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Frustration-Free Quantum Spin Models
A quantum spin system is a collection of quantum systems
labeled by x in a finite set Λ, each with a finite-dimensional
Hilbert space of states Hx . For concreteness, consider Λ ⊂ Zν .

HΛ =
⊗
x∈Λ

Hx .

The algebra of observables for the subsystem in X ⊂ Λ is

AX =
⊗
x∈X

B(Hx).

The Hamiltonian HΛ ∈ AΛ is defined in terms of an interaction
Φ: for any finite X ⊂ Zν , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X ).

In this talk most interactions will be of finite range, i.e., there
is R ≥ 0, such that Φ(X ) = 0 if diamX > R .



3

The model defined by a finite-range interaction Φ is
Frustration-Free (FF) if for all finite Λ ⊂ Zν

inf specHΛ =
∑
X⊂Λ

inf specΦ(X ).

Equivalently, there is a ground state of HΛ that is
simultaneously a ground state of all Φ(X ), for X ⊂ Λ.

Note that a frustration-free interaction may have infinite
volume ground states in which some of the terms Φ(X ) have
expectation strictly greater than their minimal eigenvalue. In
this situation we distinguish two types of ground states:
frustration-free and non-frustration-free ground states.
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Outline
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A few examples of frustration-free quantum
spin models
1. The first quantum spin model we learn about is
frustration-free (FF): the ferromagnetic spin-1/2 Heisenberg
model (Heisenberg 1928).
For each x ∈ Zν , Hx = C2 and

HΛ = −
∑
|x−y |=1

Sx · Sy .

The ground states are easily found to be the states of maximal
spin, which are common eigenvectors of all the terms
−Sx · Sy , with the minimal eigenvalue −1/4.
The ground state space is spanned by product states. The
continuous symmetry of simultaneous rotations of the spins is
broken; hence the there is no gap in the spectrum above the
ground state in infinite volume.
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2. The AKLT model (Affleck-Kennedy-Lieb-Tasaki, 1987-88).
Λ ⊂ Z, Hx = C3;

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).
Ground state is frustration free (Valence Bond Solid state
(VBS), aka Matrix Product State (MPS), aka Finitely
Correlated State (FCS))., and has String Order (den
Nijs-Rommelse 1989): support is span of

· · · 0100101100010000101 · · ·
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J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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3. Toric Code model (Kitaev, 2003). Λ ⊂ Z2, Hx = C2.

a b
cd

tr
v u

H = −
∑

p hp −
∑

s hs

hp = σ3
aσ

3
bσ

3
cσ

3
d

hs = σ1
r σ

1
t σ

1
uσ

1
v

On a surface of genus g , the model has 4g frustration free
ground states.
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A ground state is a superposition (with equal coefficients) of
all configurations of ±’s satisfying the condition hp = 1 for
each plaquette p: each equivalence class of configurations
related by the action of the star operators hs gives rise to a
ground state. The number of equivalence classes depends on
the topology of the lattice:

I On a finite square, with suitable boundary conditions,
there is only one such equivalence class

I If the boundary has more than 1 connected component,
multiple equivalence classes exist

I on a compact surface of genus g , the model has 4g

frustration free ground states.

Picture: line-like defects (excitations) that bind to the
boundary or form topologically nontrivial closed curves. In all
cases there is a gap in the spectrum above the ground states.
Example of “topological insulator”.
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black.
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Some simple examples of non-trivial topologies:

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...

...
...

...

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...
...

...
...

...
...

...
...

etc.



12

Gapped ground state phases
The main motivation for the current research on FF models
stems from the surge of interest in gapped ground state
phases, including topologically ordered phases.
The term gapped refers to the existence of a positive lower
bound for the energy of excited states with respect to a
ground state, uniformly in the size of the system. This implies
a gap in the spectrum of the GNS Hamiltonian of the ground
state of the infinite system.
The term phase refers to regions in a interaction space where
the gap is positive (open). Phase transitions in interaction
space can occur when the gap vanishes (closes).
Topological Order and Discrete Symmetry Breaking are usually
accompanied by a non-vanishing spectral gap.



