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Topological phase of periodic gapped systems

o H: Hilbert space,
o U: G =17~ H: unitary representation

o H € B(H): s.a. operator (Hamiltonian) s.t. U,HU; = H
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Topological phase of periodic gapped systems

o H: Hilbert space,
o U: G =17~ H: unitary representation

®
= H=[  Hdk,
ke
o H € B(H): s.a. operator (Hamiltonian) s.t. U,HU; = H

@
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Topological phase of periodic gapped systems

o H :=L[%(Z9,CN): Hilbert space,
o U:G=179~ J: shift representation

= H = L*(T?,C"),
o H € B(H): s.a. operator (Hamiltonian) s.t. U,HU; = H

= H = (Hy) € C(T9, My).
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Topological phase of periodic gapped systems

o H :=L[%(Z9,CN): Hilbert space,
o U:G=179~ J: shift representation

= H = L*(T?,C"),
o H € B(H): s.a. operator (Hamiltonian) s.t. U,HU; = H

= H = (Hy) € C(T9, My).

The Hamiltonian H has a spectral gap at u € R.

We say that H; and H, are in the same topological phase if
E<,(H1) = E<,,(H-) as vector bundles.
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The K%group

KO(X) := G(Vectc(X)) (the group completion). Therefore,
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f: (topological phases) = Vectc(T9) — R
which is additive (f(H; @ Hy) = f(H:) + f(H>)),
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The K%group

KO(X) := G(Vectc(X)) (the group completion). Therefore,
f: (topological phases) = Vectc(T9) — R
which is additive (f(H; @ Hy) = f(H:) + f(H>)),

Vectc(T?) —=R
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The K%group

KO(X) := G(Vectc(X)) (the group completion). Therefore,
f: (topological phases) = Vectc(T9) — R
which is additive (f(H; @ Hy) = f(H:) + f(H>)),

Vectc(T?) —=R

|

KO(Td')
Example: The first Chern number for d = 2;

a(Exu(H)) = o [ #(pIVs. pdIV2. )

(p«: orthogonal projection onto E<,(H)x).
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The K%group

KO(X) := G(Vectc(X)) (the group completion). Therefore,
f: (topological phases) = Vectc(T?) — R
which is additive (f(H; @ Hy) = f(H:) + f(H>)),
Vectc(T?) —=R
KO(T)
Example: The first Chern number for d = 2;

a(Exu(H)) = o [ #(pIVs. pdIV2. )

(p«: orthogonal projection onto E<,(H)x).
Rem. In 2d IQHE, it is related to the Hall conductance by the
TKNN formula.
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K-theory for operator algebras

Let A be the ‘algebra of observables'.
If the system is periodic, A = C(T9,M,,).
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When A = C(T9), Ko(A) = KO(T9).
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K-theory for operator algebras

Let A be the ‘algebra of observables'.
If the system is periodic, A = C(T9,M,,).

Ko(A) := G(Proj(|M,(A))).

When A = C(T9), Ko(A) = KO(T9).

Examples: aperiodic systems.

Q (e.g. Prodan-Schulz-Baldes'16) The algebra of random
operators A := Z% x C(Q), where Q := ([[; ;)% with
72 ~ Q by the Bernoulli shift.
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K-theory for operator algebras

Let A be the ‘algebra of observables'.
If the system is periodic, A = C(T9,M,,).

Ko(A) := G(Proj(|M,(A))).

When A = C(T9), Ko(A) = KO(T9).

Examples: aperiodic systems.

Q (e.g. Prodan-Schulz-Baldes'16) The algebra of random
operators A := Z% x C(Q), where Q := ([[; ;)% with
72 ~ Q by the Bernoulli shift.

Q (K'15) The uniform Roe algebra C(X): the closure of

{T eB(*X)| 3R >0st. T, =0if d(x,y) > R}
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K-theory for operator algebras

Let A be the ‘algebra of observables'.
If the system is periodic, A = C(T9,M,,).

Ko(A) := G(Proj(|M,(A))).

When A = C(T), Ko(A) = K%(T9).

Examples: aperiodic systems.

Q (e.g. Prodan-Schulz-Baldes'16) The algebra of random
operators A := Z% x C(Q), where Q := ([[; ;)% with
72 ~ Q by the Bernoulli shift.

