Asymptotic behaviour of the spectra of systems of Maxwell equations in periodic composite media with high contrast

Kirill Cherednichenko

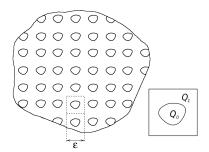
Joint work with Shane Cooper

21 April 2016

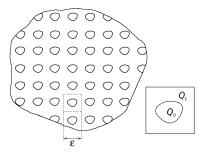
Conference "Spectral Theory of Novel Materials"

CIRM. Marseille

Homogenisation setting



Homogenisation setting

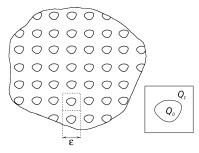


"Classical" homogenisation

$$-\mathrm{div}\Big(A\Big(\frac{x}{\varepsilon}\Big)\nabla u\Big)+u=f, \quad \ f\in L^2(\mathbb{R}^d),$$

$$A>\nu I>0$$

Homogenisation setting



"Classical" homogenisation

$$-\mathrm{div}\Big(A\Big(\frac{x}{\varepsilon}\Big)\nabla u\Big)+u=f, \quad \ f\in L^2(\mathbb{R}^d),$$

$$A\geq \nu I>0$$

Convergence (two-scale expansions, compensated compactness, two-scale convergence, periodic unfolding, Bloch decomposition):

$$u = u_{\varepsilon} \rightharpoonup u_0$$
 in $H^1(\mathbb{R}^d)$, $-\text{div}A^{\text{hom}}\nabla u_0 + u_0 = f$.

We study the problem

$$\operatorname{curl}\left(\epsilon_{\eta}^{-1}\left(\frac{x}{\eta}\right)\operatorname{curl}H^{\eta}\right) = \omega_{\eta}^{2}H^{\eta}, \qquad \epsilon_{\eta}(y) = \left\{\begin{array}{cc} 1, & y \in Q_{1}, \\ \eta^{-2}, & y \in Q_{0}, \end{array}\right.$$

 $\eta \in (0,1)$ period, $Q_1 := Q \backslash \overline{Q_0}$ simply connected Lipschitz set

We study the problem

$$\operatorname{curl}\left(\epsilon_{\eta}^{-1}\left(\frac{x}{\eta}\right)\operatorname{curl}H^{\eta}\right) = \omega_{\eta}^{2}H^{\eta}, \qquad \epsilon_{\eta}(y) = \left\{\begin{array}{cc} 1, & y \in Q_{1}, \\ \eta^{-2}, & y \in Q_{0}, \end{array}\right.$$

 $\eta \in (0,1)$ period, $Q_1 := Q \backslash \overline{Q_0}$ simply connected Lipschitz set

Define: "Homogenised matrix'

$$A^{\text{hom}} := \int_{Q_1} \left(\text{curl} N(y) + I \right) dy,$$

 $\operatorname{curl} \big(\operatorname{curl} N(y) + I \big) = 0 \quad \text{in } Q_1, \quad \big(\operatorname{curl} N(y) + I \big) \times n = 0 \quad \text{on } \partial Q_0, \quad N \text{ is } Q - \text{periodic.}$

We study the problem

$$\operatorname{curl}\left(\epsilon_{\eta}^{-1}\left(\frac{x}{\eta}\right)\operatorname{curl}H^{\eta}\right) = \omega_{\eta}^{2}H^{\eta}, \quad \epsilon_{\eta}(y) = \begin{cases} 1, & y \in Q_{1}, \\ \eta^{-2}, & y \in Q_{0}, \end{cases}$$

 $\eta \in (0,1)$ period, $Q_1 := Q \backslash \overline{Q_0}$ simply connected Lipschitz set

Define: "Homogenised matrix'

$$A^{\text{hom}} := \int_{Q_1} \left(\text{curl} N(y) + I \right) dy,$$

$$\operatorname{curl}(\operatorname{curl} N(y) + I) = 0$$
 in Q_1 , $(\operatorname{curl} N(y) + I) \times n = 0$ on ∂Q_0 , N is Q -periodic.