13

Proofs of a gap: Affleck-Kennedy-Lieb-Tasaki (1988),
Fannes-N-Werner (1992), N (1996), Kitaev (2006),
Bachmann-Hamza-N-Young (2014), Bravyi-Gosset (2015),
Gosset-Mozgunov (2015), Bishop-N-Young (2016).
Proofs of stability:
‘classical’ results by Kennedy-Tasaki,
Datta-Fernandez-Fröhlich, Borgs-Kotecky-Uetlschi, and
others(1980-90s),
More recently: Yarotsky (2004), Bravyi-Hastings-Michalakis
(2010), Michalakis-Zwolak (2013), Cirac-Michalakis-
PerezGarcia-Schuch (2013), Szehr-Wolf (2015), N-Sims-Young
(in prep)
Moreover it is believed that any type of gapped ground state
can be well approximated by a ground state of a gapped FF
model. Results for spin chains (d = 1): Fannes-N-Werner
(1992), Hastings (2007), Schuch-Cirac-Verstraete (2008),
Landau-Vazirani-Vidick (2013-15).
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Structure of Ground State Spaces:
Topological vs Landau Order
Consider a quantum spin Hamiltonian on a finite set Λ,
HΛ ∈ AΛ, defined in terms of a finite range interaction Φ:

HΛ =
∑
X⊂Λ

Φ(X ).

In a ‘gapped phase’ (and with suitable boundary conditions),
we often expect the spectrum of HΛ to have the following
structure:

spec(HΛ) ⊂ [EΛ(0),EΛ(0) + δΛ] ∪ [EΛ(0) + δΛ + γΛ,∞)

for some δλ ≥ 0 and γΛ > 0. The simplest situation is when
δΛ → 0 as Λ→ Zν , and γΛ ≥ γ > 0, for all Λ.
Let GΛ denote the spectral subspace associated with the
spectrum in [EΛ(0),EΛ(0) + δΛ].
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For concreteness, suppose Φ has a local symmetry described
by a finite group G : for every x ∈ Λ, there is a unitary
representation ux(g), g ∈ G , acting on Hx , such that

[Φ(X ),UX (g)] = 0,UX (g) =
⊗
x∈X

ux(g), for all g ∈ G .

If this symmetry is fully broken in the (infinite-volume) ground
states, we expect a decomposition of GΛ labeled by g ∈ G :

GΛ =
⊕
g∈G

GgΛ .

Example: the Z2-symmetry of the Ising model. In general,
direct sum is not necessarily orthogonal.
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Let PΛ denote the ⊥ projection onto GΛ and Pg
Λ the ⊥

projection onto GgΛ . For a suitable sequence of finite volumes
Λn we can obtain the symmetry broken ground states in the
thermodynamic limit:

ωg (A) = lim
n→∞

TrPg
ΛA

TrPg
Λ

,

for any local observable A. Symmetry breaking means that
there is a local order parameter that distinguishes the states:

ωg (m) = mg .

If there is translation invariance it follows that any two states
giving different values to m must become orthogonal in the
infinite volume limit.
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Stronger even, we expect that for any local observable
A ∈ AX , and unit vectors ψi

Λn
∈ GgiΛn

, i = 1, 2, we have

lim
n
〈ψ1

Λn
,Aψ2

Λn
〉 = 0, if g1 6= g2.

What about the different ψΛn ∈ G
g
Λn

, with the same g? The
Local Topological Quantum Order (LTQO) property first
introduced by Bravyi, Hastings, and Michalakis, generalized to
the situation with a symmetry G , asserts the following
(simplifying slightly): for X ⊂ Γ and n ≥ 0, define

X (n) = {y |d(X , y) ≤ n}.

