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Introduction
Motivation

I Let X1, . . . ,Xp ∈ RN be i.i.d centered random vectors with
covariance matrix ΣN = E(X1XT

1 ) = . . . = E(XpXT
p ).

I The sample covariance matrix BN,p is defined by

BN,p =
1
p

p∑
k=1

Xk XT
k

I E(BN,p) = ΣN

I For fixed N, the strong law of large numbers implies

lim
p→+∞

BN,p = lim
p→+∞

1
p

p∑
k=1

Xk XT
k = ΣN a.s.

I What happens once N := Np,p →∞ s.t. p →∞ ?
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Introduction
Sample covariance matrices

I Let BN := BN,p = 1
pXN,pX T

N,p = 1
p

∑p
k=1 Xk XT

k X1,1 X1,2 . . . X1,p

XN,p =
...

...
...

XN,1 XN,2 . . . XN,p
X1 X2 . . . Xp

I The empirical spectral measure of BN is defined by

µBN =
1
N

N∑
k=1

δλk

where λ1, . . . , λN are the eigenvalues of BN .
I We shall suppose that cN := N

p −−−−−→N→+∞
c ∈ (0,∞).
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Marc̆enko-Pastur Theorem

Theorem (Marc̆enko, Pastur ’67)
Let (Xij )i,j>1 be a family of i.i.d. random variables such that

E(X11) = 0 and Var(X11) = σ2.

If limN N/p = c ∈ (0,∞), then

µBN

w−−−−→
N→∞

µMP a.s.

whose density is given by(
1− 1

c

)
+

δ0 +
1

2π cσ2x

√
(b − x)(x − a)1[a,b](x)dx

with .+ := max(0, .) , a = σ2(1−
√

c)2 and b = σ2(1 +
√

c)2.
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Marc̆enko-Pastur Theorem
Simulation

Figure : In blue, histogram of the eigenvalues. In yellow, the density of the
Marc̆enko-Pastur distribution
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Sample covariance matrix
Perturbations

I We consider
R1/2

N BNR1/2
N =

1
p

R1/2
N XN,pX T

N,pR1/2
N

where R1/2
N is a perturbation of the identity matrix:

RN = IN + θuuT , θ > 0

Figure : Histogram of the empirical eigenvalues and MP distribution
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The Stieltjes Transform
Characterization of measures

The Stieltjes transform SG : C+ → C of a measure ν on R is defined
by

Sν(z) :=

∫
1

x − z
dν(x)

I |Sν(z)| 6 1/Im(z) and Im(Sν(z)) > 0
I The function Sν is analytic over C+ and characterizes ν

ν([a,b]) = lim
y↓0

1
π

∫ b

a
ImSν(x + iy) dx

I For a sequence of measures (νn)n on R, we have(
νn

L−−−→
n→∞

ν
)
⇔
(
∀z ∈ C+, Sνn (z) −−−→

n→∞
Sν(z)

)
.
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The Stieltjes transform
Characterization of the limiting distribution

To prove the M-P Theorem, it is equivalent to prove

∀z ∈ C+, SµBN
(z)→ SµMP (z) a.s.

where

SµMP (z) =
σ2(1− c)− z +

√
(z − b)(z − a)

2czσ2

is the Stieltjes transform of the Marc̆enko-Pastur distribution

satisfying ∀z ∈ C+ the equation:

SµMP (z) =
1

−z + 1− c − czSµMP (z)
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Matrices with correlated entries
having independent columns

Theorem (Bai-Zhou ’08, Yao ’12)
BN = 1

p

∑p
k=1 Xk XT

k where the Xk ’s are independent copies of
(X1, . . . ,XN)T where

Xi =
∑
j>0

ajεi−j .

1. the εi ’s are iid, centered and in L4.
2.
∑

j≥1 |aj | <∞

then, a.s. µBN

w−−−−→
N→∞

µ such that S := Sµ(z) verifies the equation

z = − 1
S

+
c

2π

∫ 2π

0

1

S +
(
2πf (λ)

)−1 dλ ,

where f (·) is the spectral density of (Xi )i∈Z

f (x) =
1

2π

∑
k

Cov (X0,Xk )eixk , x ∈ R
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Matrices with correlated entries
along both columns and rows

Let BN = 1
pXN,pX T

N,p  X1,1 X1,2 . . . X1,p

XN,p =
...