Consider:
$$\omega \in \mathbb{R}_+$$
, $H^0(x,y) := u(x) + \nabla_y v(x,y) + z(x,y)$, $(u,v,z) \in \left[H^1_{\#\text{curl}}(\mathbb{T})\right]^3 \times L^2\left(\mathbb{R}^3; H^1_\#(Q)\right) \times \left[L^2\left(\mathbb{T}; H^1_0(Q_0)\right)\right]^3$, solution to

$$\operatorname{curl}_{x}\left(A^{\operatorname{hom}}\operatorname{curl}_{x}u(x)\right) = \omega^{2}\left(u(x) + \int_{Q_{0}} z(x,y)dy\right), \qquad x \in \mathbb{T},$$

$$\operatorname{div}_{y}\left(\nabla_{y}v(x,y) + z(x,y)\right) = 0, \qquad (x,y) \in \mathbb{T} \times Q,$$

$$\operatorname{curl}_{y}\left(\operatorname{curl}_{y}z(x,y)\right) = \omega^{2}\left(u(x) + \nabla_{y}v(x,y) + z(x,y)\right), \qquad (x,y) \in \mathbb{T} \times Q_{0}.$$

We study the problem

$$\operatorname{curl}\left(\epsilon_{\eta}^{-1}\left(\frac{x}{\eta}\right)\operatorname{curl}H^{\eta}\right) = \omega_{\eta}^{2}H^{\eta}, \quad \epsilon_{\eta}(y) = \begin{cases} 1, & y \in Q_{1}, \\ \eta^{-2}, & y \in Q_{0}, \end{cases}$$

 $\eta \in (0,1)$ period, $Q_1 := Q \backslash \overline{Q_0}$ simply connected Lipschitz set

Define: "Homogenised matrix'

$$A^{\text{hom}} := \int_{Q_1} \left(\text{curl} N(y) + I \right) dy,$$

$$\operatorname{curl}(\operatorname{curl} N(y) + I) = 0$$
 in Q_1 , $(\operatorname{curl} N(y) + I) \times n = 0$ on ∂Q_0 , N is Q -periodic.

Consider:
$$\omega \in \mathbb{R}_+$$
, $H^0(x,y) := u(x) + \nabla_y v(x,y) + z(x,y)$, $(u,v,z) \in \left[H^1_{\#\mathrm{curl}}(\mathbb{T})\right]^3 \times L^2\left(\mathbb{R}^3; H^1_{\#}(Q)\right) \times \left[L^2\left(\mathbb{T}; H^1_0(Q_0)\right)\right]^3$, solution to

$$\operatorname{curl}_{x}(A^{\operatorname{hom}}\operatorname{curl}_{x}u(x)) = \omega^{2}\left(u(x) + \int_{Q_{0}} z(x,y)dy\right), \qquad x \in \mathbb{T},$$

$$\operatorname{div}_{y}\left(\nabla_{y}v(x,y) + z(x,y)\right) = 0, \qquad (x,y) \in \mathbb{T} \times Q,$$

$$\operatorname{curl}_{y}(\operatorname{curl}_{y}z(x,y)) = \omega^{2}\left(u(x) + \nabla_{y}v(x,y) + z(x,y)\right), \qquad (x,y) \in \mathbb{T} \times Q_{0}.$$

Our result: A) \exists at least one eigenfrequency ω_{η} such that $|\omega_{\eta} - \omega| < C\eta$, B) $\operatorname{dist}(H^0, X_{\eta}) < \widehat{C}\eta$, where $\widehat{C} > 0$, $X_{\eta} := \operatorname{span}\{H^{\eta} : \omega_{\eta} \text{ as above}\}$.

Spectral decomposition of the limit problem

Write
$$v(x,\cdot)=G*(\mathrm{div}_{\mathbf{y}}z)(x,\cdot),$$
 then

$$\operatorname{curl}_{y} \operatorname{curl}_{y} z(x, y) = \omega^{2} \left(u(x) + \nabla_{y} \int_{Q_{0}} G(y - y') \operatorname{div}_{y'} z(x, y') \, dy' + z(x, y) \right),$$

$$(x, y) \in \mathbb{T} \times Q_{0}.$$

Spectral decomposition of the limit problem

Write
$$v(x, \cdot) = G * (\operatorname{div}_{y} z)(x, \cdot)$$
, then

$$\operatorname{curl}_{y} \operatorname{curl}_{y} z(x, y) = \omega^{2} \left(u(x) + \nabla_{y} \int_{Q_{0}} G(y - y') \operatorname{div}_{y'} z(x, y') \, dy' + z(x, y) \right),$$
$$(x, y) \in \mathbb{T} \times Q_{0}.$$

Note that

$$\nabla_y \int_{Q_0} G(y - y') \operatorname{div}_{y'} z(x, y') dy' + z(x, y) = \omega^2 B(y) u(x),$$

B is 3×3 matrix function with columns $B^j[H^1_\#(Q)]^3$, j=1,2,3 :

curl curl
$$B^j = e_j + \omega^2 B^j$$
 in Q_0 ,
curl $B^j(y) = 0$, $y \in Q_1$,

$$\operatorname{div} B^{j}(y) = 0, \quad y \in Q, \tag{2}$$

$$a(B^j) = 0, (3)$$

 $a(B^j)$ "circulation" of B^j :

 H^1 -continuous extension of $a(\phi)_i = \int_0^1 \phi_i(te_i)dt$, $\phi \in [C^\infty(Q)]^3$.

