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Homogenisation setting
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Homogenisation setting

“Classical” homogenisation
—di g — 2 (md
d1V(A<€)Vu>+uff, feL R,

A>vIi>0
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Homogenisation setting

“Classical” homogenisation
—di g — 2 (md
d1V(A<€)Vu>+uff, feL R,

A>vIi>0

Convergence (two-scale expansions, compensated compactness, two-scale
convergence, periodic unfolding, Bloch decomposition):

U= Us — ug in Hl(Rd), —divAP ™ Vug + ug = I
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Problem under study: high contrast

We study the problem
_ 1 €Q
1 — 2 — ’ Yy 1,
curl (e, (%)curl H") = wy H, en(y) = { 02, yeQo

n € (0,1) period, Q1 := Q\Qo simply connected Lipschitz set
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Problem under study: high contrast

We study the problem
-1 2 _ 1, yeQq,
curl (e, (%)curl H") = wy H, en(y) = { 02, yeQo

n € (0,1) period, Q1 := Q\Qo simply connected Lipschitz set

Define: “Homogenised matrix’
Abom . — / (curlN(y) + I) dy,
Q1

Curl(curlN(y) +I) =0 inQ1, (curlN(y) +I) xn =0 on 0Qp, N is @—periodic.

Kirill Cherednichenko Maxwell equations with high contrast



Problem under study: high contrast

We study the problem

_ 1, € W1,
curl (e, 1(%)curl H") = w%H"7 en(y) = { - Z c g(l)

n € (0,1) period, Q1 := Q\Qo simply connected Lipschitz set

Define: “Homogenised matrix’
Abom . — / (curlN(y) + I) dy,
Q1

Curl(curlN +I) =0 inQ1, (curlN(y) +I) xn =0 on 0Qp, N is @—periodic.

Consider: w € Ry, HO(2,y) := u(x) + Vyv(z,y) + 2(z,y),
(u,v,2) € [H#Curl(']l‘)] x L? (R%H#(Q)) x [L2(T; HOI(QO))}?’, solution to

curly (AP curlyu(z)) = w? ( u(z z(zx, , T ,
b (avmeurtzu(@)) = () + [ (o)) er

divy (vyv(mvy) + Z(‘T:y)) =0, (z,y) €T x Q7
curly (curlyz(m, y)) =w? (u(a:) + Vyu(z,y) + 2(x, y)), (z,y) € T x Qo.
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Problem under study: high contrast

We study the problem

_ 1, € W1,
curl (e, 1(%)curl H") = w%H"7 en(y) = { - Z c g(l)

n € (0,1) period, Q1 := Q\Qo simply connected Lipschitz set

Define: “Homogenised matrix’
Abom . — / (curlN(y) + I) dy,
Q1

Curl(curlN +I) =0 inQ1, (curlN(y) +I) xn =0 on 0Qp, N is @—periodic.

Consider: w € Ry, HO(2,y) := u(x) + Vyv(z,y) + 2(z,y),
(u,v,2) € [H#Curl(']l‘)] x L? (R%H#(Q)) x [L2(T; HOI(QO))}?’, solution to

curly (AP curlyu(z)) = w? ( u(z z(zx, , T ,
b (avmeurtzu(@)) = () + [ (o)) er

divy (vyv(mvy) + Z(‘T:y)) =0, (z,y) €T x Q7
curly (curlyz(m, y)) =w? (u(a:) + Vyu(z,y) + 2(x, y)), (z,y) € T x Qo.

Our result: A) 3 at least one eigenfrequency wy such that |w, —w| < C7,
B) dist(HO,Xn) < 6’17, where C' > 0, X, := span{H" D wy as above}.
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Spectral decomposition of the limit problem

Write v(z,-) = G * (divy z)(z, -), then
curly curly z(z,y) = w? (u(x) + Vy / Gy —v) divys 2(z, y)dy' + 2(z, y)) ,
Qo

(z,y) € T x Qo.
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Spectral decomposition of the limit problem

Write v(z,-) = G * (divy z)(z, -), then
curly curly 2(z,y) = w? (u(x) +Vy /Q Gy —y) divyz(z,y) dy’ + 2(z, y)) ;
0
(z,y) € T x Qo.
Note that
Vy /Q Gy — o) divy z(z,y) dy' + 2(z,y) = w?B(y)u(x),
0
B is 3 x 3 matrix function with columns BJ [H#(Q)]?’, i=1,2,3:

curl curl BY = e; + w?BJ  in Qo,

curl BI (y) =0, ye Qu, (1)
divBi(y) =0, yeQ, (2)
a(B7) =0, (3)

a(B7) “circulation” of BJ :
H'-continuous extension of a(¢); = fol di(te)dt, ¢ € [C=(Q)].
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Spectral decomposition of the limit problem

