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Introduction

Motivation

» LetXq,..., X, € RN be i.i.d centered random vectors with
covariance matrix Ly = E(X{X]) = ... = E(X,X}).
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Introduction

Motivation

» LetXq,..., X, € RN be i.i.d centered random vectors with
covariance matrix Ly = E(X{X]) = ... = E(X,X}).
» The sample covariance matrix By p is defined by

1 p
Bnp=—> XeX{
p k=1
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Motivation

v
—
[0}
—_

x

vo-,Xp € RN be i.i.d centered random vectors with
covariance matrix Ly = E(X{X]) = ... = E(X,X}).
The sample covariance matrix By , is defined by

v

1 p
Bnp=—> XeX{
p k=1

v

E(Bnp) =Zn
For fixed N, the strong law of large numbers implies

v

o
ZXKXZ =3YpN a.s.
k=1

. ) 1
lim Byp= lim —
p——+oo ’ p—+oo PO
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Introduction

Motivation

v
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x

vo-,Xp € RN be i.i.d centered random vectors with
covariance matrix Ly = E(X{X]) = ... = E(X,X}).
The sample covariance matrix By , is defined by

v

1 p
Bn,p = 5 > XeX{

k=1
» E(Bnp) =Xn
» For fixed N, the strong law of large numbers implies
1P
,im By, = lim 5 ; X X[ =Ty as.

» What happens once N := N,,p — cos.t. p— 00 ?
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Introduction

Sample covariance matrices

» Let By = BN,p = ;BXN,pX/\?p =1 £:1 ka](—

P
X1A’1 X172 X17p
XN,p = .
XN,1 XN72 . XN,p
Xi X2 ... X,
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Introduction

Sample covariance matrices

» Let By = BN,p = ;BXN,pX/\?p =1 £:1 ka](—

P
X1A’1 X172 X17p
XN,p = .
XN,1 XN72 . XN,p
Xi X2 ... X,

» The empirical spectral measure of By is defined by

1 N
1By = A > 6,
k=1

where \q, ..., An are the eigenvalues of By.

) )
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Introduction

Sample covariance matrices

» Let By = BN,p = %XN,pX/\?p =1 £:1 ka](—

P
X1A’1 X172 X17p
XN,p = .
XN,1 XN72 . XN,p
Xi X2 ... X,

» The empirical spectral measure of By is defined by

1 N
1By = A > 6,
k=1

where A1, ..., \y are the eigenvalues of By.
» We shall suppose that cy := %’ —— c€(0,00).
N—+co
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Marcenko-Pastur Theorem

Theorem (Marcenko, Pastur ’67)
Let (Xj)ij>1 be a family of i.i.d. random variables such that

]E(X11)=0 and Var(X11):c72.

Iflimy N/p = ¢ € (0,00), then

w
By — Mmp a.S.
N— oo

y
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Marcenko-Pastur Theorem

Theorem (Marcenko, Pastur ’67)
Let (Xj)ij>1 be a family of i.i.d. random variables such that

]E(X11) =0 and Var(X11) =0
Iflimy N/p = ¢ € (0,00), then
HBy PR pvp  a.S.
N— oo

whose density is given by

1
<1C>+ 57 cor 2X\/ b X X a1[ab]

with + :=max(0,.) , a= %1 —+/c)? and b = o?(1 + /C)2.

y
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Marcenko-Pastur Theorem

Simulation

Wishart Matrix, N= 500 , n=1000, c= 0.5
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Figure : In blue, histogram of the eigenvalues. In yellow, the density of the
Marcenko-Pastur distribution
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Sample covariance matrix

Perturbations

» We consider ]
R;V/ZBNR;V/2 = ER;\//2XN,pXI\7I—,pR/1\I/2

where Ff,1\,/2 is a perturbation of the identity matrix:

Ry=Iy+6uu’, 6>0
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Sample covariance matrix

Perturbations

» We consider ]
RV *BnR)? = ER;V/ZXN,pXA?pR;v/ :

where Ff,1\,/2 is a perturbation of the identity matrix:

Ry=Iy+6uu’, 6>0

N=800 , 1= 2000 , sqrt(c)=0.63, theta=[ 0.1 ] Wishart Matrix, N= 800 ,n=2000 , sart(c)=0.63, theta=1.5.