(1)

Spectral decomposition of the limit problem

Write
$$v(x, \cdot) = G * (\operatorname{div}_{y} z)(x, \cdot)$$
, then

$$\operatorname{curl}_{y} \operatorname{curl}_{y} z(x, y) = \omega^{2} \left(u(x) + \nabla_{y} \int_{Q_{0}} G(y - y') \operatorname{div}_{y'} z(x, y') \, dy' + z(x, y) \right),$$
$$(x, y) \in \mathbb{T} \times Q_{0}.$$

Note that

$$\nabla_y \int_{Q_0} G(y - y') \operatorname{div}_{y'} z(x, y') \, dy' + z(x, y) = \omega^2 B(y) u(x),$$

B is 3×3 matrix function with columns $B^j[H^1_\#(Q)]^3$, j=1,2,3 :

$$\operatorname{curl} \operatorname{curl} B^j = e_j + \omega^2 B^j \quad \text{ in } Q_0,$$

$$\operatorname{curl} B^{j}(y) = 0, \quad y \in Q_{1}, \tag{1}$$

$$\operatorname{div} B^{j}(y) = 0, \quad y \in Q, \tag{2}$$

$$a(B^j) = 0, (3)$$

 $a(B^j)$ "circulation" of B^j :

 H^1 -continuous extension of $a(\phi)_i = \int_0^1 \phi_i(te_i)dt, \ \phi \in [C^\infty(Q)]^3.$

Equivalent variational formulation

$$\int_{Q_0} \operatorname{curl} B^j \cdot \operatorname{curl} \varphi = \int_Q e_j \cdot \varphi + \omega^2 \int_Q B^j \cdot \varphi, \qquad \forall \varphi \in [H^1_\#(Q)]^3 \text{ subject to (1)-(3)}.$$

"Macroscopic" equation

Operator-pencil spectral problem

$$\operatorname{curl}\left(A^{\mathsf{hom}}\operatorname{curl}u(x)\right) = \Gamma(\omega)u(x), \qquad x \in \mathbb{T},$$
 (4)

where Γ is a matrix-valued function that vanishes at $\omega=0,$ and for $\omega\neq0$ has elements

$$\Gamma_{ij}(\omega) = \omega^2 \left(\delta_{ij} + \omega^2 \int_Q B_i^j \right), \quad i, j = 1, 2, 3.$$
 (5)

"Macroscopic" equation

Operator-pencil spectral problem

$$\operatorname{curl}\left(A^{\mathsf{hom}}\operatorname{curl}u(x)\right) = \Gamma(\omega)u(x), \qquad x \in \mathbb{T},\tag{4}$$

where Γ is a matrix-valued function that vanishes at $\omega=0,$ and for $\omega\neq 0$ has elements

$$\Gamma_{ij}(\omega) = \omega^2 \left(\delta_{ij} + \omega^2 \int_Q B_i^j \right), \quad i, j = 1, 2, 3.$$
 (5)

Alternative representation for $\Gamma(\omega)$:

Consider $\phi^k \in [H^1_0(Q_0)]^3, k \in \mathbb{N}$, solutions to non-local problems

$$\operatorname{curl}\operatorname{curl}\phi^{k}(y) = \alpha_{k} \left(\nabla \int_{Q_{0}} G(y - y') \operatorname{div}\phi^{k}(y') \, dy' + \phi^{k}(y) \right), \quad y \in Q_{0}, \quad (6)$$

subject to orthonormality conditions

$$\int_{Q_0} \int_{Q_0} (\nabla^2 G(y - y') + I) \phi_j(y) \cdot \overline{\phi^k(y')} \, dy \, dy' = \delta_{jk}, \quad j, k = 1, 2, \dots,$$

