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Principles Technology

)

Design

owscost optical i scts wil remove dista for
high-bandwidth /0, providing new options for system designers.

The design challenge:

Lots of degrees of freedom in geometry,
but what structure is best for given device & materials?

And what performance & phenomena are possible?




Limits on what is possible

Typically, we know the materials, but don’t know the structure,
so geometry-independent limits on engineering performance
are especially useful in guiding design:

* How strongly/quickly can light be absorbed, scattered, transmitted?
e How efficiently can energy be converted from one form to another?
— e.g. between different frequencies, radiation from heat,
radiation from excited electrons (spontaneous emission)

e How long can light be stored in a given volume?

e What is the interplay with bandwidth, material loss, volume?



Example: Yablonovitch limit

E. Yablonovitch, “Statistical Ray Optics” [JOSA 72, 899 (1982)]

Enhancing the absorption efficiency of a thin film (e.g. solar cell):

\} / w

weakly absorbing _
material refractive

iIndex n N\ /
T~

single-pass absorptivity A < 1 Yablonovitch:

texture+mirror absorptivity < 4n?A

Derived under very restrictive assumptions (originally ray optics!), but
has been very hard to beat (and nearly tight) in practical structures.



Other examples

Wheeler—Chu bounds on
antenna quality factor Q (per volume)

Wiener (1912), Hashin—Shtrikman (1963),
Bergman (1981), Milton (1981), bounds on
homogenized properties of composites

Black-body limit on thermal radiation (in far field
for linear and/or equilibrium surface)

Manley—Rowe limits to nonlinear frequency
conversion

Speed-of-light (c) limit on energy transport



Geometry-dependent,
material-independent limits

scatterer /
incident planewave m——— b scattered power
\

in vacuum

scattered power < O(N?)

Spherical scatterers: Hamam et al. PRA 75, 053801 (2007)
where N = # multipole orders

Ruan & Fan APL 98, 43101 (2011)
Kwon & Pozar IEEE TAP 57, 3720 (2009) that can be excited

Liberal et al. IEEE TAP 62, 4726 (2014)

Generic scatterers:

.. depends non-trivially on shape
(N ~ diameter as size — oo)
but not on the materials!

inetal.,
JP Hugonin et a scattered, absorbed power S (E._, (Im G, *)™1 E; ),

PRB 91, 180202 (2015)

where G, is vacuum Green’s function — depends on shape Q but not materials!



New results

[ 0. D. Miller et al., PRL 115, 204302 (2015) & Opt. Exp. 24, 3329 (2016) ]

Limits on scattering & absorption by particles,
on the local density of states, and also on
near-field thermal radiation

Very general, simple derivations from energy
conservation & optical theorem

Independent of geometry and bandwidth,
depend only on the materials

~Tight (within a small constant factor) in many
cases ... all?



Review: Maxwell & Materials

V X E d J
=—|y+ yxy |+
-V x H ot —— K
. /. J/ _ P . J/
anti-Hermitian 7 i ¢_[ M )_ current sources
polarization

continuum, local, linear materials: 6x6 susceptibility y(x,t)

(breaks down for metals at < 10nm scales = nonlocal; or very strong fields = nonlinear)

, 0
frequency domain: Eri —iw

passive materials: o Im y(x,w) > 0

i.e., polarization currents can dissipate but not supply energy



Starting Problem: Obscurant Nanoparticles

Goal: dilute, randomly-arranged Related applications:
particles to absorb  cancer therapy solar cells

or scatter light over .
a broad bandwidth _ ; MHM .

