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About the title wording

• “Rational approximation” means approximation by rational
functions in the uniform norm to f ∈ H(Ω) on a compact set
K ⊂ Ω ⊂ C.

• The “singular set” is the set over which the initial branch
(f ,Ω) cannot be continued analytically.

• “Polar” refers to a measure of smallness which is defined in
potential-theoretic terms.

• Example: f has branchpoints and countably many essential
singularities.
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The possibility of rational approximation

• In 1885, Runge proved that holomorphic functions of one
complex variable can be approximated by rational functions,
locally uniformly on their domain of holomorphy.

• Theorem[Runge, 1885]
Let K ⊂ Ω ⊂ C with K compact and Ω open. If f ∈ Hol(Ω)
and ε > 0, there is a rational function R such that

|f (z)− R(z)| < ε, z ∈ K .

• This is a simple consequence of the duality between complex
measures and continuous functions with compact support.

• Runge’s proof rests on his “pole shifting technique”.
Useful in other contexts (e.g. density of gradients of harmonic
polynomials in vector fields with gradient tangential
component on proper regular compact subsets of the sphere
[J. Leblond, J.Partington, L.B., 2009].
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Subsequent developments

• Approximability on K of continuous functions analytic in
◦
K

[Bishop 60, Mergelyan 62, Vitushkin 66], approximability on
noncompact sets [Roth, 1976].

• Characterization of smoothness from the rate of
approximation [Dolzhenko 68, Pekarskii 83, Peller 86].

• optimal rate of convergence as the degree of the approximant
goes large [Walsh 62, Gonchar 78, Parfenov 86, Prokhorov 93].

• Constructive approximation (applications to number theory,
numerical analysis, modeling and engineering ...).
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Remarks

• Determining where the poles of an optimal approximant of
given degree should lie is the non-convex and most difficult
part of the approximation problem.

• Understanding how the poles distribute asymptotically is a key
to obtain error rates of concrete sequences of approximants.

• The talk is concerned with asymptotic error rates and pole
distribution. The fundamental feature of our situation is that
f extends analytically beyond the compact set K on which
approximation takes place.
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Some notation

• f is holomorphic on a domain Ω ⊂ C.

• K is a compact subset of Ω.

• Rn denotes the set of rational functions of degree n:

Rn = {pn
qn

; pn, qn complex polynomials of degree at most n}.

• We set

en = en(f ,K ) := inf
rn∈Rn

‖f − rn‖L∞(K).
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Rates in approximation

• Strong asymptotics are estimates of en(f ,K ) as n goes large,
with respect to some scale depending on n.

• Strong asymptotics can usually be derived for specific
functions f only.

• Weak or n-th root asymptotics are estimates of e
1/n
n as n goes

large.

• n-th root rates only estimate the geometric decay of the error.

• They make contact with logarithmic potential theory.
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Some potential theory

• The logarithmic potential of a positive measure µ with
compact support in C is

V µ(z) :=

∫
log

∣∣∣∣ 1

z − t

∣∣∣∣ dµ(t)

• This is a superharmonic function valued in R ∪ {+∞}, the
solution to ∆u = −µ which is smallest in modulus at ∞.

• The logarithmic energy of µ is

I (µ) :=

∫ ∫
log

∣∣∣∣ 1

z − t

∣∣∣∣ dµ(t)dµ(z).

• The energy lies in R ∪ {+∞}.
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Potential theory cont’d

• The logarithmic capacity of K is C (K ) = e−IK where

IK := inf
µ∈PK

∫ ∫
log

∣∣∣∣ 1

z − t

∣∣∣∣ dµ(t)dµ(x)

and PK is the set of probability measures on K .

• If C (K ) > 0, there is a unique measure ωK ∈ PK to meet the
above infimum. It is called the equilibrium distribution on K .

• If C (K ) = 0 one says K is polar. Polar sets are very small and
look very bad (totally disconnected, H1-dimension zero...).

• A property valid outside a polar set is said to hold
quasi-everywhere.

• ωK is characterized by V ωK being constant q.e. on K
(Frostman theorem).
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Potential theory cont’d

• Capacity is a measure of size.

• Example 1: the capacity of a disk is its radius and the
equilibrium distribution is normalized arclength on the
circumference.

• Example 2: the capacity of a segment is C[a,b] = (b − a)/4
and the equilibrium distribution is

dt

π
√

(t − a)(b − t)
.

• The equilibrium distribution is always supported on the outer
boundary of K .