where $\nabla^2 G$ is the Hessian matrix of G. Then

$$\Gamma_{ij}(\omega) = \omega^2 \delta_{ij} + \omega^4 \sum_{k=1}^{\infty} \frac{\left(\int_{Q_0} \phi_i^k \right) \left(\int_{Q_0} \phi_j^k \right)}{\alpha_k - \omega^2}, \quad i, j = 1, 2, 3, \qquad \omega^2 \notin \{0\} \cup \{\alpha_k\}_{k=1}^{\infty}.$$

$$u(x) = \sum_{m \in \mathbb{Z}^3} \exp(2\pi \mathrm{i} m \cdot x) \hat{u}(m), \qquad \hat{u}(m) := \int_{\mathbb{T}} \exp(-2\pi \mathrm{i} m \cdot x) u(x) \, dx,$$

$$u(x) = \sum_{m \in \mathbb{Z}^3} \exp(2\pi \mathrm{i} m \cdot x) \hat{u}(m), \qquad \hat{u}(m) := \int_{\mathbb{T}} \exp(-2\pi \mathrm{i} m \cdot x) u(x) \, dx,$$

Then

$$\mathcal{M}(m)\hat{u}(m) = \Gamma(\omega)\hat{u}(m), \quad m \in \mathbb{Z}^3,$$

$$\mathcal{M}_{lp}(m) = 4\pi^2 \varepsilon_{ils} m_s A_{ij}^{\text{hom}} \varepsilon_{jpt} m_t = 4\pi^2 (e_l \times m) \cdot A^{\text{hom}}(e_p \times m).$$

$$u(x) = \sum_{m \in \mathbb{Z}^3} \exp(2\pi i m \cdot x) \hat{u}(m), \qquad \hat{u}(m) := \int_{\mathbb{T}} \exp(-2\pi i m \cdot x) u(x) \, dx,$$

Then

$$\mathcal{M}(m)\hat{u}(m) = \Gamma(\omega)\hat{u}(m), \quad m \in \mathbb{Z}^3,$$

$$\mathcal{M}_{lp}(m) = 4\pi^2 \varepsilon_{ils} m_s A_{ij}^{\text{hom}} \varepsilon_{jpt} m_t = 4\pi^2 (e_l \times m) \cdot A^{\text{hom}} (e_p \times m).$$

Note: $\mathcal{M}(m) = |m|^2 \mathcal{M}(\tilde{m}), \ \tilde{m} := |m|^{-1} m$, and zero is a simple eigenvalue of $\mathcal{M}(\tilde{m})$ with eigenvector \tilde{m} .

$$u(x) = \sum_{m \in \mathbb{Z}^3} \exp(2\pi i m \cdot x) \hat{u}(m), \qquad \hat{u}(m) := \int_{\mathbb{T}} \exp(-2\pi i m \cdot x) u(x) dx,$$

Then

$$\mathcal{M}(m)\hat{u}(m) = \Gamma(\omega)\hat{u}(m), \quad m \in \mathbb{Z}^3,$$

$$\mathcal{M}_{lp}(m) = 4\pi^2 \varepsilon_{ils} m_s A_{ij}^{\text{hom}} \varepsilon_{jpt} m_t = 4\pi^2 (e_l \times m) \cdot A^{\text{hom}}(e_p \times m).$$

Note: $\mathcal{M}(m) = |m|^2 \mathcal{M}(\tilde{m}), \ \tilde{m} := |m|^{-1} m$, and zero is a simple eigenvalue of $\mathcal{M}(\tilde{m})$ with eigenvector \tilde{m} .

$$\hat{u}(m) = C(\tilde{m})^{\top} \tilde{u}(\tilde{m}) + \alpha(\tilde{m})\tilde{m},$$

$$\tilde{u}(\tilde{m}) \in \mathbb{R}^2, \ \alpha(\tilde{m}) \in \mathbb{R}, \ C(\tilde{m}) = \begin{pmatrix} \tilde{e}_{11}(\tilde{m}) & \tilde{e}_{12}(\tilde{m}) & \tilde{e}_{13}(\tilde{m}) \\ \tilde{e}_{21}(\tilde{m}) & \tilde{e}_{22}(\tilde{m}) & \tilde{e}_{23}(\tilde{m}) \end{pmatrix}.$$

$$u(x) = \sum_{m \in \mathbb{Z}^3} \exp(2\pi i m \cdot x) \hat{u}(m), \qquad \hat{u}(m) := \int_{\mathbb{T}} \exp(-2\pi i m \cdot x) u(x) \, dx,$$

