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Principles Technology

Design

The design challenge:
Lots of degrees of freedom in geometry,
but what structure is best for given device & materials?

And what performance & phenomena are possible?



Limits on what is possible
Typically, we know the materials, but don’t know the structure,
so geometry-independent limits on engineering performance 
are especially useful in guiding design:

• How strongly/quickly can light be absorbed, scattered, transmitted?

• How efficiently can energy be converted from one form to another?
— e.g. between different frequencies, radiation from heat,

radiation from excited electrons (spontaneous emission)

• How long can light be stored in a given volume?

• What is the interplay with bandwidth, material loss, volume?



Example: Yablonovitch limit

Mirror

refractive
index 𝑛𝑛

E. Yablonovitch, “Statistical Ray Optics”  [JOSA 72, 899 (1982)]

single-pass absorptivity A ≪ 1 Yablonovitch:
texture+mirror absorptivity ≤ 4n2A

Enhancing the absorption efficiency of a thin film (e.g. solar cell):

weakly absorbing
material

Derived under very restrictive assumptions (originally ray optics!), but
has been very hard to beat (and nearly tight) in practical structures.



Other examples
• Wheeler–Chu bounds on 

antenna quality factor Q (per volume)
• Wiener (1912), Hashin–Shtrikman (1963), 

Bergman (1981), Milton (1981),  bounds on 
homogenized properties of composites

• Black-body limit on thermal radiation (in far field 
for linear and/or equilibrium surface)

• Manley–Rowe limits to nonlinear frequency 
conversion

• Speed-of-light (c) limit on energy transport
• …



Geometry-dependent,
material-independent limits

Spherical scatterers: Hamam et al. PRA 75, 053801 (2007)

Generic scatterers:   Kwon & Pozar IEEE TAP 57, 3720 (2009)
Ruan & Fan APL 98, 43101 (2011)

Liberal et al. IEEE TAP 62, 4726 (2014)

JP Hugonin et al., 
PRB 91, 180202 (2015)

incident planewave
in vacuum

scattered power

scattered power ≲ O(N2)
where N = # multipole orders

that can be excited

… depends non-trivially on shape
(N ~ diameter as size ⟶ ∞)

but not on the materials!

scattered, absorbed power ≲ ⟨Einc, (Im G0 *)–1 Einc⟩Ω

where G0 is vacuum Green’s function — depends on shape Ω but not materials!

Ω

scatterer



New results

• Limits on scattering & absorption by particles, 
on the local density of states, and also on 
near-field thermal radiation

• Very general, simple derivations from energy 
conservation & optical theorem

• Independent of geometry and bandwidth, 
depend only on the materials

• ~Tight (within a small constant factor) in many 
cases … all?

[ O. D. Miller et al., PRL 115, 204302 (2015) & Opt. Exp. 24, 3329 (2016) ]



Review: Maxwell & Materials

polarization

continuum, local, linear materials: 6x6 susceptibility χ(x,t)
(breaks down for metals at < 10nm scales ⇒ nonlocal; or very strong fields ⇒ nonlinear)

passive materials: 

i.e., polarization currents can dissipate but not supply energy

𝜔𝜔 Im 𝜒𝜒(𝑥𝑥,𝜔𝜔) > 0

frequency domain:
𝜕𝜕
𝜕𝜕𝜕𝜕 → −𝑖𝑖𝜔𝜔



Starting Problem: Obscurant Nanoparticles

incident light,
wavelength λ,
intensity I0

vol
V

particle:
given χ,

not shape scattered light, 
power Pscat

extinction cross-section σext = (Pabs +Pscat) / I0

Key question: What is the best σext / volume?
… averaged incident angles & polarizations …

(over some bandwidth)

Goal: dilute, randomly-arranged 
particles to absorb 
or scatter light over 
a broad bandwidth
“smoke grenades”

Related applications:
cancer therapy solar cells

ISN
Nat. Phot. 9, 205 (2010)JACS 128, 2115 (2006)



A rapidly growing experimental toolkit…

C. Mirkin et. al., JACS 134, 14542 (2012) Y. Xia et. al.  ACIE 48, 60 (2009)

…with only limited theoretical designs

Fan et. al. PRL 105, 13901 (2010)
APL 98,    43101 (2011)

Qiu, DeLacy Johnson, Joannopoulos, & Soljacic,
Opt. Exp. 20, 18494 (2012)

size ≈ 𝜆𝜆/4 size ≪ 𝜆𝜆



to start with:
computational exploration

of non-spherical shapes



- Disk ≈6x better than coated sphere
- converges to min. thickness, 3nm
- Disk > needle

- Tuning shape > adding coatings
- Ellipsoids: 6x improvement 

how about other shapes?