• The capacity of a set E is the supremum of CK over all
compact K ⊂ E .
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Potential theory cont’d

• The weighted capacity of a non polar compact set K in the
field ψ, assumed to be lower semi-continuous and not infinite
q.e. on K , is Cψ(K ) = e−Iψ where

Iψ := inf
µ∈PK

∫ ∫
log

1

|z − t|
dµ(t)dµ(z) + 2

∫
ψ(t)dµ(t).

• There is a unique measure ωK ,ψ ∈ PK to meet the infimum; it
is called the weighted equilibrium distribution on K (w.r.t.ψ).

• ωK ,ψ is characterized by the fact that V ωK ,ψ + ψ is constant
q.e. on supp(ωK ,ψ) and at least as large as this constant q.e.
on K .

• It is the equilibrium distribution on a conductor K of a unit
electric charge in the electric field ψ.

• When ψ ≡ 0 one recovers the usual capacity.
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Green functions

• Let Ω open have non-polar boundary ∂Ω.

• The Green function of Ω with pole at z ∈ Ω is the function
GΩ(z , .) such that

• t 7→ GΩ(z , t) + log |z − t| is bounded and harmonic in Ω,
•

lim
t→ξ

GΩ(z , t) = 0, q.e. ξ ∈ ∂Ω.

• Equivalently, GΩ(z , .) is the smallest positive solution to

∆u = −δz in Ω.

• Example: if D is the unit disk, then

GD(z , t) = log

∣∣∣∣1− zt̄

z − t

∣∣∣∣ .
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Potential theory cont’d

• Let ∂Ω be non-polar.

• The Green potential of a positive measure µ with compact
support in Ω is

V µ
Ω (z) :=

∫
GΩ(z , t) dµ(t).

• It is the smallest solution to ∆u = −µ in Ω.

• The Green energy of µ is

IG (µ) :=

∫ ∫
GΩ(z , t) dµ(t)dµ(z).

(
= ‖∇V µ

Ω‖
2
L2(Ω) in smooth case

)
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Potential theory cont’d

• The Green capacity of K is C (K ,Ω) = 1/IK where

IK := inf
µ∈PK

IG (µ) = inf
µ∈PK

∫ ∫
GΩ(z , t) dµ(t)dµ(z).

• If K , is non polar, there is a unique measure ωG
K ,Ω ∈ PK to

meet the above infimum. It is called the Green equilibrium
distribution of K in Ω.

• ωG
K ,Ω is characterized by the fact that V

ωG
K ,Ω

G is constant q.e.
on K .

• Green capacities and Green equilibrium distributions are
conformally invariant.
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Condensers

• The Green capacity also has a more symmetric definition as
follows.

• A pair of compact sets K1, K2 each of which is contained in a
single component of the complement of the other is called a
condenser with plates K1, K2.

• The capacity of the condenser is C(K1,K2) such that

1

C(K1,K2)
= inf

ν1∈PK1
, ν2∈PK2

∫
log

∣∣∣∣(x − y)(u − v)

x − u)(y − v)

∣∣∣∣ dν1(x)dν1(y)dν2(u)dν2(v).

• It holds that

C (K ,Ω) = C(K ,Ωc) = C(K , ∂Ω) = C(∂K , ∂Ω)

where boundaries are with respect to the component of the
complement containing the other plate.

• The measure on K to realize the infimum is ωG
K ,Ω, and it is

also the weighted equilibrium distribution in the field
generated by minus the potential of the other plate.
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Regularity

• Points ξ ∈ ∂Ω where limt→ξGΩ(z , t) > 0 are independent of
z ∈ Ω and are called irregular points of Ωc .

• Irregular points form a polar set. A closed set having no
irregular points is called regular.

• Irregular points admit the following characterization (Wiener
criterion).

• For ξ ∈ ∂Ω and 0 < γ < 1, set

Fn = {z /∈ Ω; γn < |z − ξ| ≤ γn−1}.

• Then ξ is irregular iff

Σn≥1
n

log (2/CFn)
<∞.
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n-th root estimates: upper bound

• J.L. Walsh was perhaps first to connect weak asymptotics in
rational approximation with Green potentials in the late 40’s.
He proved the following:

• Theorem[Walsh]
Let f be holomorphic on a domain Ω and K ⊂ Ω be compact;
Put

en = infrn∈Rn‖f − pn/qn‖L∞(K).

Then

lim sup
n→∞

e
1/n
n ≤ exp

(
− 1

C (K ,Ω)

)
.