- 1 : AL NN AN |
y ‘smoke grenades” D \/\/

JACS 128, 2115 (2006) Nat. Phot. 9, 205 (2010)

particle:

given x, ]
\not shape / scattered light,
incident light, power P

wavelength A,

—
intensity |, / \

extinction cross-section 0., = (P TPscat) / 1o

Key question: What is the best o, / volume?
... averaged incident angles & polarizations ...
(over some bandwidth)



A rapidly growing experimental toolkit...
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Kinetically-Controlled Products

Au Seeds ~
~
\ ‘
——— Slow Rate of Reaction @~ ------— Less Surface [Ag]
== Fast Rate of Reaction = =3 More Surface [Ag]

C. Mirkin et. al., JACS 134, 14542 (2012)

Y. Xia et. al. ACIE 48, 60 (2009)

...with only limited theoretical designs
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to start with:
computational exploration
of non-spherical shapes



boundary-element method

“Warmup” problem: Optimizing Ag ellipsoids
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nonlinear optimization complex-o transformation

Hashemi et al PRA 86, 013804 (2012)
Liang et al OE 21, 30812 (2013)

Disk ~6x better than coated sphere
- converges to min. thickness, 3nm
- Disk > needle

- Tuning shape > adding coatings
- Ellipsoids: 6x improvement
how about other shapes?



“Adjoint’-based optimization:
Newly emerging in photonic design

Aerodynamics Elast|C|ty

Initial Wing 40 Design lterations

MB Giles & NA Pierce FTC 65, 393 (2000)
Deep Learning Photonics
NETWORK | Y e
-
Xie) ERROR Yie)
Weights (<€ €~~~ A
B o.o'f q
FIGURE 8.3 Basic backpropagation (in pattern leaming). r-?a.f.&.-t... T %
Werbos, “The Roots of Backpropagation” (1994) Sigmund et. al. LPR 5, 308 (2011) t
Rumelhart et al. Nature 323, 533 (1986) X. Liang & SG Johnson OE 21, 30812 (2013)

Fast computation of N derivatives, for any N!



Arbitrary-shape optimization: Ag nanoparticles

Direct Adjoint Gradient 1000 parameterS, Clm
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Optimal Structure:
“Deflated Tetrahedron”

AR -

Dimensions =10nm

SRy
Ly

r(8,¢) = cmYy (6, 9)

Y™ = spherical harmonic
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~ equal for all 3 polarizations!




Angle- and polarization-averaged:

pinched
tetrahedron

ellipsoid

200 420 440 460 480 500
Wavelength, A (nm)

Surprise: Almost exactly the same?!

General shape optimum < 3% better than ellipsoidal optimum

... hitting an upper bound?



Empirical observation:
optimum metal structure always far subwavelength
(= quasistatic, absorption-dominated)

Surface-integral equation (SIE) version of Poisson:

surface 5N
S
E / / / 1 1 i
— | n(x)-GE(x,x)o(x")dx" + > + )—( o(x) = E™(x) - n(x)
S
‘ Y ’ [ O.D. Kellogg (1929),
7( ; [ O'] Foundations of Potential Theory |

[ Ammari, ..., Milton (2012) ]

bounded self-adjoint operator
(for right inner product)

Eigenvalues: Ko = (L,— 0.5)c, where L, € [0, 1]
= angle-averaged response:

1
1 Pi =5 (xa'uixviina)
Oext = 3122" (Ll- n 1/;((@)) 320[: \/

left/right eigenvectors

Resonances (poles) at certain materials (real x < —1), for fixed w!



Sum rules for the cross-section

Uext 1
v Zpl Im (L n 1/;((@))

|x|?

lossy materials: Im(—#/)() /\»1 1
| < —
‘ ‘mLi‘l'l/)(‘_—lm)(‘l

'

sum rule #1: 1 (L B
Fuchs PRB 11, 1732 (1975) z Pi = §Z Z<x0" 0T, Sar) = fsn -xdx =V
a n

sum rule #2: Z piL; Z ZLn<xa' G N1, So) = =

Fuchs PRB 14, 5521 (1976)

Im y



An interesting connection

Single-particle quasistatic Composite Bounds
surface-integral equations (Milton & Bergman)

_2772 : 1 B nr—ri'
Oext =35 / pi L +1/x(w) S T — T
l

l

. de,
sum rule #1.: zpi _ jﬁ xdx =V (e4,1) = pq
Fuchs (1975) S 0&;
sumrule #2: 2 pili _ 1 0%, (g,1) = _2
Fuchs (1976) > D 3 0° €1 v 3 PPz

In the dilute limit, these formulations are equivalent!