“Warmup” problem: Optimizing Ag ellipsoids

+ +

boundary-element method nonlinear optimization complex-ω transformation

angle- and pol.-averaged

σ e
xt

/ V
 (n

m
-1

)

Hashemi et al PRA 86, 013804 (2012)
Liang et al OE 21, 30812 (2013)



“Adjoint”-based optimization: 
Newly emerging in photonic design

A. Jameson   JSC 3, 233 (1988)
O. Pironneau JFM 64, 97 (1974)

Bendsoe & Sigmund, 
“Topology Optimization” (2003)

Aerodynamics Elasticity

Altair PDG
Boeing

Photonics

Sigmund et. al. LPR 5, 308 (2011)

Fast computation of 𝑁𝑁 derivatives, for any 𝑁𝑁!

Deep Learning

Rumelhart et al. Nature 323, 533 (1986)
Werbos, “The Roots of Backpropagation” (1994)

MB Giles & NA Pierce FTC 65, 393 (2000)

X. Liang & SG Johnson OE 21, 30812 (2013)



Optimal Structure:
“Deflated Tetrahedron”

≈ equal for all 3 polarizations!
Dimensions ≈10nm

Arbitrary-shape optimization: Ag nanoparticles

𝑟𝑟 𝜃𝜃,𝜙𝜙 = �𝑐𝑐𝑙𝑙𝑙𝑙𝑌𝑌𝑙𝑙𝑙𝑙(𝜃𝜃,𝜙𝜙)

1000 parameters, 𝑐𝑐𝑙𝑙𝑙𝑙

x-pol
y,z-pol

𝑌𝑌𝑙𝑙𝑙𝑙 = spherical harmonic



Surprise: Almost exactly the same?!

General shape optimum < 3% better than ellipsoidal optimum

… hitting an upper bound?

Angle- and polarization-averaged:



Empirical observation: 
optimum metal structure always far subwavelength
(≈ quasistatic, absorption-dominated)

χsurface
S

n

Surface-integral equation (SIE) version of Poisson:

bounded self-adjoint operator
(for right inner product)

Eigenvalues: K̂σ = (Li – 0.5)σ, where Li ∈ [0, 1]

[ O.D. Kellogg (1929),
Foundations of Potential Theory ]

[ Ammari, …, Milton (2012) ]

Resonances (poles) at certain materials (real χ < –1), for fixed ω!

⇒ angle-averaged response:

−�
𝑆𝑆
𝑛𝑛 𝑥𝑥 ⋅ 𝐺𝐺𝐸𝐸 𝑥𝑥, 𝑥𝑥′ 𝜎𝜎 𝑥𝑥′ 𝑑𝑑𝑥𝑥′ +

1
2

+
1
𝜒𝜒

𝜎𝜎(𝑥𝑥) = 𝐸𝐸inc 𝑥𝑥 ⋅ 𝑛𝑛(𝑥𝑥)

𝒦𝒦𝑆𝑆
∗ 𝜎𝜎

𝑝𝑝𝑖𝑖 =
1
3�

𝛼𝛼

𝑥𝑥𝛼𝛼 ,𝑢𝑢𝑖𝑖 𝑣𝑣𝑖𝑖 ,𝑛𝑛𝛼𝛼

left/right eigenvectors

𝜎𝜎ext =
2𝜋𝜋
3𝜆𝜆�

𝑖𝑖

𝑝𝑝𝑖𝑖 Im
1

𝐿𝐿𝑖𝑖 + 1/𝜒𝜒(𝜔𝜔)



Sum rules for the cross-section

sum rule #1:

sum rule #2:
Fuchs PRB 14, 5521 (1976)

Fuchs PRB 11, 1732 (1975)

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒
𝑉𝑉 =

2𝜋𝜋
3𝜆𝜆�

𝑖𝑖

𝑝𝑝𝑖𝑖 Im
1

𝐿𝐿𝑖𝑖 + 1/𝜒𝜒(𝜔𝜔)

lossy materials:

Re −1/𝜒𝜒

Im −1/𝜒𝜒

0 1
x x xxx

Im
1

𝐿𝐿𝑖𝑖 + 1/𝜒𝜒
≤

1
−Im 𝜒𝜒−1

=
𝜒𝜒 2

Im 𝜒𝜒

�𝑝𝑝𝑖𝑖 =
1
3
�
𝛼𝛼

�
𝑛𝑛

𝑥𝑥𝛼𝛼 ,𝜎𝜎𝑛𝑛 〈𝜏𝜏𝑛𝑛, 𝑠𝑠𝛼𝛼〉 = �
𝑆𝑆
�𝑛𝑛 ⋅ 𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑉𝑉

∑ 𝑝𝑝𝑖𝑖𝐿𝐿𝑖𝑖
∑ 𝑝𝑝𝑖𝑖

= �
𝛼𝛼

�
𝑛𝑛

𝐿𝐿𝑛𝑛 𝑥𝑥𝛼𝛼 ,𝜎𝜎𝑛𝑛 〈𝜏𝜏𝑛𝑛, 𝑠𝑠𝛼𝛼〉 =
1
3



An interesting connection

sum rule #1:

sum rule #2:
Fuchs (1976)

Fuchs (1975)

𝜎𝜎ext =
2𝜋𝜋
3𝜆𝜆�

𝑖𝑖

𝑝𝑝𝑖𝑖 Im
1

𝐿𝐿𝑖𝑖 + 1/𝜒𝜒(𝜔𝜔)

�𝑝𝑝𝑖𝑖 = �
𝑆𝑆
�𝑛𝑛 ⋅ 𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑉𝑉

∑ 𝑝𝑝𝑖𝑖𝐿𝐿𝑖𝑖
∑ 𝑝𝑝𝑖𝑖

=
1
3

𝜀𝜀∗ = 𝜀𝜀2�
𝑖𝑖

𝜏𝜏 − 𝜏𝜏𝑖𝑖′
𝜏𝜏 − 𝜏𝜏𝑖𝑖

Single-particle quasistatic 
surface-integral equations

Composite Bounds

𝜕𝜕𝜀𝜀∗
𝜕𝜕𝜀𝜀1

𝜀𝜀1, 1 = 𝑝𝑝1

𝜕𝜕2𝜀𝜀∗
𝜕𝜕2 𝜀𝜀1

𝜀𝜀1, 1 = −
2
3
𝑝𝑝1𝑝𝑝2

In the dilute limit, these formulations are equivalent!

(Milton & Bergman)



[Owen Miller et. al. Phys. Rev. Lett. 112, 123903 (2014)]

A fundamental limit

for typical metals
(Im χ << |1+Re χ|):

independent of shape!
Susceptibility, χ(ω)

1

3

2

0 -6 -4 -3 -2 -1-5-7

general limit

ellipsoids



Experimental demonstration: 
Tailored aspect-ratio silver nanoparticles

Experimental Synthesis: 
thermal conversion of colloidal thin-disk particles

Emma Anquillare
Soljacic group (MIT)

Aspect ratios:
1.5:1 – 10:1

[E. Anquillaire, Owen Miller et. al., Submitted, arXiv: 1510.01768]

Multiple-species limit
Expt: silver disks

TiO2 spheres

>6x



Now, generalize to 
full electrodynamics (not quasistatic)

… and other objectives besides σext



the extinction is proportional to (the imaginary part of) the overlap of 
the incident field and the induced polarization currents, Pind = χE

Key component: Optical theorem
Power/area = Poynting

Einc

Escat = E – Einc

Absorbed power = incoming flux:

Scattered power:

Extinction = absorption + scattering:

n

Lytle et al PRE 71, 056610 (2005)
Hashemi et al PRA 86, 013804 (2012)