Write v(z,-) = G * (divy z)(z, -), then
curly curly 2(z,y) = w? (u(x) +Vy /Q Gy —y) divyz(z,y) dy’ + 2(z, y)) ;
0
(z,y) € T x Qo.
Note that
Vy /Q Gy — o) divy z(z,y) dy' + 2(z,y) = w?B(y)u(x),
0
B is 3 x 3 matrix function with columns BJ [H#(Q)]?’, i=1,2,3:

curl curl BY = e; + w?BJ  in Qo,

curl BI (y) =0, ye Qu, (1)
divBi(y) =0, yeQ, (2)
a(B7) =0, (3)

a(B7) “circulation” of BJ :
H'-continuous extension of a(¢); = fol di(te;)dt, ¢ € [C(Q)]3.
Equivalent variational formulation

/ curl BY - curl :/ €; -g0+w2/ B, Vo € [H#(Q)]g subject to (1)—(3).
Qo Q Q
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“Macroscopic” equation

Operator-pencil spectral problem
curl (Ah°mcurl u(z)) = N'(w)u(z), zeT, (4)

where I' is a matrix-valued function that vanishes at w = 0, and for w # 0 has
elements

Tij(w) = w? (6ij +w2/ Bg') . 4,5=1,2,3. (5)
Q
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“Macroscopic” equation

Operator-pencil spectral problem
curl (Ah°mcurl u(z)) = N'(w)u(z), zeT, (4)

where I' is a matrix-valued function that vanishes at w = 0, and for w # 0 has
elements

Tij(w) = w? (6,~j +w2/ Bg) . 4,5=1,2,3. (5)
Q

Alternative representation for I'(w) :
Consider ¢* € [H}(Q0)]3, k € N, solutions to non-local problems

curl curl ¢* (y) = ay, (v / Gly —y) divo* (v dy' + ¢>’“(y)), y€Qo, (6)
Qo
subject to orthonormality conditions
/ / (V2Gly — o)+ 1)¢5(y) - o* () dydy' = Sjk, ik =1,2,,..,
Qo Y Qo

where V2@ is the Hessian matrix of G. Then

> <fQ0 (bf) (fQo ¢§)

i (w) = w26ij+w4 Z
k=1

P 2 e}
y L] = 172737 w ¢ {O}U{ak}kzl'
™
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Structure of the limit spectrum

u(z) = Z exp(2mim - x)a(m), a(m) := / exp(—2wim - x)u(zx) dz,
mezZ3 T
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Structure of the limit spectrum

u(z) = Z exp(2mim - x)a(m), a(m) := / exp(—2wim - x)u(zx) dz,
mezZ3 T

Then '
M(m)i(m) =T (w)i(m), m ez’

Mip(m) = 47r2€ilsmsA?j°m€jptmt =4n2(e; x m) - Aho"‘(ep X m).
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Structure of the limit spectrum

u(z) = Z exp(2mim - z)a(m), a(m) := / exp(—27im - z)u(x) dz,
mez3 T

Then '
M(m)i(m) =T (w)i(m), m ez’

Mip(m) = 47r2€ilsmsA?j°m€jptmt =4n2(e; x m) - Aho"‘(ep X m).

Note: M(m) = |m|2M (1), m := |m|~m, and zero is a simple eigenvalue of M)
with eigenvector m.
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Structure of the limit spectrum

u(z) = Z exp(2mim - z)a(m), a(m) := / exp(—27im - z)u(x) dz,
mez3 T

Then '
M(m)i(m) =T (w)i(m), m ez’

Mip(m) = 47r2€ilsmsA?j°m€jptmt =4n2(e; x m) - Aho"‘(ep X m).

Note: M(m) = |m|2M (1), m := |m|~m, and zero is a simple eigenvalue of M)
with eigenvector m.

ia(m) = C(m) Ta(m) + a(m)m,

. i L (En(m) Ea(m)  é1s(m)
a(m) € R?, a(m) € R, C(m)—(é;(m) é;i(rﬁ) é;i@h))
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Structure of the limit spectrum

u(z) = Z exp(2mim - z)a(m), a(m) := / exp(—27im - z)u(x) dz,
mez3 T

Then '
M(m)i(m) =T (w)i(m), m ez’

Mip(m) = 47r2€ilsmsA?j°m€jptmt =4n2(e; x m) - Aho"‘(ep X m).

Note: M(m) = |m|2M (1), m := |m|~m, and zero is a simple eigenvalue of M)
with eigenvector m.

ia(m) = C(m) Ta(m) + a(m)m,

. i L (En(m) Ea(m)  é1s(m)
a(m) € R?, a(m) € R, C(m)—(é;(m) é;i(rﬁ) é;i@h))

Determine (@(1n), a(m)) € R3\ {0} such that
Im[>A(m)a(m) = C(m)T(w)C () " a(m) + a(ii)C(m)T (w)m,
D(w)C(m) Ta(m) - i = —a(m)I(w)m - m,

where

/\2?771)) ’



Different admissible propagation regimes

If the inclusion Qo is symmetric under a rotation by 7 around at least two of the three
coordinate axes, then matrices AP*™ and T'(w) are diagonal:

Ahom — diag(ay, az, az), T'(w) = diag (81 (w), B2(w), B3(w)).

