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Uncertainty Principle in Harmonic Analysis

A nonzero function and its Fourier transform can not be too

�small� simultaneously.

The word �small� can be understood in many di�erent ways:

smallness of support, fast decay at some point, etc.

Victor Havin, Burglind J�oricke, The Uncertainty Principle in

Harmonic Analysis, Springer-Verlag, Berlin, 1994.

One of the topics of particular interest for V. Havin was the

Beurling�Malliavin theory.
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Two problems for functions with bounded spectra

Let a > 0 and let f ∈ L2(R), supp f ⊂ [−a,a].

Problem 1. For which functions w ≥ 0, the estimate |̂f | ≤ w
implies that f = 0 a.e.?

If there exists a nonzero function f with |̂f | ≤ w , we say that w
is an admissible majorant.

Problem 2. For which discrete sets Λ ⊂ R the condition f̂ |Λ = 0
implies that f = 0 a.e.?

This condition is equivalent to the completeness of the system of

exponentials EΛ := {eiλt}λ∈Λ in L2(−a,a) or of reproducing

kernels (cardinal sine functions) {kλ}λ∈Λ in PWa = ̂L2(−a,a).
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A. Beurling, P. Malliavin, On Fourier transforms of measures with
compact support, Acta Math. (1962).

A. Beurling and P. Malliavin, On the closure of characters and the

zeros of entire functions, Acta Math. (1967).



Beurling�Malliavin Theory

A necessary condition for w to be an admissible majorant is the

convergence of the logarithmic integral∫
R

log w(x)

1 + x2 dx > −∞.

This is a criterion for being an admissible majorant in the

Hardy space (functions with semi-bounded spectra).

Beurling�Malliavin Multiplier Theorem (BM1)

If the logarithmic integral converges and the function

Ω = − log w is Lipschitz on R, then w is an admissible majorant

for PWσ for any σ > 0.

The term �Multiplier Theorem� refers to the fact that the

function 1/w (which is large) can be multiplied by an entire

function with an arbitrary small spectrum so that the product

be bounded.
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Beurling�Malliavin Theory

R(Λ) := sup{a : EΛ is complete in L2(−a,a)} � radius of
completeness

Beurling�Malliavin Theorem on Radius of Completeness (BM2)

R(Λ) = πDBM(Λ).

We will say that the sequence Λ ⊂ R is a-regular if its counting
function nΛ satis�es∫

R

|nΛ(x)− ax |
1 + x2 dx <∞.

The exterior Beurling�Malliavin density DBM(Λ) is the in�mum
of numbers a such that the sequence Λ ∪ Λ′ is a-regular for some
Λ′ ⊂ R.
This de�nition belongs to J.-P. Kahane. The original de�nition

given by Beurling and Malliavin used the notion of short system

of intervals.
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Havin's approach to BM1

All previous proofs (Beurling�Malliavin, Koosis, de Branges)

used essentially complex analysis. Havin (joint with

J. Mashreghi and F. Nazarov) found a real proof of BM1.

Another advantage of this approach is that it applies to more

general spaces of analytic functions (model spaces KΘ,

de Branges spaces).

V.P. Havin, J. Mashreghi, Admissible majorants for model

subspaces of H2. Part I: slow winding of the generating inner

function, Can. J. Math. (2003).

V.P. Havin, J. Mashreghi, Admissible majorants for model

subspaces of H2. Part II: fast winding of the generating inner

function, Can. J. Math. (2003).

V.P. Havin, J. Mashreghi, F.L. Nazarov, Beurling�Malliavin

multiplier theorem: the 7th proof, St. Petersburg Math. J.

(2006).



Havin's approach to BM1

1. Parametrization of admissible majorants.

Let w ≥ 0 and with Ω = − log w ∈ L1(Π), dΠ(t) = dt
t2+1 .

Ω̃(x) = v .p.
1
π

∫
R

(
1

x − t
+

t
t2 + 1

)
Ω(t)dt .

Then w is an admissible majorant if and only if there exists a

bounded function m ≥ 0 with mw ∈ L2(R) and log m ∈ L1(Π)
such that

at + Ω̃(t) = l̃og m(t) + πk a.e. on R,

where k is a measurable function with integer values.

The same holds for spaces KΘ with at replaced by 1
2 arg Θ(t).

This representation is based on an observation due to

K. Dyakonov: h = |f | for f ∈ KΘ i� h2Θ ∈ H1.
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Havin's approach to BM1

2. Conditions in terms of Ω̃.

Theorem

If Ω̃ is Lipschitz, then w is an admissible majorant for PWa for

any a > ‖(Ω̃)′‖∞.

This result is a special case of a much more general su�cient

admissibility condition applicable to general de Branges spaces

(= spaces KΘ with meromorphic Θ).

But Ω ∈ Lip does not imply that Ω̃ ∈ Lip.

3. Nazarov's correction theorem.

Theorem

If Ω ∈ Lip, then for any ε > 0 there exists Ω1 ≥ Ω such that

Ω1 ∈ L1(Π), Ω̃1 is Lipschitz and ‖(Ω̃1)′‖∞ < ε.

Now w1 = exp(−Ω1) is admissible and w ≥ w1.

The proof is based on an ingenious combinatorial construction.
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Beurling�Malliavin Multiplier Theorem: the Seventh Proof

Combining the last two results one obtains a real variable and,

probably, the shortest proof of the Multiplier Theorem.

V.P. Havin, J. Mashreghi, F.L. Nazarov, Beurling�Malliavin

multiplier theorem: the 7th proof, St. Petersburg Math. J.

(2006).