• There are functions for which this bound is sharp
(Tikhomirov).
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Proof on the disk

• By outer continuity of the Green capacity, we may assume
that f is bounded on D, say ‖f ‖H∞(D) = 1.

• For Bn a Blaschke product with zeros at z1, · · · , zn ∈ K ,
projection of f onto H2 	 BH2 yields rn ∈ Rn interpolating f
at those points, ‖rn‖H2 ≤ 1. By a Bernstein-type estimate
‖r ′n‖H∞ ≤ cn [Baranov-Zarouf, 2014] so that ‖rn‖H∞ ≤ Cn.

•

|f (z)− rn(z)| ≤ C ′nΠn
j=1

∣∣∣∣ z − zj
1− zz̄j

∣∣∣∣
• Equivalently, with νn = 1

nΣjδzj ,

|f (z)− Bn(z)| ≤ C ′n exp

{
−n
∫

GD(z , t)dνn(t)

}
• Taking n-th root while choosing the zj so that νn converges

weak* to ωG
K ,D and letting n→∞ gives the desired bound up

to ε > 0 for z close enough to K .
• Using outer continuity of the Green capacity, we let ε→ 0.
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The Gonchar conjecture

• Motivated by certain constructions in multipoint Padé
interpolation, A. A. Gonchar conjectured in 1978 that

lim inf
n→∞

e
1/n
n ≤ exp

(
− 2

C (K ,Ω)

)
. (1)

• In a sense, Gonchar’s conjecture means that using rational
approximants instead of linear ones improves the convergence
like a Newton scheme does to in optimization to a steepest
descent algorithm, by squaring the error, at least for a
subsequence.

• Gonchar substantiated his conjecture by constructing classes
of functions for which (1) is both an equality and a true limit,
using (multipoint) Padé interpolants.
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Padé interpolants and orthogonal polynomials

• Let f (z) =
∫ dµ(ξ)

z−ξ where µ is a complex measure supported

on E compact. Here Ω = C \ E .

• If pn−1/qn interpolates f in {ξ(n)
1 , · · · , ξ(n)

2n ,∞} ⊂ Ω and if

ω2n is the (normalized) polynomial having zeros the ξ
(n)
j , then∫

qkn(ξ)

ω2n(ξ)
ξkdµ(ξ) = 0, k ∈ {0, 1, . . . , kn − 1}. (2)

• Note that orthogonality is non Hermitian.

• To assess the asymptotic behavior of qn, it was realized early
that E should have special properties in connection with the
asymptotic density of interpolation points, i.e. the weak* limit

ν of the normalized counting measures of the ξ
(n)
j :

1

2n

2n∑
`=1

δ
ξ

(n)
`

w∗−→ ν.
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Symmetric contours

• A weighted S-contour in the field ψ is a compact set K which
is an analytic arc in the neighborhood of q.e. point, and such
that at every such point

∂ (V ωK,ψ + ψ) /∂n+ = ∂ (V ωK,ψ + ψ) /∂n−

where ∂±n indicates normal derivatives from each side.

• The notion was introduced in nuce by [Nutall, 70’s] and
expounded by [Stahl, 1985] in the unweighted case, which is
suitable to study classical Padé aproximants (i.e. high order
inetrpolation at a single point).
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The Gonchar-Rakhmanov theorem

Theorem [Gonchar-Rachmanov,87] If f is (essentially) a Cauchy
integral on a weighted symmetric contour Kf ,ν in the field −Uν ,
with q.e. nonzero density on the arcs thereof, and if for each n the

interpolation points ξ
(n)
1 , · · · , ξ(n)

2n are picked with asymptotic
density ν:

1

2n

2n∑
`=1

δ
ξ

(n)
`

w∗ −→ ν.

then the Padé interpolants pn−1/qn in the points ξ
(n)
` converge in

capacity to f in the complement of Kf ,ν :

lim
n→∞

cap{z /∈ Kf ,ν :
∣∣∣|(f (z)− pn−1(z)/qn(z))| − e−2V

ωK ,Ec

G

∣∣∣1/n > ε} = 0.

and the normalized counting measure of their poles converges
towards ωK,−Uν .
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Remarks

• To substantiate the former’s conjecture Gonchar and
Rakhmanov used this theorem picking ν the equilibrium
distribution on K of the plane condenser (K ,E ), and showing
that the existence of rn ∈ Rn converging in capacity to f as
indicated implies existence of Rn ∈ Rn converging uniformly
with the correct n-th root rate. This they could do if E
consists of finitely many arcs.