A fundamental limit

( 20 () +xi (3420, +447)+24]
, X G+ (14x,)?)
Oext 74 Lr 2
<= 3y, —“lx
Vv =31) 7 & |
1
i (2 +z?+(1+;n)2)

for typical metals
(Im x << |1+Re ¥X]):

Drl
1 Xr
3 < — P <1
else,

V

Uext(w) <

2w [x(w)I?

— 3¢ Imy(w)

iIndependent of shape!

0

P
ellipsoids

6 5 -4 -3 -2 -1
Susceptibility, y(»)

[Owen Miller et. al. Phys. Rev. Lett. 112, 123903 (2014)]



Experimental demonstration:
Tallored aspect-ratio silver nanoparticles
[E. Anquillaire, Owen Miller et. al., Submitted, arXiv: 1510.01768]

150
*'T; 120 RN s __~Multiple-species limit
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Experimental Synthesis:
thermal conversion of colloidal thin-disk particles

il Theory Expt. .
0.3| \l /  (A=400-800nm)
0.2 \ %# .. |
0.1 N | .
o= I i s e Aspect ratios: Emma Anquillare

Fraction of Sample

1-2 2-3 34 4-252:3&6;31::;8 8- 9-10 10+ 151 —10'1 Soljacic group (MIT)



Now, generalize to
full electrodynamics (not quasistatic)

... and other objectives besides o,



Key component: Optical theorem
_ : 1 .
Power/area = Poynting ERG[EXH ] \ /

Absorbed power = incoming flux: inc

= —ZRe[.EXH"-f
2 S / \”
E Einc

Scattered power:
- E-
— 5 Ref Escat X Hscat - 11 seat

Extinction = absorption + scattering:
1 ~ * ¥
= —3 Re fsn ' (Einc X Hscat + Escat X Hinc)
1 * *
— — Re fV V- (Einc X Hscat + Escat X Hinc)

w *
= — Im fV Eine " XE Lytle et al PRE 71, 056610 (2005)
Hashemi et al PRA 86, 013804 (2012)

the extinction is proportional to (the imaginary part of) the overlap of
the incident field and the induced polarization currents, P, , = XE



Bounding the induced polarization

Optical theorem: the extinguished power is proportional to the
(imaginary part of) a linear functional of P, , = xE

\ / PextOCImeEi;c°Pind

/!
Einc / .// N\ J
l ff,d/' A
/ X \ linear in Pi,q
meanwhile... (. extinction (abs. + scat.) > absorption
Pabsoc(ImX)J E”-E
%
1\ r 0
= 1m—> Pa - Pind S
( X \JV 1n Jll’l S
'

absorption is quadratic in Pj,q induced current Ping



the rest is easy:

Optimize desired objective
subject to absorption < extinction

(typically a convex optimization problem,
can be solved analytically)



General limits to optical response

[Owen Miller et. al, Opt. Exp. 24, 3329 (2016)]

By energy conservation, variational calculus (9P,,/dP;,4 =0, etc.)
and standard optimization theory (optimality conditions)...

Oabs Oscat w |x|? B :{ 1 absorption

V'V S'B?Imx 1/4 scattering

(magnetic / anisotropic /

for more general sources and media:  hiq)/ inhomogeneous ¥)

P,ps, Pscqr < Bw(incident energy inside V) ||)?T(Im )?)_1)?”

250
g

Similar limit to power radiated by
dipole at distance d, i.e. the
local density of states (LDOS)

Prad pnr< p |X|2
po  Po ~ 8(kd)3Imy




How tight are these bounds?

2 2
Oabs w )(l Oscat 1w |)(|
= < -—
V cImy V 4 cImy
3 5 —
; '1'!‘3/V r:
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] N AN D 4+ N\s !
\,/\4 —_ W
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R
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plane-wave excitation:
the limits are “tight” across many frequencies

for absorption and scattering



“Best” materlals VS. wave I gth
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dashed lines: optimal ellipsoids require aspect ratios > 30:1



Resonances in Physics

Inherent to the concept of resonance is the resonant frequency

Mathematical eigen-equations:

electromagnetism

1
— VXV XE, = w2E,

g(x)
linear elasticity A+ V7 - u, + uV2u, = —pwiu,
hZ
quantum mechanics —%VZKP + U¥Y, = hw, ¥