...
...

XN,1 XN,2 . . . XN,p

I Boutet de Monvel, Khorunzhy and Vasilchuk ’96
Correlated Gaussian entries

I Hachem, Loubaton and Najim ’05

Xi,j =
∑

(k,`)∈Z2

ak,`Gi−k,j−`

Marwa BANNA | Random matrices with correlated entries



Matrices with correlated entries
along both columns and rows

Let BN = 1
pXN,pX T

N,p  X1,1 X1,2 . . . X1,p

XN,p =
...

...
...

XN,1 XN,2 . . . XN,p

I Boutet de Monvel, Khorunzhy and Vasilchuk ’96
Correlated Gaussian entries

I Hachem, Loubaton and Najim ’05

Xi,j =
∑

(k,`)∈Z2

ak,`Gi−k,j−`

Marwa BANNA | Random matrices with correlated entries



Matrices whose entries are functions of iid random variables
The Model

I Let (ξi,j )i,j∈Z be an array of iid random variables
I For all (k , `) ∈ Z2,

Xk,` := g(ξk−i,`−j ; (i , j) ∈ Z2) ,

where g : RZ2 → R is a measurable function.

I E(X0,0) = 0 et E(X 2
0,0) <∞

I Let BN = 1
pXN,pX T

N,p = 1
p

∑p
k=1 Xk XT

k X1,1 X1,2 . . . X1,p

XN,p =
...

...
...

XN,1 XN,2 . . . XN,p
X1 X2 . . . Xp
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Matrices whose entries are functions of iid random variables

I Let (Gi,j )i,j∈Z be an array of centered Gaussian random variables
s.t. ∀ (i , j) , (k , `) ∈ Z2,

E(Gk,`Gi,j ) = E(Xk,`Xi,j )

I Let HN = 1
pGN,pGT

N,p  G1,1 G1,2 . . . G1,p

GN,p =
...

...
...

GN,1 GN,2 . . . GN,p
Z1 Z2 . . . Zp
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Matrices whose entries are functions of iid random variables
Main result

Theorem (B., Merlevède and Peligrad ’14)
Provided that N,p →∞ s.t. N/p → c ∈ (o,∞), we have ∀ z ∈ C+,

lim
N→∞

∣∣SBN (z)− E
(
SHN (z)

)∣∣ = 0 a.s.

Corollary
If N,p →∞ s.t. N/p → c ∈ (0,∞) and if there exists µ such that for
any continuous and bounded function f : R→ R,

E
∫

f dµHN −−−−−→N→+∞

∫
f dµ,

then
µBN

w−−−−→
N→∞

µ a.s.
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Matrices whose entries are functions of iid random variables

Theorem (B., Merlevède and Peligrad ’14)
Let N,p →∞ t.q. N/p → c ∈ (0,∞). Assume that∑

k,`∈Z |Cov(X0,0,Xk,`)| <∞

Then,
µBN

w−−−−→
N→∞

µ a.s.

whose Stieltjes transform S := Sµ(z) verifies: ∀z ∈ C+

S(z) =
∫ 1

0 h(x , z)dx

where h(x , z) is a solution of the equation

h(x , z) =
(
− z +

∫ 1
0

f (x,s)
1+c

∫ 1
0 f (u,s)h(u,z)du

ds
)−1

,

avec
f (x , y) =

∑
k,`∈Z Cov(X0,0,Xk,`)e−2πi(kx+`y)
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Applications to linear processes

Corollary (B., Merlevède, Peligrad ’14)
Let (ai,j )(i,j)∈Z2 be a double indexed sequence of numbers such that∑

i,j∈Z |ai,j | <∞ . Let

Xk,` =
∑
i,j∈Z

ai,jξk+i,`+j .

The result follows with

f (x , y) = E(ξ2
0,0)

∑
k,`∈Z

∑
i,j∈Z

ai,jak+i,`+j e−2π(kx+`y)

We generalize the results of Hachem et al. ’05, Yao ’12 and Pan et al.
’13.
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Other Applications

Other possible applications:
I functions of linear processes,
I Volterra type processes,
I ARCH models, . . . etc
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Thank you for your attention!
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