Q (K'15) The uniform Roe algebra C(X): the closure of
{T eB(*X)| 3R >0st. T, =0if d(x,y) > R}

Anyway, there is a group homomorphism
ind: Ko(A) — Ko((C) =7
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Generalizations

Equivariant K-theory

When G ~ X, G-equivariant vector bundles form a semigroup
Vectg(X).

K%(X) := G(Vectg(A))
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When G ~ X, G-equivariant vector bundles form a semigroup
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K%(X) := G(Vectg(A))
Similarly, K§(A) := G(Proj(Uy A @ K(V))°).

K-theory for Real Z,-graded C*-algebras
K-theory for C*-algebras is generalized for

o Real C*-algebras i.e. A with 7: antilinear involution. (In
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Generalizations

Equivariant K-theory
When G ~ X, G-equivariant vector bundles form a semigroup
Vectg(X).

K%(X) := G(Vectg(A))
Similarly, K§(A) := G(Proj(Uy A @ K(V))°).

K-theory for Real Z,-graded C*-algebras
K-theory for C*-algebras is generalized for
o Real C*-algebras i.e. A with 7: antilinear involution. (In
this case, KR (A, 7) := G(Proj(U, M,(A))7))
o Zp-graded C*-algebras i.e. Zp, ~ A.
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Generalizations

Equivariant K-theory
When G ~ X, G-equivariant vector bundles form a semigroup
Vectg(X).

K%(X) := G(Vectg(A))
Similarly, K§(A) := G(Proj(Uy A @ K(V))°).

K-theory for Real Z,-graded C*-algebras
K-theory for C*-algebras is generalized for
o Real C*-algebras i.e. A with 7: antilinear involution. (In
this case, KRo(A, 7) := G(Proj(U, M,(A))7))
0 Zjp-graded C*-algebras i.e. Zy ~ A.
Example: The Clifford algebra C/,, .
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2d Quantum Spin-Hall Effect

o I = (2(22,C"),
o U:Z%— U(H): the regular representation (i.e. U,: shift

operator),
o H € B(H)..: Z%invariant, (Hy)er2: continuous, H has

a spectral gap at p.
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2d Quantum Spin-Hall Effect

o = 2(22,C"),

o U:Z%— U(H): the regular representation (i.e. U,: shift
operator),

o H € B(H)..: Z%invariant, (Hy)er2: continuous, H has
a spectral gap at p.

In addition, we assume that 37 : H — H s.t.

o T is antilinear, U, T = TU,, T? = —1,

o T = (Tk)kere: continuous (Ty: Hy — H_y),

o TH=HT,
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2d Quantum Spin-Hall Effect

o H :=(*(Z%C"),
o U:Z%— U(H): the regular representation (i.e. U,: shift
operator),
o H € B(H)..: Z%invariant, (Hy)er2: continuous, H has
a spectral gap at p.
In addition, we assume that 37 : H — H s.t.
o T is antilinear, U, T = TU,, T? = —1,
o T = (Tk)kere: continuous (Ty: Hy — H_y),
o TH=HT,
Then, E<,(H) is a Real projection in C(T?, M,,)
(='quaternionic vector bundle’).
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2d Quantum Spin-Hall Effect

o H :=(*(Z%C"),
o U:Z%— U(H): the regular representation (i.e. U,: shift
operator),
o H € B(H)..: Z%invariant, (Hy)er2: continuous, H has
a spectral gap at p.
In addition, we assume that 37 : H — H s.t.
o T is antilinear, U, T = TU,, T? = —1,
o T = (Tk)kere: continuous (Ty: Hy — H_y),
o TH=HT,
Then, E<,(H) is a Real projection in C(T?, M,,)
(='quaternionic vector bundle’).

Definition
[E<,.(H)] € KRo(C(T9,M,),Ad T)(= KQ°(T?, 7)) = Z, is

called the Kane-Mele invariant.
6/ 16
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Wigner's theorem

H: Z,-graded separable Hilbert space.
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— PH := (F\ {0})/T: the space of states.
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Wigner's theorem

H: Z,-graded separable Hilbert space.
— PH := (F\ {0})/T: the space of states.
It is equipped with the function

(er) : BH x BIH - Reg, &([e], 1]) = |||§|| Hgd
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Wigner's theorem

H: Z,-graded separable Hilbert space.
— PH := (F\ {0})/T: the space of states.
It is equipped with the function

(er) : BH x BIH - Reg, &([e], 1]) = |||§|| Hgd

The group of symmetries in quantum mechanics:
Autgem(PH) :={f : PH - PH | {"d =, fy=~f}
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Wigner's theorem

H: Z,-graded separable Hilbert space.