Bounding the induced polarization

𝜒𝜒

𝐸𝐸inc 𝑃𝑃𝑖𝑖𝑛𝑛𝑖𝑖

𝑃𝑃ext ∝ Im�
𝑉𝑉
𝐸𝐸inc∗ ⋅ 𝑃𝑃ind

linear in 𝑃𝑃ind

𝑃𝑃abs ∝ Im 𝜒𝜒 �
𝑉𝑉
𝐸𝐸∗ ⋅ 𝐸𝐸

absorption is quadratic in 𝑃𝑃ind

= Im
1
𝜒𝜒

�
𝑉𝑉
𝑃𝑃ind∗ ⋅ 𝑃𝑃ind

extinction (abs. + scat.) > absorption

induced current 𝑃𝑃ind

po
w

er 𝑃𝑃ext

𝑃𝑃abs

meanwhile…

Optical theorem: the extinguished power is proportional to the 
(imaginary part of) a linear functional of Pind = χE



the rest is easy:

Optimize desired objective
subject to absorption ≤ extinction

(typically a convex optimization problem,
can be solved analytically)



General limits to optical response

By energy conservation, variational calculus
and standard optimization theory (optimality conditions)…

for more general sources and media:
(magnetic / anisotropic / 
chiral / inhomogeneous �̿�𝜒)

Similar limit to power radiated by
dipole at distance d, i.e. the 
local density of states (LDOS)

𝑑𝑑

(∂Pabs/∂Pind = 0, etc.)

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑃𝑃𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒 ≤ 𝛽𝛽𝜔𝜔(incident energy inside 𝑉𝑉) �̿�𝜒† Im �̿�𝜒 −1�̿�𝜒

𝜎𝜎abs
𝑉𝑉

,
𝜎𝜎scat
𝑉𝑉

≤ 𝛽𝛽
𝜔𝜔
𝑐𝑐
𝜒𝜒 2

Im 𝜒𝜒
absorption
scattering𝛽𝛽 = � 1

1/4

[Owen Miller et. al, Opt. Exp. 24, 3329 (2016)]



plane-wave excitation:
the limits are “tight” across many frequencies

for absorption and scattering

How tight are these bounds?



“Best” materials vs. wavelength

dashed lines: optimal ellipsoids require aspect ratios > 30:1



Resonances in Physics
Inherent to the concept of resonance is the resonant frequency

Mathematical eigen-equations:

1
𝜀𝜀 𝑥𝑥 𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸𝑛𝑛 = 𝜔𝜔𝑛𝑛2𝐸𝐸𝑛𝑛electromagnetism

linear elasticity

…

(subject to appropriate 
boundary conditions)

𝜆𝜆 + 𝜇𝜇 𝛻𝛻𝛻𝛻 ⋅ 𝑢𝑢𝑛𝑛 + 𝜇𝜇𝛻𝛻2𝑢𝑢𝑛𝑛 = −𝜌𝜌𝜔𝜔𝑛𝑛2𝑢𝑢𝑛𝑛

quantum mechanics −
ℏ2

2𝑚𝑚𝛻𝛻2Ψ𝑛𝑛 + 𝑈𝑈Ψ𝑛𝑛 = ℏ𝜔𝜔𝑛𝑛Ψ𝑛𝑛



Differential vs. integral equation formulations

1
𝜀𝜀 𝑥𝑥

𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸𝑛𝑛 = 𝜔𝜔𝑛𝑛2𝐸𝐸𝑛𝑛

Differential Equation Volume Integral Equation (VIE)

�
𝑉𝑉
𝐺𝐺0 𝑥𝑥 − 𝑥𝑥′;𝜔𝜔 𝐸𝐸𝑛𝑛 𝑥𝑥′ 𝑑𝑑𝑥𝑥′ = −

1
𝜒𝜒𝑛𝑛

𝐸𝐸𝑛𝑛(𝑥𝑥)

fixed structure
+ fixed permittivity

 resonant frequency 

fixed structure
+ fixed frequency

 resonant susceptibility
(assumes piecewise-
homogeneous media)

−𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸 + 𝜀𝜀 𝑥𝑥
𝜔𝜔2

𝑐𝑐2
𝐸𝐸 = 𝑖𝑖𝜇𝜇0𝜔𝜔𝜔𝜔

Eigen-equations:

𝐸𝐸(𝑥𝑥) −�
𝑉𝑉
𝐺𝐺0 𝑥𝑥 − 𝑥𝑥′ 𝜒𝜒 𝑥𝑥′ 𝐸𝐸 𝑥𝑥′ = 𝐸𝐸inc(𝑥𝑥)



frequency vs. material resonances

Lossy materials (e.g. metals)
 Im 𝜒𝜒 > 0, Im 𝜉𝜉 > 0

Im
1

𝜉𝜉𝑖𝑖 − 𝜉𝜉(𝜔𝜔) >
1

Im𝜉𝜉(𝜔𝜔) =
𝜒𝜒(𝜔𝜔) 2

Im𝜒𝜒(𝜔𝜔)
𝑃𝑃ext =

𝜔𝜔
2 Im�

𝑖𝑖

𝑝𝑝𝑖𝑖
𝜉𝜉𝑖𝑖 − 𝜉𝜉(𝜔𝜔)



Back to energy-conservation: Generalizations

Similar limits can be derived
(1) for other linear wave equations, such as the 

Lamé–Navier equations of elastic media:

[ O. D. Miller et al, unpublished ]

incident shear wave
in isotropic medium:

𝜎𝜎𝑆𝑆

𝑉𝑉
≤ 𝛽𝛽𝑘𝑘0

Δ𝜇𝜇 2

𝜇𝜇0Im Δ𝜇𝜇 µ0 = ambient shear modulus
Δμ = difference of scatterer – μ0

(2) for local two-dimensional materials 
(e.g. graphene)

(3) for nonlocal (e.g. hydrodynamic) constitutive equations

𝜎𝜎scat,abs
𝐴𝐴

≤ 𝛽𝛽𝑘𝑘0 Re 𝜎𝜎𝛿𝛿
−1 −1

σδ = surface conductivity

1
𝜒𝜒
𝑃𝑃 = 𝐸𝐸 𝛼𝛼𝛻𝛻 𝛻𝛻 ⋅ 𝑃𝑃 + 𝛽𝛽𝑃𝑃 = 𝐸𝐸



Radiative Heat Transfer

Stefan-Boltzmann
𝐻𝐻/𝐴𝐴 ≤ �1 ⋅ Θ 𝜔𝜔,𝑇𝑇 /𝜆𝜆2 = 𝜎𝜎𝑇𝑇4

Kirchoff’s Law:
absorptivity = emissivity

= 1

image:Wikipedia

Far-field

Near field

Difficulty: comp/expt
progress is very recent

e.g. for future
thermo-photovoltaic systems?

ho
t

PV
 c

el
l

he
at

ph
ot

on
s

In the near field,
(evanescent) thermal transport 
can exceed “black-body” limit

Wang et. al. 
Nat Nano 9, 126 (2014)

“blackbody” definition 
(ray-optical)



Near-field radiative heat transfer: Milestones
Rytov / Polder / Van Hove 

(1950–1980’s)

J Pendry (1999): (unrealistic) theoretical bounds to plane–plane transfer

G Chen et. al. (2008): 
first expt. measurements > blackbody transfer

PRB 78, 115303

stochastic theory, plate–plate 
heat transfer, possibility of 

greater-than-blackbody transfer

APL 92, 133106

Multiple groups (2008–2011): first rigorous 
sphere–sphere and sphere–plate theory

S. Fan et. al.
PRB 84, 

245431 (2011)

SG Johnson et. al. (2011+): generic 
generic full-Maxwell solvers

PRB 86, 220302 (2012)
PRL 107, 
114302 (2011)

PRB 77, 75125 (2008)
G. Chen et. al.

𝑇𝑇1 > 0

𝑇𝑇2 = 0
𝜔𝜔𝑖𝑖 𝑥𝑥,𝜔𝜔 𝜔𝜔𝑗𝑗 𝑥𝑥′,𝜔𝜔 ∗ =

4𝜀𝜀0𝜔𝜔
𝜋𝜋

Θ 𝜔𝜔,𝑇𝑇1 𝜒𝜒′′ 𝜔𝜔 𝛿𝛿 𝑥𝑥 − 𝑥𝑥′ 𝛿𝛿𝑖𝑖𝑗𝑗



Straightforward extension of limits 
to near-field heat transfer?