• It is of course required that a weighted symmetric contour E
exists at all. For functions with polar singular set contained in
K c , an open set Ω exists to minimize C (K ,Ω) with f analytic
on Ω. Then E = Ωc works [Stahl 1989]. Moreover, E has
finitely many arcs if f has finitely many branch points. For
general fields [Stahl-Yattselev-L.B.,
2013][Buslaev-Suetin,2015].

• Altogether functions with finitely many branchpoints support
Gonchar’s conjecture in a strong sense (true limit).
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with the correct n-th root rate. This they could do if E
consists of finitely many arcs.

• It is of course required that a weighted symmetric contour E
exists at all. For functions with polar singular set contained in
K c , an open set Ω exists to minimize C (K ,Ω) with f analytic
on Ω. Then E = Ωc works [Stahl 1989]. Moreover, E has
finitely many arcs if f has finitely many branch points. For
general fields [Stahl-Yattselev-L.B.,
2013][Buslaev-Suetin,2015].

• Altogether functions with finitely many branchpoints support
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The Parfenov-Prokhorov theorem

• When the complement of K is connected, O.G. Parfenov
proved Gonchar’s conjecture in1986.

• In 1994 the result was extended to the finitely connected case
by V. A. Prokhorov.

• Whereas Gonchar did approach his conjecture trying to
construct approximants (interpolants), Parfenov’s proof is
non-constructive and relies on the Adamjan-Arov-Krein theory
of best meromorphic approximation, along with the
observation that n-th root asymptotics in rational and
meromorphic approximation are equivalent.
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Meromorphic approximation

• We approximate f on ∂K by the sum of a rational function
and (the trace of) a function in H∞(K c):

emn := ‖f−gn−rn‖L∞(∂K) = inf
g∈H∞(K c ), rn∈Rn

‖f−g−rn‖L∞(∂K).

• In other words, we approximate f on ∂K by the trace of a
meromorphic function with at most n poles in K c . This
makes conformal invariance obvious (if K regular).

• By the Cauchy formula

f (z)− rn(z) =
1

2iπ

∫
∂K

(f − rn − g)(t)

t − z
dt for z ∈

◦
K ,

which implies easily that

lim sup e
1/nk
nk = lim sup em

1/nk
nk , lim inf e

1/nk
nk = lim inf em

1/nk
nk

along any subsequence nk .
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Parfenov’s proof

• By conformal mapping assume K = C \ D with D the unit
disk, and Ω = C \ E , with E compact lying interior to the unit
circle T.

• By outer regularity of capacity, one may further assume that
∂E is a smooth Jordan curve Γ.

• AAK theory tells that the best error in uniform approximation
to f on T by meromorphic functions with n poles is the n + 1
singular value of the Hankel operator:

Af : H2(D) → H2
0 (C \ D)

u 7→ P−(fu)

where P− is the projection L2(T)→ H2
0 (C \ D) in the

orthogonal decomposition:

L2(T) = H2(D)⊕ H2
0 (C \ D).
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Parfenov’s proof cont’d

• By Cauchy formula

f (z) =
1

2iπ

∫
Γ

f (ξ)

z − ξ
dξ, z ∈ Ω.

• Moreover by the residue theorem

P−(h)(z) =
1

2iπ

∫
T

h(ξ)

z − ξ
dξ, h ∈ L2(T), z ∈ C \ D.

• By the above, Fubini’s theorem, and the residue formula, we
get for v ∈ H2(D):

Af (v)(z) =
1

2iπ

∫
Γ

(
1

2iπ

∫
T

v(ζ)

(z − ζ)(ζ − ξ)
dζ

)
f (ξ) dξ

=
1

2iπ

∫
Γ

v(ξ)f (ξ)

(z − ξ)
dζ, z ∈ C \ D.
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Parfenov’s proof cont’d

Therefore Af is the composition of four elementary operators:

Af = B1 B2 B3 B4,

• B4 : H2(D)→ L2(Γ) is the embedding operator obtained by
restricting functions to Γ,

• B3 : L2(Γ)→ L2(Γ) is the multiplication by f ,
• B2 : L2(Γ)→ S2(Ω) is the Cauchy projection onto the

Smirnov class of Ω,
• B1 : S2(Ω)→ H2(C \ D) is the embedding operator arising by

restriction.
• B3, B2 are bounded, and for the singular values of B1, B4 we

have [Zakharyuta-Skiba, 1976]

lim
k→∞

s
1/k
k (B1) = lim

k→∞
s

1/k
k (B4) = exp

(
− 1

C (C \ D, Γ)

)
.