The eigenvalues A1 2(M) of M(7) are the solutions to the quadratic equation

A2 —/\{(a2 +a3)7h%+(a1 +a3)7h%+(a1 -‘raz)ﬁ’bg)}-i— (alagﬁzg-i—ag a3ﬁz%+a1 agﬁlg) =0.

9
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Different admissible propagation regimes

If the inclusion Qo is symmetric under a rotation by 7 around at least two of the three
coordinate axes, then matrices AP*™ and T'(w) are diagonal:

Ahom — diag(ay, az, az), T'(w) = diag (81 (w), B2(w), B3(w)).

The eigenvalues A1 2(M) of M(7) are the solutions to the quadratic equation

A2 —/\{(a2 +a3)7h%+(a1 +a3)7h%+(a1 -‘raz)ﬁ’bg)}-i— (alagﬁzg-i—ag a3ﬁz%+a1 agﬁlg) =0.

9

Suppose Qo is symmetric by a 7/2 rotation around at least two of the three axes, say
z1 and z2, then a = a1 = a2 = a3 and B(w) = f1(w) = P2 (w) = B3(w).

If B(w) # 0, then () is an arbitrary element of R? and 4(m) = C(v) T a(rn) is an
arbitrary vector of the (2-dimensional) eigenspace spanned by the vectors €; () and
éa(m).

Isotropic propagation (no “weak” band gaps)
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Different admissible propagation regimes

If the inclusion Qo is symmetric under a rotation by 7 around at least two of the three
coordinate axes, then matrices AP*™ and T'(w) are diagonal:

Ahom — diag(ay, az, az), T'(w) = diag (81 (w), B2(w), B3(w)).

The eigenvalues A1 2(M) of M(7) are the solutions to the quadratic equation

A2 —/\{(a2 +a3)ﬁ’b%+(a1 +a3)7h%+(a1 -‘raz)ﬁ’bg)}-i— (alagﬁzg-i—ag a3ﬁz%+a1 agﬁlg) =0.

9

Suppose Qo is symmetric by a 7/2 rotation around at least two of the three axes, say
z1 and z2, then a = a1 = a2 = a3 and B(w) = f1(w) = P2 (w) = B3(w).

If B(w) # 0, then () is an arbitrary element of R? and 4(m) = C(v) T a(rn) is an
arbitrary vector of the (2-dimensional) eigenspace spanned by the vectors €; () and
éa(m).

Isotropic propagation (no “weak” band gaps)

Suppose Qo is symmetric by a 7/2 rotation around one of the three coordinate axis,
say x1, and by a 7 rotation around another axis, say x2, one has a = a1, b =a2 = a3
and f2(w) = B3(w).

Propagation is restricted solely to the direction of é; () (resp. é2(m)) which is
orthogonal to the eigenvector(s) corresponding to the negative eigenvalue of I'(w).
Directional propagation (existence of “weak” band gaps)
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Structure of the limit spectrum

The spectrum of the limit problem is the union of the following sets.
© The elements of {ay, : k € Z} such that at least one of the corresponding #* has
zero mean over Q. These are eigenvalues of infinite multiplicity and the
corresponding eigenfunctions H®(z,y) are of the form

) (v /Q Gl div ) '+ ¢k<y)), w € L(T).

@ The set {w2 : Im € Z3 such that (8) holds}, with eigenfunctions H(x,y) of

the limit problem having the form w(z) + Vyv(z,y) + z(z,y), where
u(z) = exp(2wim - z)a(m) is an eigenfunction of macroscopic problem and

Vyo(z,y) + 2(2,y) = w?B(y)u(z,y) ae. (z,y) €T xQ,

that is HO(z,y) = (I + w2B(y)) exp(2mim - z)a(m). |
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Structure of the limit spectrum

The spectrum of the limit problem is the union of the following sets.
© The elements of {ay, : k € Z} such that at least one of the corresponding #* has
zero mean over Q. These are eigenvalues of infinite multiplicity and the
corresponding eigenfunctions H®(z,y) are of the form

w(z) (v /Q Gl div ety + ¢k<y)), w € LA(T).

@ The set {w2 : Im € Z3 such that (8) holds}, with eigenfunctions H(x,y) of
the limit problem having the form w(z) + Vyv(z,y) + z(z,y), where
u(z) = exp(2wim - z)a(m) is an eigenfunction of macroscopic problem and

Vyo(z,y) + 2(2,y) = w?B(y)u(z,y) ae. (z,y) €T xQ,

that is HO(z,y) = (I + w2B(y)) exp(2mim - z)a(m).