— PH := (F\ {0})/T: the space of states.

It is equipped with the function

[ &m) |
1€l

The group of symmetries in quantum mechanics:
Autgem(PH) :={f : PH - PH | {"d =, fy=~f}

Do, o) PH x PH — Reo, ([€], [1]) =

Theorem (Wigner's theorem)

Autqtm (]Pg{) Autqtm (ﬂ'f)/']r

where

Autgem(HH) := (linear/antilinear and even/odd unitaries on X).
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Twists

A symmetry of quantum mechanics is a group homomorphism
G — Autgem(PH).
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Twists

A symmetry of quantum mechanics is a group homomorphism
G — Autgem(PH).

Autgim(H) ——Zy X Zs

|

G — Autgem(PH)
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Twists

A symmetry of quantum mechanics is a group homomorphism
G — Autgem(PH).

G —— Autqtm (j’C) E—— Zz X Zz

G—— Athtm (]P):H:)
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A symmetry of quantum mechanics is a group homomorphism
G — Autgem(PH).

G —— Autqtm (j’C) E—— Zz X Zz

O
L l (950

G —— Autgem(PH)

Theorem (Freed-Moore'13, K.)
The data (¢, ¢, T) is classified by the set

|| FAYG;Z) x. H*(G;T).
PeHY(G;Z,)
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The twisted equivariant Ky-group

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted (Zy-graded) G-C*-algebra i.e. G ~ As.t.
ay is linear/antilinear if ¢(g) = 0/1.
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o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted (Zy-graded) G-C*-algebra i.e. G ~ As.t.
ay is linear/antilinear if ¢(g) = 0/1.
We define the twisted equivariant K-functor

K, ,: “Calgg — Ab

*,C,T °

as a canonical generalization of K¢, KRE.
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The twisted equivariant Ky-group

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted (Zy-graded) G-C*-algebra i.e. G ~ As.t.
ay is linear/antilinear if ¢(g) = 0/1.
We define the twisted equivariant K-functor

K, ,: “Calgg — Ab

*,C,T °
as a canonical generalization of K¢, KRE.

It classifies topological phases with the symmetry given by
(G, ¢,c, 7). Assume the Z,-grading of A is trivial.
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The twisted equivariant Ky-group

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted (Zy-graded) G-C*-algebra i.e. G ~ As.t.
ay is linear/antilinear if ¢(g) = 0/1.
We define the twisted equivariant K-functor

°KS. .1 “Calgy — Ab

*,C,T °
as a canonical generalization of K¢, KRE.
It classifies topological phases with the symmetry given by
(G, ¢,c, 7). Assume the Z,-grading of A is trivial.
For V: *(¢, ¢, T)-twisted' representation of G,

FEy(A) = {s € AQK(V)s | $° = 1, ag(s) = (—1)@s}
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The twisted equivariant Ky-group

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted (Zy-graded) G-C*-algebra i.e. G ~ As.t.
ay is linear/antilinear if ¢(g) = 0/1.
We define the twisted equivariant K-functor

°KS. .1 “Calgy — Ab

*,C,T °

as a canonical generalization of K¢, KRE.

It classifies topological phases with the symmetry given by
(G, ¢,c, 7). Assume the Z,-grading of A is trivial.

For V: *(¢, ¢, T)-twisted' representation of G,

FEy(A) = {s € AQK(V)s | $° = 1, ag(s) = (—1)@s}

Theorem

¢Kg,c,7'(A) = UV 9icG,V(A)/ ~~homotopy
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The twisted equivariant Ky-group

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted (Zy-graded) G-C*-algebra i.e. G ~ As.t.
ay is linear/antilinear if ¢(g) = 0/1.
We define the twisted equivariant K-functor

°KS. .1 “Calgy — Ab

*,C,T °

as a canonical generalization of K¢, KRE.

It classifies topological phases with the symmetry given by
(G, ¢,c, 7). Assume the Z,-grading of A is trivial.