(subject to appropriate
boundary conditions)



Differential vs. integral equation formulations

Differential Equation Volume Integral Equation (VIE)
2

—VXVXE+ e(x)%E = iugw] E(x)— f GO(x — x)xy(xNE(x") = Ejpc(x)
%

Eigen-equations:

1 1
—V ¥4 E = ZE jGO _ I; E ! d r—
£(x) XV X Ep = Wnkn , (x —x"; w)Ey(x")dx n n(X)
fixed structure fixed structure
+ fixed permittivity + fixed frequency
-> resonant frequency —> resonant susceptibility

(assumes piecewise-
homogeneous media)



frequency vs. material resonances

(a) Mmw (b) Mmé&
q
{ . } { Ak L
X | x Rew } K Reé
X x o oxlx x X x| X
X X
v

®: operating frequency, w e: material, { = — 1/ y(w)
x: frequency resonances, w,, X: material resonances, ¢,

Lossy materials (e.g. metals)
2>Imy>0,Imé >0

1 1 |)(((U)|2
ex I
L= mzfl £() ‘m<a—€<w>> mé(w) Imy(w)




Back to energy-conservation: Generalizations
[ O. D. Miller et al, unpublished ]

Similar limits can be derived
(1) for other linear wave equations, such as the
Lamé—Navier equations of elastic media:

S 2
incident shear wave O |Au|
in isotropic medium: V

.uOIm A.u K, = ambient shear modulus
Ap = difference of scatterer —

(2) for local two-dimensional materials

(e.g. graphene) 4 1
scat,abs S,BkO(Re 0_6_1)

o5 = surface conductivity

(3) for nonlocal (e.g. hydrodynamic) constitutive equations

1
“P=EFE —— aV(V-P)+BP=E
X



Radiative Heat Transfer

Far-field

Kirchoff’'s Law:
absorptivity = emissivity
=1 “blackbody” definition
(ray-optical)
Stefan-Boltzmann

H/A < f1 . 0(w,T)/2% = oT*

Near field e.g. for future
thermo-photovoltaic systems?

eeeeeeee — -—

In the near field,
(evanescent) thermal transport
can exceed “black-body” limit

heat

Difficulty: comp/expt
progress is very recent Wang et al.
Nat Nano 9, 126 (2014)




Near-field radiative heat transfer: Milestones

Ty >0 Rytov / Polder / Van Hove
) (1950-1980’s)

- s
.
~ -

b K stochastic theory, plate—plate
I; =0 { heat transfer, possibility of

(i (x, )] (x", )*) = 4870‘“@(0), TOX" (@)8(x — x')6;; greater-than-blackbody transfer

J Pendry (1999): (unrealistic) theoretical bounds to plane—plane transfer

” PRB 78, 115303 iy
G Chen et. al. (2008): APL 92. 133106 T

first expt. measurements > blackbody transfer

.lzR

d

Multiple groups (2008-2011): first rigorous

G. Chen et. al. S. Fan et. al.

sphere—sphere and sphere—plate theory ppg'77 75108 (205';5) 24;4281 ?51611‘
SG Johnson et. al. (2011+): generic ?CSDO ,,
e &“ "PRL 107,

eneric full-Maxwell solvers
J PRB 86, 220302 (2012) . . 114302 (2011)



Straightforward extension of limits
to near-field heat transfer?

dotted line = bounding surface

Difficulty: sources are embedded within
(arbitrary-shape) scattering body

-> no conventional optical theorem



limits: two scattering problems + reciprocity

(1) redefine “incident” and “scattered” fields:

EL (x) = f 6106, %)) (%)

2 G! = Green’s function in the

f , , resence of body 1
scat(x) — Gl(x;x )Pind(x ) P 4
Vz

energy conservation reciprocity energy conservation

I A\

- J 2 2 2|? . 2
-Rtbs X ([n]x?) Jvz |E‘ == I|;§'IZ>|C Jllfz inc, 1| X Il?;xlz {IH]X])jl*’l.l—"z ”GI ||.i'-. ﬁl}!l [:;,2,1,, Jrgj Vs || ()H;"