g; “|
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Figure : Histogram of the empirical eigenvalues and MP distribution
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The Stieltjes Transform

Characterization of measures

The Stieltjes transform Sg : C, — C of a measure v on R is defined
by

S,(2) ::/ LA

X—Zz

Marwa BANNA | Random matrices with correlated entries



The Stieltjes Transform

Characterization of measures

The Stieltjes transform Sg : C, — C of a measure v on R is defined
by

S,(2) ::/ LA

X—Zz

» |S.(2)] < 1/Jm(z) and Tm(S,(z)) =0
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The Stieltjes Transform

Characterization of measures

The Stieltjes transform Sg : C, — C of a measure v on R is defined
by

S,(2) ::/ LA

X—Zz

» |S,(2)] < 1/3m(z) and Im(S,(2)) =0
» The function S, is analytic over C, and characterizes v

b
v([a, b)) = l}lﬂ} ; / JmS, (x + iy) dx
Ja
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The Stieltjes Transform

Characterization of measures

The Stieltjes transform Sg : C, — C of a measure v on R is defined
by

S,(2) ::/ LA

X—Zz

» |S,(2)] < 1/3m(z) and Im(S,(2)) =0
» The function S, is analytic over C, and characterizes v

b
v([a, b)) = l}lﬂ} ; / JmS, (x + iy) dx
Ja

» For a sequence of measures (v,), on R, we have

(y,, £, 1/) = (VZ eCy, S,,(2) — Sy(z)).

n—oo
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The Stieltjes transform

Characterization of the limiting distribution

To prove the M-P Theorem, it is equivalent to prove
VzeCy, Sy, (2) = Sup(z) as.
where

o?2(1—c)—z++/(z—b)(z— a)
2czo?

SMMP (Z) -

is the Stieltjes transform of the MarCenko-Pastur distribution
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The Stieltjes transform

Characterization of the limiting distribution

To prove the M-P Theorem, it is equivalent to prove
VzeCy, Sy, (2) = Sup(z) as.
where

o?(1—-c¢)—z++/(z—b)(z— a)
2czo?

SMMP (Z) =

is the Stieltjes transform of the MarCenko-Pastur distribution
satisfying Vz € C, the equation:
1

S[LMP(Z) - —z4+1—-—c— CZS“MP(Z)
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Matrices with correlated entries

having independent columns

Theorem (Bai-Zhou ’08, Yao ’'12)

By = [1, 211 XkX[ where the X 's are independent copies of

(Xi,...,Xn)" where
2= Zajs;_,-.
j=0

1. the ¢;’s are iid, centered and in L*.
2. 2121 |a,-\ < o0

v
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Matrices with correlated entries

having independent columns

Theorem (Bai-Zhou ’08, Yao ’'12)

By = [1, 211 XkX[ where the X 's are independent copies of

(Xi,...,Xn)" where

2= Z ajgj—j .
j=0

1. the ¢;’s are iid, centered and in L*.

2. 2121 |a,-\ < o0

then, a.s. ug, NL> p such that S := S,,(z) verifies the equation
— 00

2T
S 2nJo S+ (2nf(N)

where f(-) is the spectral density of (Xj)icz

v
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Matrices with correlated entries

having independent columns

Theorem (Bai-Zhou ’08, Yao ’'12)

By = [1, 211 XkX[ where the X 's are independent copies of

1
(X4,...,Xn)" where X — Z o
j=0
1. the ¢;’s are iid, centered and in L*.
2. Y s1lal < oo
then, a.s. ug, ﬁ uu such that S .= S,,(z) verifies the equation

2T
S 2nJo S+ (2nf(N)

where f(-) is the spectr%/ density of (Xi)icz
fx) = 5- XK: Cov(Xo, X )€™, x e R

v

Marwa BANNA | Random matrices with correlated entries




Matrices with correlated entries

along both columns and rows

Let By = ;SXN‘,,,X,QP
X1,1 X172 A X1,p
Anp = : : :
Xni Xnz .. Xnp

» Boutet de Monvel, Khorunzhy and Vasilchuk 96
Correlated Gaussian entries
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Matrices with correlated entries

along both columns and rows

Let By = ;SXN‘,,,X,QP
X1,1 X172 A X1,p
Anp = : : :
Xni Xnz .. Xnp

» Boutet de Monvel, Khorunzhy and Vasilchuk 96
Correlated Gaussian entries
» Hachem, Loubaton and Najim ’05