For V: (¢, ¢, T)-twisted’ representation of G,

FEy(A) = {s € AQK(V)s | $° = 1, ag(s) = (—1)@s}

Theorem

¢Kg,c,7'(A) = UV 9icG,V(A)/ “~homotopy
H satisfies HUy = (—1)<® UgH = [H|H|™*] € *K§ . .(A).
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Green-Julg theorem

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted G-C*-algebra.
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Green-Julg theorem

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted G-C*-algebra.
The twisted crossed product is the R-x-algebra defined to be
Gxl A={D agug | ag € A}
geG
with
(Z agug)(z byup) = Z 7(8. h)agog(bn)ugn
(Z aglg)" = Z (g, g)ag—1(a;)ug—1
(identified with the Real C*-algebra (G x¢_ A) ®g C).
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Green-Julg theorem

o G: finite group, (¢, c,7): twist on G,
o A: ¢-twisted G-C*-algebra.
The twisted crossed product is the R-x-algebra defined to be
Gxl A={D agug | ag € A}
geG
with
(Z agug)(z byup) = Z 7(8. h)agog(bn)ugn
(Z aglg)" = Z (g, g)ag—1(a;)ug—1
(identified with the Real C*-algebra (G x¢_ A) ®g C).

UKS. .(A) 2 KR(G x?_; A)

-7

(Here 7 = 7+ ¢(c, ¢).)
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Index for topological phases

o G: finite group, (¢, c,7): a twist on G,
o A: observable algebra with G ~ A: a ¢-twisted action.
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Index for topological phases

o G: finite group, (¢, c,7): a twist on G,
o A: observable algebra with G ~ A: a ¢-twisted action.

Then, topological phases are classfied by ?K¢ . .(A). By

o the index of the twisted C/, 4-Dirac operator
(A= C(T),
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o G: finite group, (¢, c,7): a twist on G,
o A: observable algebra with G ~ A: a ¢-twisted action.
Then, topological phases are classfied by ?K¢ . .(A). By
o the index of the twisted C/, 4-Dirac operator
(A= C(T),
o the Kasparov product (A = Z9 x C(Q)) or
o the coarse Baum-Connes isomorphism (A = C}(X)),
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Index for topological phases

o G: finite group, (¢, c,7): a twist on G,

o A: observable algebra with G ~ A: a ¢-twisted action.
Then, topological phases are classfied by ?K¢ . .(A). By

o the index of the twisted C/, 4-Dirac operator

(A= C(T),

o the Kasparov product (A = Z9 x C(Q)) or

o the coarse Baum-Connes isomorphism (A = C}(X)),
we get the group homomorphism

ind: ¢Kgic,‘r(A) — ¢Kgcﬂ.(c€0’d).
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Example: CT-symmetries

We consider the case that (¢, c) : A — Z; X Z, is injective.
Choices of (A, 7) are classified by

C'=+1and T? = +1

(C, T € AT are lifts of (1,1),(1,0) € A s.t. (CT)? =1).
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We consider the case that (¢, c) : A — Z; X Z, is injective.
Choices of (A, 7) are classified by

Cl=+1and T?> = +1

(C, T € AT are lifts of (1,1),(1,0) € A s.t. (CT)? =1).
There are 10 choices and *C; A := A x¢_Ris classified by

Al 1 P T ¢ 9
C? 1 -1 1 1 -1 -1
T2 1 -1 1 -1 1 -1

C; A| C | Cl | Mp(R) | H | Clyy | Clog | Clip | Clos | Cloy | Clag
Koo, | Ko | Ky KRo | KR4 | KR, | KRg | KRy | KR3 | KR7 | KRs

Cartan | A All Al All D C BDI Dl Cl Cl
The 10-fold way and Clifford algebras
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dim | A | Alll | Al | BDI | D | DIl | All | Cll | C|Cl
0|Z| 0 |Z | Zy, |Zy| O Z | 0100
10| Z | 0| Z |Zy| Zy | O | Z |0]O0
217Z| 0 0| 0 |Z | Zy |Zy| 0 |Z)| O
3]0/ Z 0] O 0| Z |Zy |72y |0 | Z

Kitaev's periodic table

cf. Bott periodicity

- Z i=8n—18n+3
W;(U)%{bz (Tl m(0)= Z, i=8n8n+1

0 otherwise
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Example: reflection-invariant systems

G = A X R, where R = Z, acting on the material as a
reflection.
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Example: reflection-invariant systems