• These estimates also follow from n-widths estimates by
[Fischer-Micchelli, 1980].
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Parfenov’s proof cont’d

• Applying now the Horn-Weyl inequalities:

Πn
k=0 sk(AB) ≤ Πn

k=0 sk(A) Πn
k=0 sk(B), n ∈ N

valid for any pair of bounded operators A : H1 → H2 and
B : H2 → H3 between Hilbert spaces,

• we obtain

Πn
k=0 sk(Af ) ≤ |||B2|||n+1|||B3|||n+1Πn

k=0 sk(B1)) Πn
k=0 sk(B4),

• from which Parfenov’s theorem follows easily upon taking
1/n2-roots.

• In short: quadratic estimates from spectral theory and AAK
solve the problem.
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Extremal domains of analyticity

• The Parfenov-Prokhorov theorem draws attention to the
largest domain of analyticity for f , say Ω, containing a given
compact set K , where ”largest” means that C (K ,Ω) is
minimal. This is defined up to the complement of a closed
polar set only, but we can make it unique by taking the union
of all such domains.

• Existence of such an extremal domain was proved by H. Stahl
in 1989. When the singular set of f is polar, it consists of
countably many analytic arcs with branching plus a polar set.
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Rational approximation to functions
with polar singular set

Theorem (H. Stahl†, M.Yattselev, L.B., 2015)

Let f be analytic in Ω ⊂ C and continuable indefinitely except over
a polar set. Let K ⊂ Ω be compact with K c connected. Let
further Ω∗ maximize the Green capacity C (K ,Ω∗) under the
condition that f is analytic and single-valued in Ω∗. Then

• limn→∞ e
1/n
n = exp

{
−2

C(K ,Ω∗)

}
• If there is a branchpoint and K is regular, then the asymptotic

density of the poles ξ
(n)
1 , · · · , ξ(n)

n of an asymptotically optimal
sequence rn of rational approximants of degree n is ωG

K ,Ω∗ :

1

n
Σn
`=1δξ(n)

`

w∗ −→ ωG
K ,Ω∗ .

• If there is no branchpoint convergence is faster than gometric,
but asymptotic distribution of poles is unknown.
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About the proof

• Assume C (K ,Ω) > 0. We know that

lim inf
n→∞

e
1/n
n ≤ exp

{
−2

C (KΩ)

}
.

lim sup
n→∞

e
1/n
n ≤ exp

{
−1

C (K ,Ω)

}
.

• Dwelling on Horn-Weyl inequalities we prove

lim sup
n→∞

e
1/n
n > exp

{
−2

C (K ,Ω)

}
=⇒ lim inf

n→∞
e

1/n
n < exp

{
−2

C (K ,Ω)

}
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About the proof cont’d

• In a second step, one shows that along any subsequence

lim inf e
1/n
n ≥ exp

{
−2

C(K ,Ω∗)

}
and that this speed of

convergence is attained only if the asymptotic density of the
poles is ωG

(K ,Ω∗)

• This is done by analyzing the limit L, along a subsequence, of
(log en)/n on the Riemann surface of f . We divide it in three
subsets E+, E−, E0 where the limit is positive, negative or 0.
The surface lies schlicht over G− and saturated over G+.
Balayaging the mass of L (a δ-subharmonic function) out of
G+, G−, we find thanks to schlichtness and Bagemihl-type
arguments that the mass on G0 is at most 2.

• One dificulty is that L is only finely continuous, which leads us
to work with fine tology, fine balayage, and fine Dirichlet
problems.

• One has to connect poles in rational approximation with poles
in meromorphic approximation.
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A conjecture

• Using the identification R2 ∼ C, analytic functions may be
viewed as (conjugates of) gradients of harmonic functions.

• This way rational functions become gradients of discrete
logarithmic potentials.

• This makes sense in higer dimension (Newtonian potentials).
• Is it true that:

if a potential whose mass lies inside a domain Ω gets optimally
approximated in a Sobolev sense on ∂Ω by a discrete
potential, then the discrete masses of best approximation
asymptotically distribute, in the sense of limit points of
normalized counting measure, on the set of minimal Green
capacity outside of which the initial gradient is single valued?

• And if the initial field can be continued except over a set of
capacity zero, is it true that these counting measures converge
weak-* to the Green equilibrium distriution of the minimal set?

• We proved the conjecture in dimension 2 when the singular
set is polar.
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A sad note

In memoriam Herbert Stahl, August 3, 1942–April 22, 2013.
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And most importantly

Thank you!


