(ξ) =
ξ2
j

|ξ|2 . Then other m, which

are not linearly dependent, do not lead to L1 functions.
Same question with different choices, such as the two multipliers 1
and ξ1/|ξ| in two dimensions?
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Higher order Sobolev spaces

All Fourier multipliers of Ẇ k,1(Rd) are Fourier multipliers of
Ẇ k+1,1(Rd). Counter-example to prove that the two spaces are
not the same?