G = A X R, where R = Z, acting on the material as a
reflection.Choices of (G, 7) is classified by

C?>=+41, T?=4+1, TR = +RT, PR = +RP

(P := CT, R is the lift of the generator of R s.t. R? = 1).
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Example: reflection-invariant systems

G = A X R, where R = Z, acting on the material as a
reflection.Choices of (G, 7) is classified by

C?>=+41, T?=4+1, TR = +RT, PR = +RP

(P := CT, R is the lift of the generator of R s.t. R? = 1).
It is not difficult to determine the finite-dimensional algebras
G [>< C€0d and we get

Ki1c,(R) if (e,v) = (+,+)
Kiirer(R) if (e,v) = (4, ),
(= +)
(=)

K +(Cloq) =

Kye-(R)? if (e,v) =

Kag.cr(R) if (e,v) =

where RP = ePR and RT = vTR.
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Reflection Class Cj,orR; d=0d=1d=2d=3d=4d=5d=6d=7
R A Cy 0 Z 0 Z 0 Z 0 Z
R* AITL Co Z 0 Z 0 Z 0 Z 0
R- AIlL C1 0 Z 0 Z 0 Z 0 Z
Al Ry Zs Z 0 0 0 Z 0 Zn
BDI Ry Zo T2 Z 0 0 0 Z 0
D R 0 Zo T2 Z 0 0 0 Z
RT.R*" DI Ra Z 0 Z» L Z 0 0 0
ATl Rs 0 Z 0 Zo Lo Z 0 0
CII Rg 0 0 Z 0 Zo Zo Z 0
C Ry 0 0 0 Z 0 Zo o Z
Cl Ro Z 0 0 0 Z 0 Zo  Zo
Al Ry 0 0 0 Z 0 “Zo" Za Z
BDI Ro Z 0 0 0 Z 0 “Zo"  Zo

D R Zs Z 0 0 0 Z 0 “Zo?
RT.R™"  DII Re “Z” Zn Z 0 0 0 Z 0
ATl Rs 0 “Ls” Lo Z 0 0 0 Z
CII R4 Z 0 “Zs” Lo Z 0 0 0
C Ry 0 Z 0 “Zs”  Zo Z 0 0
CI Rs 0 0 Z 0 “Ls”  Zo Z 0
R BDI R Lz Z 0 0 0 VA 0 Za
R+ DIII Rs 0 Zo Zo Z 0 0 0z
R+ CII Rs 0 Z 0 Zy Ze Z 0 0
R+ cl Ry 0 0 0 Z 0 Zy Zy I
R~ BDLCI 1 0 Z 0 Z 0 Z 0 Z
Rt~ DI, CI Cy 0 Z 0 Z 0 Z 0 Z

Classification of reflection invariant topological phases
Takahiro Morimoto and Akira Furusaki, Topological classification with additional symmetries from Clifford algebras,
Phys. Rev. B 88, 125129.
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Example: 1D type A reflection invariant systems

ind: K&(T) — KF(Clo,) = Z.
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Example: 1D type A reflection invariant systems

ind: K§(T") — K&(Clo,) = Z.
The simplest vector bundle with nontrivial index is £ — T*
sit. E|o =V, and E|, = V_ (V4 = C with the Z-action
given by +1).
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Example: 1D type A reflection invariant systems

ind: K§(T") — K&(Clo,) = Z.
The simplest vector bundle with nontrivial index is E — T*
sit. E|o =V, and E|, = V_ (V4 = C with the Z-action
given by +1).
The corresponding Hamiltonian is

1<s+s* i(s —s*)

A= i(s—s*) —(s+s*)

> ) € B((Z; V. & V.)),

where s is the shift operator.

Yosuke KUBOTA (Univ. Tokyo) April 19, 2016 16 / 16



Example: 1D type A reflection invariant systems
ind: K§(T") — K&(Clo,) = Z.

The simplest vector bundle with nontrivial index is E — T*
st. Elp = V4 and E|; = V_ (V4 = C with the Z,-action
given by +1).

The corresponding Hamiltonian is

__1 s+s*  i(s—s") 2/
Himg (om0 33 ee@viov),

where s is the shift operator.

cf.) the clean Kitaev chain (a 1D type BDI systems):

H—l s+s*+2u —i(s—s*)
2\ —i(s=s") —(s+s+2u))’

(u: chemical potential).