Difficulty: sources are embedded within 
(arbitrary-shape) scattering body

no conventional optical theorem

dotted line = bounding surface



limits: two scattering problems + reciprocity
(1) redefine “incident” and “scattered” fields:

(2) Bound absorption in body 2, from unknown field

(3) Reciprocity: switch source + measurement points

(4) Bound the energy transmitted back to V1

𝐸𝐸inc1 (𝑥𝑥) = �
𝑉𝑉1
𝐺𝐺1 𝑥𝑥, 𝑥𝑥′ 𝜔𝜔(𝑥𝑥′)

𝐺𝐺1 = Green’s function in the 
presence of body 1

𝐸𝐸scat1 (𝑥𝑥) = �
𝑉𝑉2
𝐺𝐺1 𝑥𝑥, 𝑥𝑥′ 𝑃𝑃ind(𝑥𝑥′)



Heat flux at a given 
frequency 𝜔𝜔 is bounded by:

emission and absorption equally 
enhanced by |χ|2 / Im χ

for a minimum
separation d:

near-field 
enhancement

~ 1/d2

Upper limits to near-field heat transfer

𝑮𝑮𝟎𝟎 = vacuum Green’s function

[ Owen Miller et al, Phys. Rev. Lett. 115, 204302 (2015) ]

~
1
𝑟𝑟3 in the near field



Design rules in the near field

Optimal-absorber
condition

(1) In the absence of the absorber, 𝑉𝑉2, the fields emitted by
𝑉𝑉1 into 𝑉𝑉2 should be amplified by material enhancement ratio:

(2) With both bodies present, the currents induced in the 
absorber should be further enhanced by the second 
material enhancement ratio

Optimal-emitter
condition

𝐸𝐸inc~
𝜒𝜒1 2

Im 𝜒𝜒1
𝐸𝐸dipole

𝑃𝑃ind~
𝜒𝜒2 2

Im 𝜒𝜒2
𝐸𝐸inc

~
𝜒𝜒1 2

Im 𝜒𝜒1
𝜒𝜒2 2

Im 𝜒𝜒2
𝐸𝐸dipole



Are the limits achievable in known structures?
First consider simple structures and the generic limit:

sphere-sphere reaches the limit

sphere-plate off by 2x (pol. 
mismatch), correct scaling

Drude metal, 
plasma frequency 𝜔𝜔𝑝𝑝

and dissipation 𝛾𝛾 = 0.1𝜔𝜔𝑝𝑝

𝑟𝑟 ≪ 𝑑𝑑 ≪ 𝜆𝜆



Are the limits achievable in known structures?
What about extended (planar) structures?

Φ 𝜔𝜔
𝐴𝐴 plate−plate

~
1
𝑑𝑑2 ln

𝜒𝜒 4

Im 𝜒𝜒 2



Are the limits achievable in known structures?
What about extended (planar) structures?

arrays of dipolar spheres
interacting additively 
(overly idealized)

Promising avenue: periodic nanostructure interactions

to simultaneously achieve
𝜒𝜒 2/Im 𝜒𝜒

and 1/𝑑𝑑2
enhancements

(via particles)
(via array)



Reaching the limits: 
new possibilities in heat transfer

air, 𝜅𝜅𝑠𝑠𝑐𝑐𝑛𝑛𝑖𝑖 = 0.026 W
m⋅K

Given optimal flux (and smallest bandwidth, Δ𝜔𝜔/𝜔𝜔res, for a metal):

possible at:
T=300K, d=30nm 

or
T=1500K, d=0.5µm

H
T 

co
ef

f, 
h

(W
/m

2 ⋅K
)

1500K

300Kcond

limits
plates

Separation d (µm)
0.1 10.010.001

104

1010

107

radiative > conductive transport

𝜎𝜎 = Stefan–Boltzmann constant

far-field 
heat transfer

≤ 𝜎𝜎𝑇𝑇4𝐴𝐴 ≤ 𝜎𝜎𝑇𝑇4𝐴𝐴
𝜆𝜆𝑇𝑇
𝑑𝑑

2 𝜒𝜒 3

Im 𝜒𝜒

near-field heat transfer
𝑑𝑑

(in air)



Progress, and New Questions

Linear elasticity? QM?

Radiative Heat Transfer

New limits to 
near-field transport

What are 
the optimal 
structures?

New upper bounds to optical responses
proportional to |χ|2 / Im χ

Nonlocal 
interactions?

Absorbing & Scattering Nanoparticles
Comp. optimized structures

to reach highest-possible 
absorption/scattering rates Single-layer 

absorbers?

[Mortensen, PNFA 11, 303 (2013)]

[Geim et al. RMP 81, 109 (2009)]
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