Xij= Z a1 Gi—kj—¢

(k,0)ez?
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Matrices whose entries are functions of iid random variables

The Model

» Let (&))ijez be an array of iid random variables
» Forall (k,¢) € 72,

Xeo = 9(&k—iv—j; (i,)) € Z?),

2 . .
where g : R — R is a measurable function.
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Matrices whose entries are functions of iid random variables

The Model

» Let (&))ijez be an array of iid random variables
» Forall (k,¢) € 72,

Xeo = 9(&k—iv—j; (i,)) € Z?),

where g : RZ - R is a measurable function.
> E(Xo0) =0 et E(X§,) < oo
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Matrices whose entries are functions of iid random variables

The Model

v

Let (& /)i jez be an array of iid random variables
For all (k, /) € 72,

v

Xeo = 9(&k—iv—j; (i,)) € Z?),

where g : RZ - R is a measurable function.
E(X0) =0 et E(XZ,) < oo

v

» Let By = %XN,pX/J_p = ,% et XiX{
Xig Xizg o Xip
Xyp=| : :
Xn1 Xnz .. Xup
X1 X2 e Xp
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Matrices whose entries are functions of iid random variables

» Let (Gj;)ijecz be an array of centered Gaussian random variables
s.t. V(i.)), (k,¢) € 72,

E(Gk,g G/,/) = E(Xk,zxi,j)

» LetHy = %QN,pg&p

G1v1 Gi 2 .- G17p
Gnp=| : : :
GN71 GN72 . GN_p
zZ, Z ... Z
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Matrices whose entries are functions of iid random variables
Main result

Theorem (B., Merlevede and Peligrad '14)
Provided that N,p — oo s.t. N/p — ¢ € (0,00), we haveV z € C,

N|LI’T]OO ‘SBN(Z) = E(SHN(Z))| =0a.s.
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Matrices whose entries are functions of iid random variables
Main result

Theorem (B., Merlevede and Peligrad '14)
Provided that N,p — oo s.t. N/p — ¢ € (0,00), we haveV z € C,

lenoo !SBN(Z) = E(SHN(Z))‘ =0a.s.

| A

Corollary

IfN,p — o s.t. N/p — ¢ € (0,00) and if there exists . such that for
any continuous and bounded function f : R — R,

E [ fdun, o> [ fa

then

By —— i as.
N— oo

y
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Matrices whose entries are functions of iid random variables

Theorem (B., Merlevéde and Peligrad '14)
LetN,p — oo t.q. N/p — ¢ € (0,00). Assume that

> k.eez |Cov(Xo 0, Xi,e)| < o0

Then,
w
UBy — [t a.S.
N— oo

whose Stieltjes transform S := S,L( ) verifies: Yz € C*
fo X, z)dx

where h(x, z) is a solution of the equation

4
o f(x,s)
h(X,Z) - ( 2 IO 1+Cfo (u,8)h(u,z)d dS) ’

avec

f(X7 y) = ZK,EGZ COV()(O_’O7 Xk’é)e_z‘ﬂ'i(kx*My)

y
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Applications to linear processes

Corollary (B., Merlevede, Peligrad '14)

Let (aj) (i jycze be a double indexed sequence of numbers such that
>ijezl@ijl <oo. Let

Xk = Z 8 jEkiye4) -
ijez
The result follows with

f(X, y) = E(fgo) Z Z i jAkti0+] e—27r(kx+fy)
KAEZ i jEL
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Applications to linear processes

Corollary (B., Merlevede, Peligrad '14)

Let (aj) (i jycze be a double indexed sequence of numbers such that
>ijezl@ijl <oo. Let

Xk = E 8 jEkiye4) -

ijez
The result follows with

f(X, y) = E(£§0) Z Z 8 jk-ti o+ e—27r(kx+£y)

k€ ijET

v

We generalize the results of Hachem et al. ’05, Yao 12 and Pan et al.
"18.
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Other Applications

Other possible applications:
» functions of linear processes,
» Volterra type processes,
» ARCH models, ...etc
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Thank you for your attention!
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