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Bilayer graphene: Impurity states in the continuum

V. V. Mkhitaryan and E. G. Mishchenko, Localized states due to expulsion of resonant
impurity levels from the continuum in bilayer graphene, Phys. Rev. Lett. 110, 086805
(2013)



Graph models for graphene

Combinatorial graph Metric graph

Edges are interactions
between vertices

 Self-adjoint operator

A : `2(V(Γ))→ `2(V(Γ))

Edges have operator
−∂xx + q̊(x)

 Self-adjoint operator

A : dom(A)→ L2(Γ)

dom(A) =

{
f ∈ L2(Γ) ∩

⊕

e∈E(Γ)

H2(e) :

∑

e∈Ev(Γ)

f ′e(v) = 0 ∀ v ∈ V(Γ)

}
Γ has a Z2 symmetry generated by

t1 and t2; A commutes with t1, t2.

A Floquet mode is a non-L2 simulta-

neous eigenfunction of t1, t2, A.

Dispersion relation: D(z1, z2, λ) = 0 ⇐⇒ ∃ a Floquet mode for (z1, z2, λ)

Floquet transform of f(x) on Γ: f̂(z1, z2, x) =
∑

m,n∈Z
f(tm1 tn2 x)z−m1 z−n2

(Af )̂ (z1, z2, x) = Â(z1, z2)f̂(z1, z2, x)

Floquet surface for λ: {singular locus of Â(z1, z2)−λ}= {D(z1, z2, λ) = 0}

Spectrum of A: {λ ∈ R : D(z1, z2, λ) = 0 for some |z1| = 1, |z2| = 1}



Reducibility vs. embedded eigenvalues

a) Embedded defect eigenvalues:

Need separation of evanescent and propagating modes

b) Reducibility of the Floquet surface:

Algebraic point of view through Floquet transform

c) Decomposition of the graph operator:

Spectral bands can come from decoupled parts of the system

d) Invariant subgraphs:

System component isomorphic to periodic subgraph

 component of the Floquet surface

... but not vice-versa !

e) Finite symmetry groups of the graph:

Symmetries produce invariant subgraphs



Reducibility vs. embedded eigenvalues

Theorem. (Kuchment and Vainberg)

Let λ ∈ σ(A), and let the Floquet surface ΨA,λ be irreducible.

If u is in L2(Γ), V is a local perturbation of A, and

(A+ V )u = λu ,

then u has compact support.

P. Kuchment and B. Vainberg, On the Structure of Eigenfunctions Corresponding to Embedded Eigen-

values of Locally Perturbed Periodic Graph Operators, Commun. Math. Phys. 268 (2006)



Coupling two layers =⇒ embedded eigenvalues

−→ −→

A single layer
of graphene

−→

Couple two layers
 
two decoupled
function subspaces
 
reducible Floquet surface
 
splitting of spectrum

−→

Local defect
 
non-embedded eigenvalue
in one subspace
 
embedded in continuum
of the other subspace



Combinatorial graphs with reducible Floquet surface

A and L : periodic self-adjoint operators on an n-periodic combinatorial graph.

bias : B = cos(θ)L
coupling : Γ = eiφ sin(θ)L

=⇒ L2 = B2 + ΓΓ∗

A =

[
A+B Γ

Γ∗ A−B

]
, Ã =

[
A+ L 0

0 A− L

]
, U =



eiφ cos( θ

2
)I − sin( θ

2
)I

sin( θ
2
)I e−iφ cos( θ

2
)I




=⇒ AU = UÃ with A and Ã self-adjoint and U unitary.

det
(
Â(z)− λI

)
= det

(
Â(z) + L̂(z)− λI

)
det

(
Â(z)− L̂(z)− λI

)

=⇒ ΨA,λ is reducible for all λ.