Corollary

If the matrix T'(w) is negative-definite, the value X\ = w? does not belong to the

spectrum of the limit problem.
v
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Proof of main result

Ingredients of proof:
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Proof of main result

Ingredients of proof:

A) We seek solutions in the form of an asymptotic expansion
H"(z) = HO (¢, 2) +nH' (2, £) + > H? (2, £) + ..., (10)

where H7 (z,y), j =0,1,2, ..., are Q-periodic in the variable y.
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Proof of main result

Ingredients of proof:
A) We seek solutions in the form of an asymptotic expansion
0 1 2772
H"(xz)=H (x,%)JrnH (x,%)Jrr] H (:c,%)+..., (10)
where H7 (z,y), j =0,1,2, ..., are Q-periodic in the variable y.

B) A, operator in L7, ) (T) defined by the form

/1115771 (5) curlu - curlv, u,v € [H# (T2 N Lisol(T) =:H.

For fixed w in the spectrum of limit problem let HOY be a corresponding eigenfunction.
Consider solution H" € H to

(A + DH" = (0> + DH (-, ). (11)

and
H® () = HO( 5) +nH (- 2) + 02 H2 (-, 5), (12)
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Proof of main result

Ingredients of proof:

A) We seek solutions in the form of an asymptotic expansion
0 1 2772
H"(xz)=H (x,%)JrnH (x,%)Jrr] H (:c,%)+..., (10)
where H7 (z,y), j =0,1,2, ..., are Q-periodic in the variable y.

B) A, operator in L7, ) (T) defined by the form

/ e;l (5) curlu - curlv, u,v € [H# (T2 N Lisol(T) =:H.
T
For fixed w in the spectrum of limit problem let HOY be a corresponding eigenfunction.
Consider solution H" € H to
(Ag + DH" = (0 + DH(, 5). (11)

and
H® () = HO( 5) +nH (- 2) + 02 H2 (-, 5), (12)

C) There exists a constant C > 0 such that the estimate

by (A" — H® (-,n), ) < CnyJbn(e,0) Ve € [HL(T)?,
where

by (u,v) ::/5;1(ﬁ)curlu-curlv+/u-v
T

T
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Proof of main result

3C > 0 such that ||ITI"7HO(-,-/77)HL2(T) <Cn .
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Proof of main result

3C > 0 such that ||ITI"7HO(-,-/77)HL2(T) <Cn .

Proof

| \

Setting ¢ = H" — H?) (-, )
C?n? > by (H" — HO (), H" = HA(,m)) > [|H" = HO ()| 72,

Note that ~ ~
||H(2>(,7))*H0(7/VI)HLz(T) Scnz C>07

and hence

|[E" = HOC, '/’7)||L2(1r) <|H7 - H(2)('v77)||L2(1r)

+HH(2)("17) — HO(, '/77)||L2(11‘) < (C+C)m.

A\
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Symmetry of A™™ and I'(w) under rotations

Proposition

Suppose that o is a rotation such that @ = @ and assume that
aly) = o la(oy)o, yeQ. (13)
Then , AP°™ jnherits the same symmetry, i.e. one has

Ahom — U*lAhomo_.

In particular, Ag?m = A?Em =0, forall l # k.
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Symmetry of A™™ and I'(w) under rotations

Suppose that o is a rotation such that @ = @ and assume that

a(y) = o taloy)o, yeQ. (13)
Then , AP°™ jnherits the same symmetry, i.e. one has
Ahom — U*lAhomo_.

In particular, Aglom = A%‘Em =0, forall l # k.

<

Corollary

1. If (13) holds for o = o}, where oy, is the rotation by 7 around the x-axis, then
Abom — 0, for all I # k.

2. If (13) holds for o = oy, where o}, is the rotation by 7 /2 around the x-axis, then
Ag?m =0, for alll # k and A?iom = A?}’m, 1,7 # k.

Kirill Cherednichenko Maxwell equations with high contrast



Symmetry of A™™ and I'(w) under rotations

Suppose that o is a rotation such that @ = @ and assume that

a(y) = o taloy)o, yeQ. (13)
Then , AP°™ jnherits the same symmetry, i.e. one has
Ahom — U*lAhomo_.

In particular, Aglom = A%‘Em =0, forall l # k.

<

Corollary

1. If (13) holds for o = o}, where oy, is the rotation by 7 around the x-axis, then
Abom — 0, for all I # k.

2. If (13) holds for o = oy, where o}, is the rotation by 7 /2 around the x-axis, then
Ag?m =0, for alll # k and A?iom = A?}’m, 1,7 # k.

Similar results can be demonstrated for I'(w).
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