Then for all A ∈ AX s.t., [A,UX (g)] = 0, for all g ∈ G ,

‖PX (n)APX (n) − ωΛ(A)PX (n)‖ ≤ Ω(n)‖A‖

as long as d(X (n),Λc)� n, and where Ω(n)→ 0 as n→∞,
faster than 1/np for some sufficiently large p > 0, and

ωΛ(A) = Tr(PΛA)/Tr(PΛ).
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If spontaneous symmetry breaking occurs, then for all A ∈ AX

‖Pg
X (n)AP

h
X (n) − δg ,hω

g
Λ(A)Pg

X (n)‖ ≤ Ω(n)‖A‖

as long as d(X (n),Λc)� n, and where Ω(n)→ 0 as n→∞,
faster than 1/np for some sufficiently large p > 0, and

ωg
Λ(A) = Tr(Pg

ΛA)/Tr(Pg
Λ ).
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Stability under uniformly small perturbations
The Michalakis-Zwolak (née Pytel) stability result (CMP,
2013) applies to models with frustration-free finite-range
interactions on periodic boxes in Zν . We (N-Sims-Young)
recently obtained a generalization which includes situations
with discrete symmetry breaking and more general lattices and
boundary conditions.
Let Bx(R) denote the ball of radius R centered at x in a
discrete metric space (Γ, d), and Λ is a finite subset of Γ.
Then,

HΛ(0) =
∑
x∈Λ

Bx (R)⊂Λ

Qx ,

where each term Qx ∈ ABx (R), satisfies 0 ≤ Qx ≤ M1l, and
[Qx ,UBx (R)(g)] = 0, for all g ∈ G .
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We consider perturbations of the following form:

HΛ(λ) = HΛ(0) + λ
∑
X⊂Λ

Φ(X ).

and we will assume that there exists a > 0 such that

‖Φ‖a = sup
x ,y∈Γ

ead(x ,y)
∑
X⊂Γ
x,y∈X

‖Φ(X )‖ <∞.

(Michalakis-Zwolak claim perturbations with power law decay
can be treated too, but we have not been able to verify that.)
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The assumptions on the unperturbed model are:
- It is Frustration Free: kerHΛ(0) 6= {0}; Let PΛ(λ) denote the
orthogonal projection onto kerHΛ(λ). Assume convergence

ω(A) = lim
n

1

dim kerHΛn

TrPΛn(0)A, A ∈ Aloc,

for a suitable sequence Λn ↗ Γ.
- Local Gap: there is γ > 0 such that the gap above the
ground state of HBx (r) ≥ γ for all x and r ;
- Local Topological Quantum Order (LTQO): there is a scale
L∗, L∗ →∞ as L→∞ such that, for all r ≤ L∗, and all
A ∈ ABx (r), s.t. [A,UBx (r)(g)] = 0, g ∈ G ,

‖PBx (r+`)APBx (r+`) − ω(A)PBx (r+`)‖ ≤ Ω(`)‖A‖

with Ω(`) decaying as a sufficiently large inverse power.



22

Stability of the Spectral Gap
Let EΛ(λ) = inf spec(HΛ(λ)). The gap of HΛ(λ) is defined
taking into account that the perturbation may produce a
splitting up to an amount δΛ of the zero eigenvalue of HΛ(0),
which is in general degenerate:

γδ(HΛ(λ)) = sup{η > 0 | (δ, δ+η)∩spec(HΛ(λ)−EΛ(λ)1l) = ∅}

Theorem (Bravyi-Hastings, Michalakis-Zwolak,
N-Sims-Young)
Let HΛ(0) be a finite-range G-symmetric Hamiltonian
satisfying the assumptions of above and Φ an exponentially
decaying G-symmetric perturbation. Then, for any
0 < γ0 < γ(HΛ(0)) there is an λ0 > 0 such that for sufficiently
large Λ,

γδΛ
(HΛ(λ)) ≥ γ0, if |λ| ≤ λ0,

where δΛ ≤ C diam(L)−q, for some q > 0.
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Stability of the Ground State Phases
Next, consider the situation where in the unperturbed model
we have spontaneous breaking of the symmetry G in the
frustration-free ground states. Concretely, we will assume the
following:

The unperturbed model is defined on finite volume Λ as before:

HΛ(0) =
∑
x∈Λ

Bx (R)⊂Λ

Qx ,

where each term Qx ∈ ABx (R), satisfies 0 ≤ Qx ≤ M1l, and
[Qx ,UBx (R)(g)] = 0, for all g ∈ G .