Interpretation:

co
up
lin
g

bias

✓ =⇒
✓/2

field 1

fie
ld

 2

field components of the columns of U

θ = π/2 even and odd motions



Algebraic proofs via the Floquet transform

V a localized defect: (A+ V − λI)u = 0 ⇐⇒ (A− λI)u = −V u =: f

Floquet transform:

Â(z, λ)û = f̂ =⇒ û(z1, z2) = R(z1, z2, λ)
f̂(z1, z2)

D(z1, z2, λ)
= R(z1, z2, λ)g(z1, z2)

= Laurent polynomial =⇒ u compactly supported

Reducible case: D(z1, z2, λ) = D1(z1, z2, λ)D2(z1, z2, λ)

Let λ ∈ spectrum of A be such that

{λ ∈ R : D1(z1, z2, λ) 6= 0 for all |z1| = 1, |z2| = 1}
{λ ∈ R : D2(z1, z2, λ) = 0 for some |z1| = 1, |z2| = 1}

=⇒
û(z1, z2) = R(z1, z2, λ)

f̂(z1, z2)

D1(z1, z2, λ)D2(z1, z2, λ)
= R(z1, z2, λ)

g(z1, z2)

D1(z1, z2, λ)

6= Laurent polynomial =⇒ u not compactly supported



Metric graphs with reducible Floquet surface

Symmetric case

−→ −→ −→

Decorate a graph by a “dangling edge”

on a vertex of each fundamental domain.

Then connect two copies at the free vertex.

(1) Dirichlet endpoint condition:

Isomorphic to the antisymmetric invariant space

(2) Neumann endpoint condition:

Isomorphic to the symmetric invariant space ︸
︷︷

︸ A non-embedded

eigenvalue of one

space may be

embedded in the

continuum of the

other.



Metric graphs with reducible Floquet surface

Asymmetric case

At a fixed energy λ:

Reduce metric graph to combinatorial graph. Put u = u|V(Γ)

(
− ∂xx + q̊(x)

)
u = λu

u0 u1

u′0 =
(
u1 − c̊(λ)u0

)
/̊s(λ)

=⇒
(Å− λI)u = 0 on Γ̊

⇐⇒

Å(λ)u = 0 on V(Γ̊)

Couple two layers by edges with asymmetric potential q(x):

−→

Operator A

on coupled

metric graph

Γ



Creating a metric graph with reducible Floquet surface

(1) Couple two layers by edges with asymmetric potential q(x):

−→

u0

u1
(
− ∂xx + q(x)

)
u = λu

u′0 =
(
u1 − c(λ)u0

)
/s(λ)

u′1 =
(
u0− s′(λ)u1

)
/s(λ)

=⇒

Operator A

on coupled

metric graph

Γ

(2) Reduce metric graph to combinatorial graph at fixed energy λ:

(
A− λI

)
u = 0 ⇐⇒



Å(λ)− c(λ)

s(λ)I
1

s(λ)I

1
s(λ)I Å(λ)− s′(λ)

s(λ) I






u top

u bot


 =




0

0




(3) This matrix operator A is decomposable with components A1 and A2.

(4) Choose λ so that 0 ∈ σc(A1) but 0 6∈ σc(A2).

(5) Choose a local defect for A that produces an embedded eigenvalue.

(6) Locally perturb q(x) in A to realize this perturbation of A.
This asymmetric metric graph operator has embedded eigenvalue.



Components of Floquet surface for a metric graph

The Floquet surface of the unperturbed graph must be reducible.
 Find its components.

−→

�
� @xx + q(x)

�
u = �u

u0

u0
0

� 
u1

u0
1

�

"
c(�) s(�)

�c0(�) �s0(�)

#

Eigenvalues η of

[
c(λ) s(λ)

−c′(λ) −s′(λ)

]
satisfy η − η−1 = s′(λ)− c(λ) .

Solutions corresponding to η and −η−1 have the same
Dirichlet-to-Neumann ratio at both ends:

u′

u
= δ+(λ) :=

η(λ)− c(λ)

s(λ)
and

u′

u
= δ−(λ) :=

−η(λ)−1 − c(λ)

s(λ)

This leads to two dispersion relations for the coupled quantum graph:

D(z1, z2, λ) := det




z1 + z2 + 1 s̊(λ)δ±(λ)− 3̊c(λ)

s̊(λ)δ±(λ)− 3̊c(λ) z−1
1 + z−1

2 + 1


 = 0



Reducibility and friends revisited

a) Embedded defect eigenvalues:

Need separation of evanescent and propagating modes

b) Reducibility of the Floquet surface:

Algebraic point of view through Floquet transform

c) Decomposition of the graph operator:

Spectral bands can come from decoupled parts of the system

d) Invariant subgraphs:

System component isomorphic to periodic subgraph

 component of the Floquet surface

... but not vice-versa !

e) Finite symmetry groups of the graph:

Symmetries produce invariant subgraphs
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