Upper limits to near-field heat transfer

[ Owen Miller et al, Phys. Rev. Lett. 115, 204302 (2015) ]

Heat flux at a given
frequency w Is bounded by:

4
B(w) < 2k |x1(w ‘XQ / / HGO (x1, %o HF

7 Im Xl ) Im yo (w

energy conservation

I 2
— Im)( Ilﬁuli fV Va ”GOHF GO

vacuum Green’s function

1
~— In the near field
r

for a minimum "I)(w){ 1 pa@)]? |xe(w))’

separation d: A 7 1672d? Im y; (w) Im x2(w)
near-field emission and absorption equally
enhancement enhanced by [y]?/ Im ¥

~ 1/d?



Design rules in the near field

(1) In the absence of the absorber, V,, the fields emitted by
V; into V, should be amplified by material enhancement ratio:

Optimal-emitter > )

)
condition >? 112
: 'Y EinCNWEdipole

1

(2) With both bodies present, the currents induced in the
absorber should be further enhanced by the second
material enhancement ratio

¢ X212
2
Pinga~ mEinc

Optimal-absorber D <
condition ' xal® |xz

v " Im x1Im y,

|2

Edipole



Heat Flux, ®(0) ¢’/ o’ A

Are the limits achievable in known structures?

First consider simple structures and the generic limit:

24
T Imxl
10— extended-structure limit.
“10) @1y  aeeq TTTTIEmemeo
10°k
107 " -----
a2l [ ‘-‘-:‘, 2 J
10 27— ~ o
Y X
. T << d << /1
1057 05 06 07 08

Frequency. o/o,

Drude metal,
plasma frequency w,

and dissipation y = 0.1w,

" elw
bl [ [ Jeoaxaly

3 @) x2(@)? Wi
43 Im x1(w) Imx2(w) (ry + 79 + d)°

] dipole—dipole —

sphere-sphere reaches the limit

_ 2 2 -
[‘I’(&J)]d- ] < 1 |)(1 )‘ |)(2( )l V
tpole-to-ext = 872 Im y1 (w) Im y2(w) (r + d)3

sphere-plate off by 2x (pol.
mismatch), correct scaling



Are the limits achievable in known structures?

What about extended (planar) structures?

10°F @ ' ‘ " extended-structure
< : 4
e [CID (w) 1 In x| ]
o 10°% ~ 2 I
< m
eé r plate—plate ( X)
c 10" 3 i
E 1 P (wres) In 2
3 ”--__-_____.’———-, A - A2 2
= 10 - 0010, HMM-to-HMM
0.2 04 06 08

/0,



Are the limits achievable in known structures?

What about extended (planar) structures?

105F '
 (a)

extended-structure

@ limit

—
=]
L

™ i |

Heat flux, ®(0) ¢*/o,*A
=

(==
o=
a

arrays of dipolar spheres to simultaneously achieve
interacting additively ly|2/Im y (via particles)
(overly idealized) _
and 1/d? (via array)
enhancements




Reaching the limits:
new possibilities in heat transfer

Given optimal flux (and smallest bandwidth, Aw/w,.s, for a metal):

H
o
—
o

| radiative > conductive transport
| possible at: (in air)

g O
T=1500K, d=0.5um

HT coeff, h (W/m2-K)

. L . . W
0.001  0.01 0.1 1 aif, kgong = 0.026 —

Separation d (um)

far-field near-field heat transfer

heat transfer
3
SO'T4A <O_T4.A ) (le )

Im y
o = Stefan—Boltzmann constant




Progress, and New Questions

New upper bounds to optical responses

proportional to [x|2/Im ¥ Linear elasticity? QM?
— Absorbing & Scattering Nanoparticles ~  Nonlocal
( ) Comp. optimized structures «._\_ interactions?
to reach highest-possible [Mortensen, PNFA 11, 303 (2013)]
. absorption/scattering rates 2y Single-layer
i absorbers?
—Radiative Heat Transfer (Geim etal. RMP 61, 109 (2009)]
< T S | o | Wh r
Qf’ & | New limits to at_a ©
the optimal

_\4\ near-field transport
B SN structures?
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