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(unweighted) Tent Spaces

Forf:R’frH—>C,0<p,q<oo,

r/q
dy dt
f p.q / // f y,t = dx
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This (quasi)norm defines the tent space TP>4 = TP1(R™).
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R. R. Coifman, Y. Meyer, and E. M. Stein. “Some New Function Spaces and Their
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Weighted Tent Spaces

Forf:R’frH—>C,0<p,q<oo, s €R,

_ dy dt
fllgpa = / // 12 f(y,t)|? dx
H ||T'S I'(2) | | n+1

This (quasi)norm defines the weighted tent space TP4 = TP4(R™).
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Complex interpolation of weighted tent spaces

Theorem
For 0 < po, p1,90,q1 < 00, So,51 € R, and 6 € (0,1),

'P0,90 P1,91 — T'Po,40
[Ts() ’ 7Tsl ’ }9 - T@g ’

where p; ' = (1—0)py ' +0p1 ", likewise for g, and s = (1 —0)sq + 0s1.

S. Hofmann, S. Mayboroda, and A. Mclntosh. “Second Order Elliptic Operators with
Complex Bounded Measurable Coefficients in LP, Sobolev, and Hardy Spaces”. In:
Ann. Sci. Ec. Norm. Supér. (4) 44.5 (2011), pp. 723-800



Real interpolation of weighted tent spaces

Theorem (A., 2015)
For 0 < po,p1,q <00, so # s1 €R, and 0 € (0,1),

Po,q P1,9 — 7Dbo,q
(T807 7Ts17 )9710 - ng7

0 )

where ZP¢ js defined by the quasinorm

p/q
dx dt
P,q +— - 5 qd d
Ilzei= | .. (ﬁz(mh FE7) 57) t

with Q(z,t) = B(z,t) x (t/2,2t).
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A. Amenta. “Interpolation and Embeddings of Weighted Tent Spaces”.
arxiv:1509.05699. 2015
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[fllpa = || = 1F(9:)fHLP(Rn:Lg)
where

(dy dt
L1:= L4 (Riﬂvt_qéti/H) :



Idea of proof (a bit unrigorous):

||f||TPq = Ha: = 1F(w)fHLp(Rn:Lg)
where
L= L1 (Ri+17t‘qs%) .

So we will have

||f||(T€P:=lZ)9,p9 =~ ||.§U — 1F(w)f||(Lp.(Rn:Lg.))91p6 ’

where
(LP*(R™ : LY, ))o,po = L (R™ = (LE,)0,ps)-

The problem is reduced to identifying ‘off-diagonal’ real interpolation
spaces (L, ) p, between weighted L7 spaces, with ¢ fixed.



Theorem (Gilbert, 1972)

Suppose (M, 1) is a o-finite measure space and let w be a weight on
(M, ). Let0 <0 <1,0<p,q<oco. Then for eachr > 1 the expression

gives an equivalent quasinorm on (L4(M), LY(M,w?))g p.

)
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Theorem (Gilbert, 1972)

Suppose (M, 1) is a o-finite measure space and let w be a weight on
(M, ). Let0 <0 <1,0<p,q<oco. Then for eachr > 1 the expression

gives an equivalent quasinorm on (L4(M), LY(M,w?))g p.

)
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(’I“_ke ‘ |1z:w(w)€(r_k,7‘_k+1]f‘ |Lq (M)) ez

In our situation,

e, dydt e s e Ay dt
q qs — T4 (s1—s0)\ap—aqs
L <t ' thrl) L <(7L )heae t"“)

so we can apply Gilbert's theorem with w(y,t) = t~(s1750),

J. Gilbert. “Interpolation Between Weighted LP-spaces”. In: Ark. Mat. 10.1-2
(1972), pp. 235-249



Corollary
For 0 < po,p1,q < o0, so # s1 €R, 8 € (0,1), and r > 1, we have

1 llerze e z230ay, ,, =

(r—kQ(sl—So) | ’1(7‘_)“,7"_’“—1) (t)f’
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Corollary
For 0 < po,p1,q < o0, so # s1 €R, 8 € (0,1), and r > 1, we have

~
1 llerze e z230ay, ,, =

(r—kQ(sl—SO) | |1(r_k,7"_k+1) (t)f|

peyq) .
Tsg kEZ|| grg (Z)

This expression turns out to be equivalent to || f|| ;re.a.
6
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Embeddings of weighted tent spaces

Theorem (A., 2015)
Let 0 < pp < p1 <00, g € (0,00), and sg > s1 € R with

(5= )
S1—So=n{———1].
P1 Do

Then we have the continuous inclusion

TPo(R™) s TPHI(R™).



Embeddings of weighted tent spaces

Theorem (A., 2015)
Let 0 < pp < p1 <00, g € (0,00), and sg > s1 € R with

G 3)
S1—So=n{———1].
P1 Do

Then we have the continuous inclusion

TPo(R™) s TPHI(R™).

The proof relies on the atomic decomposition theorem.



A TP%-atom associated with a ball B C R" is a function a: Rﬁ“ —C
supported on the tent T'(B) (to be drawn on the board), such that

llallpga < B35



A TP%-atom associated with a ball B C R" is a function a: Rﬁ“ —C
supported on the tent T'(B) (to be drawn on the board), such that

llal|pa.s < |BJ777.

Theorem (Coifman—Meyer—Stein 1985, with easy
modifications)

Suppose that p € (0,1], ¢ > p, and s € R. Then a function f is in TP if
and only if there exists a sequence (ay)ren of TP%-atoms and a sequence
of scalars (\i)ken € P (N) such that

f= Z)\kak

with convergence in TP, Furthermore, we have

[ fllzpa = 0 [[Ak][ )

where the infimum is taken over all such decompositions.
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Combining this with the atomic decomposition theorem proves the
embedding T — TP11.
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We use a series of tricks to extend this result to the general theorem. For
example, to show that 7707 «— TP1:9 with 0 < py < p1 < q we argue by
taking powers:

1
Tp1 9= ||prHT/£O/1)o a/po

1
S |17 e

1 q/po

= ||f||T§(§”“ :



We use a series of tricks to extend this result to the general theorem. For
example, to show that 7707 «— TP1:9 with 0 < py < p1 < q we argue by
taking powers:

i

Tm/z)o »a/Po

1
< || fPo||re

1q/p0
— P0-9q .
||f||Tb(§’

Here we used that

1 1
Poso —PoS1 =pon |\ — — —



Results for general metric measure spaces (X, d, ;1)
Here it is more natural to use the norm

p/a
11l = /(//F( u(B(y, 1))~ f(y, )| ((y7 ))dt> da

weighting with powers of volumes instead of powers of .
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If X is doubling (i.e. a space of homogeneous type), then the embedding
theorem is true with condition
1 1
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(the dimension does not appear since we use volumes)
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p/a
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If X is doubling (i.e. a space of homogeneous type), then the embedding
theorem is true with condition

1 1
S1—So=—— —
P1 Do

(the dimension does not appear since we use volumes)

If X is unbounded and AD-regular, then the real interpolation theorem is
true. (we need to use u(B(y,t)) ~ t™ for all ¢ > 0 when identifying level
sets of the weight p(B(y,t))%t %)