As an epigraph Victor Petrovich used the following quotation:

*********************************************

�...Íà ýòî ñóùåñòâóåò ñåäüìîå äîêàçàòåëüñòâî, è óæ ñàìîå

íàäåæíîå! È âàì îíî ñåé÷àñ áóäåò ïðåäúÿâëåíî.�

Ì.À. Áóëãàêîâ, Ìàñòåð è Ìàðãàðèòà

*********************************************

�...Yet the seventh proof of that exists, reliable beyond doubt!

And it will be shown you in a while.�

M.A. Bulgakov, The Master and Margarita
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Further developments

The papers by Havin and Mashreghi cited above contain also a

number of results about admissible majorants in de Branges

spaces of entire functions. In particular, it is shown that the

theory bifurcates in two essentially di�erent situations:

Fast (linear or super-linear) growth of arg Θ on R
Slow (sub-linear) growth of arg Θ on R

Some further developments:

A. Baranov, V. Havin (2006), A. Baranov, A. Borichev,

V. Havin (2007) � slow growth case (e.g., zeros of Θ of the

form zn = nα + i or zn = ±nα + i , n ∈ N).
Yu. Belov (2006) � fast growth (|arg Θ(t)| � tα, α > 1).
Yu. Belov (2008) � two-sided estimate (|f | � w)

A. Baranov, H. Woracek (2009�2011) � relation between

admissible majorants and chains of de Branges subspaces.
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Gap Problem

Let X be a closed subset of R. Denote by M(X ) the set of �nite
complex measures supported by X . The gap characteristic G(X )
is de�ned by

G(X ) = sup{a : ∃µ ∈ M(X ) such that µ̂(x) = 0, x ∈ (−a,a)}.

Solution:

M. Mitkovski, A. Poltoratski (2010) � for the case when

X = Λ is a separated sequence, i.e.,

d(Λ) := inf
λ,λ′∈Λ,λ 6=λ′

|λ− λ′| > 0.

Answer � interiour Beurling�Malliavin density.

A. Poltoratski (2012) � general case (energy condition)
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Gap Problem

We will say that the sequence Λ ⊂ R is a-regular if its counting
function nΛ satis�es∫

R

|nΛ(x)− ax |
1 + x2 dx <∞.

The exterior Beurling�Malliavin density DBM(Λ) is the in�mum
of numbers a such that the sequence Λ ∪ Λ′ is a-regular for some
Λ′ ⊂ R.

The interior Beurling�Malliavin density DBM(Λ) is the
supremum of numbers a such that the function nΛ′ is strongly

a-regular for some Λ′ ⊂ Λ.

Theorem (Mitkovski, Poltoratski, 2010)

Let Λ be a separated sequence. Then G(Λ) = πDBM(Λ).

The proof: Beurling�Malliavin theory, Toeplitz kernels, de

Branges spaces
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Short proof of the Gap Theorem

A.B., Yu. Belov, A. Ulanovskii, after an idea by A. Olevskii

Proposition 1.

Assume Λ ⊂ αZ, α > 0. Then DBM(Λ) + DBM(αZ \ Λ) = 1/α.

Proposition 2.

Assume Λ ⊂ αZ, α > 0. Then G(Λ) + R(αZ \ Λ) = π/α.

Proof for the case Λ ⊂ αZ:

G(Λ) = π/α− R(αZ \ Λ) = π/α− πDBM(αZ \ Λ)

= π/α− π(1/α− DBM(Λ)) = πDBM(Λ).
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Short proof of the Gap Theorem

The general case � a perturbation argument.

Given a separated set Λ, consider its perturbations:

Λ̃ = {λ+ ελ : λ ∈ Λ}.

Proposition 3.

Assume Λ is a separated set. For every positive number

δ < d(Λ)/4, and every number ελ satisfying δ/2 < ελ < δ the
set Λ̃ satis�es

G(Λ̃) = G(Λ), DBM(Λ̃) = DBM(Λ).

Equality DBM(Λ̃) = DBM(Λ) is obvious, since nΛ − nΛ̃ ∈ L∞.
To prove that G(Λ̃) = G(Λ), we use the fact that µ̂ vanishes on

[−a,a] i� the Cauchy transform of µ decays faster than e−b|z|

along iR for any b < a.

End of the proof: Fix any separated set Λ and 0 < δ < d(Λ)/4.
Clearly, there is a set Λ̃ such that Λ̃ ⊂ αZ, for some α > 0.



Proposition 2.

Assume Λ ⊂ αZ, α > 0. Then G(Λ) + R(αZ \ Λ) = π/α.

Let α = 1, Λ ⊂ Z, Γ := Z \ Λ.
If EΓ is not complete in L2(0,2a), 0 < a < π, then ∃f ∈ L2(R)
which vanishes outside (0,2a) and f ⊥ EΓ. For ε > 0 put

g = f ∗h, where h is a smooth function supported by [0, ε]. Then
g is smooth, vanishes outside (0,2a + ε) and is orthogonal to EΓ.

g(x) =
∑
n∈Z

aneinx =
∑
n∈Λ

aneinx , {an} ∈ `1.

So, µ :=
∑

n∈Λ anδn ∈ M(Λ) and has a spectral gap of length at

least 2π − 2a− ε. So R(Γ) + G(Λ) ≥ π.

Now, suppose that there exists a nontrivial measure µ such that

µ̂ ≡ 0 on (0,2a). Put g(x) = µ̂
∣∣
(2a,2π)

. Then g ∈ L2(0,2π) and

g ⊥ EΓ. Hence, R(Γ) ≤ π − a. So, R(Γ) + G(Λ) ≤ π.
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