We now assume that there are N pure infinite-volume
frustration-free ground states, ω1, . . . , ωN , and the symmetries,
g ∈ G , act transitively as permutations on this set.
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For sufficiently large m, there are N non-zero orthogonal
projections P1

bx (m), . . . ,P
N
bx (m), onto subspaces of kerHbx (m)

such that the following properties hold:
1. ran

∑N
i=1 P

i
bx (m) = kerHbx (m) and∥∥∥∥∥Pbx (m) −

N∑
i=1

P i
bx (m)

∥∥∥∥∥ ≤ Ω(m); (1)

2. There is a one-to-one correspondence between the
projections P i

bx (m) and the pure infinite-volume ground

states ωi as follows:

ωi(A) = lim
m→∞

TrP i
bx (m)A

TrP i
bx (m)

, (2)

3. For any A ∈ Abx (k) we have∥∥∥P i
bx (k+`)AP

j
bx (k+`) − δijω

i(A)P i
bx (k+`)

∥∥∥ ≤ ‖A‖Ω(`). (3)

We say that the model satisfies Local Topological Quantum
Order with N G -broken phases.
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It is natural to assume that

ω0 =
1

N

N∑
i=1

ωi (4)

is the unique G -invariant frustration-free ground state.
The perturbations are of the form

HΛ(λ) = HΛ(0) + λ
∑
X⊂Λ

Φ(X ).

such that [Φ(X ),UX (g)] = 0, for all g ∈ G , and ‖Φ‖a <∞
for some a > 0.
Let Sλ denote the set of all thermodynamic limits of ground
states of HΛ(λ)
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Theorem (N-Sims-Young, in prep)
There exists λ0 > 0 such that if |λ| ≤ λ0, then the set Sλ is
an N-dimensional simplex. Each of the extreme points (pure
states) satisfies LTQO and has a non-vanishing spectral gap in
the spectrum of its GNS Hamiltonian.

The main tool in the proof is the spectral flow, which is
contructed using Lieb-Robinson bounds for the dynamics and
related transformations.
We also prove that the thermodynamic limit of the spectral
flow yields quasi-local automorphisms αλ such that

Sλ = {ω ◦ αλ | ω ∈ S0}.

Therefore, the entire phase structure is preserved under the
perturbations.
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Non-FF ground state of the Toric Code model
For infinite systems, ground states are those states ω on
Aloc =

⋃
X⊂ΓAX , such that

lim
Λ↑Γ

ω(A∗[HΛ,A]) ≥ 0, for all A ∈ Aloc. (5)

Alicki, Fannes, and Horodecki (2007) showed that the Toric
Code model on Z2 has a unique FF ground state.
However, any ω obtained as a weak*-limit of ground states of
a sequence of Hamiltonians H̃Λ with

lim
Λ↑Γ

[H̃Λ,A] = lim
Λ↑Γ

[HΛ,A], for all A ∈ Aloc,

satisfies (5).
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Using this, it is not hard to show that the Toric Code model
has 3 families of additional non-FF ground states, with
topological charge, e, m, and ε = em, respectively
(half-infinite strings) . Together with the FF ground state
these correspond to the four superselection sectors of the Toric
Code model, as shown by Naaijkens (2011-13).
Since these are not FF ground states, the previous stability
theorem cannot be directly applied. They are not expected to
be stable as ground states, but there is a framework in which
we can show stability of the 4 super-selection sectors and their
structure as abelian anyons. (work in progress with Matthew
Cha and Pieter Naaijkens).
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Outlook
I Frustration free (FF) models turned out to be an essential

tool to help us understand gapped ground state phases
and their classification.

I Progress in estimating the spectral gap above the ground
state has come from studying FF models.
Well-understood in one dimension. Next step: higher
dimensions (so far only special classes of examples in d
dimensions (Bishop-N-Young, JSP 2016).

I Stability results of ground states is based on FF models.
Next step: relax the FF condition.

I Progress in stability results of superselection sectors is
based on FF models with commuting terms: next step:
treat more physically realistic interactions.