Then

$$\mathcal{M}(m)\hat{u}(m) = \Gamma(\omega)\hat{u}(m), \quad m \in \mathbb{Z}^3,$$

$$\mathcal{M}_{lp}(m) = 4\pi^2 \varepsilon_{ils} m_s A_{ij}^{\text{hom}} \varepsilon_{jpt} m_t = 4\pi^2 (e_l \times m) \cdot A^{\text{hom}}(e_p \times m).$$

Note: $\mathcal{M}(m) = |m|^2 \mathcal{M}(\tilde{m}), \ \tilde{m} := |m|^{-1} m$, and zero is a simple eigenvalue of $\mathcal{M}(\tilde{m})$ with eigenvector \tilde{m} .

$$\hat{u}(m) = C(\tilde{m})^{\top} \tilde{u}(\tilde{m}) + \alpha(\tilde{m})\tilde{m},$$

$$\tilde{u}(\tilde{m}) \in \mathbb{R}^2, \ \alpha(\tilde{m}) \in \mathbb{R}, \ C(\tilde{m}) = \begin{pmatrix} \tilde{e}_{11}(\tilde{m}) & \tilde{e}_{12}(\tilde{m}) & \tilde{e}_{13}(\tilde{m}) \\ \tilde{e}_{21}(\tilde{m}) & \tilde{e}_{22}(\tilde{m}) & \tilde{e}_{23}(\tilde{m}) \end{pmatrix}.$$

Determine $\left(\tilde{u}(\tilde{m}), \alpha(\tilde{m}) \right) \in \mathbb{R}^3 \setminus \{0\}$ such that

$$|m|^{2}\Lambda(\tilde{m})\tilde{u}(\tilde{m}) = C(\tilde{m})\Gamma(\omega)C(\tilde{m})^{\top}\tilde{u}(\tilde{m}) + \alpha(\tilde{m})C(\tilde{m})\Gamma(\omega)\tilde{m},$$

$$\Gamma(\omega)C(\tilde{m})^{\top}\tilde{u}(\tilde{m}) \cdot \tilde{m} = -\alpha(\tilde{m})\Gamma(\omega)\tilde{m} \cdot \tilde{m},$$
(8)

where

$$\Lambda(\tilde{m}) := \begin{pmatrix} \lambda_1(\tilde{m}) & 0 \\ 0 & \lambda_2(\tilde{m}) \end{pmatrix}.$$

Different admissible propagation regimes

If the inclusion Q_0 is symmetric under a rotation by π around at least two of the three coordinate axes, then matrices A^{hom} and $\Gamma(\omega)$ are diagonal:

$$A^{\text{hom}} = \text{diag}(a_1, a_2, a_3), \Gamma(\omega) = \text{diag}(\beta_1(\omega), \beta_2(\omega), \beta_3(\omega)).$$

The eigenvalues $\lambda_{1,2}(\tilde{m})$ of $\mathcal{M}(\tilde{m})$ are the solutions to the quadratic equation

$$\lambda^2 - \lambda \left\{ (a_2 + a_3) \tilde{m}_1^2 + (a_1 + a_3) \tilde{m}_2^2 + (a_1 + a_2) \tilde{m}_3^2 \right\} + \left(a_1 a_2 \tilde{m}_3^2 + a_2 a_3 \tilde{m}_1^2 + a_1 a_3 \tilde{m}_2^2 \right) = 0. \tag{9}$$

Different admissible propagation regimes

If the inclusion Q_0 is symmetric under a rotation by π around at least two of the three coordinate axes, then matrices A^{hom} and $\Gamma(\omega)$ are diagonal:

$$A^{\text{hom}} = \text{diag}(a_1, a_2, a_3), \ \Gamma(\omega) = \text{diag}(\beta_1(\omega), \beta_2(\omega), \beta_3(\omega)).$$

The eigenvalues $\lambda_{1,2}(\tilde{m})$ of $\mathcal{M}(\tilde{m})$ are the solutions to the quadratic equation

$$\lambda^{2} - \lambda \left\{ (a_{2} + a_{3})\tilde{m}_{1}^{2} + (a_{1} + a_{3})\tilde{m}_{2}^{2} + (a_{1} + a_{2})\tilde{m}_{3}^{2}) \right\} + \left(a_{1}a_{2}\tilde{m}_{3}^{2} + a_{2}a_{3}\tilde{m}_{1}^{2} + a_{1}a_{3}\tilde{m}_{2}^{2} \right) = 0. \tag{9}$$

Suppose Q_0 is symmetric by a $\pi/2$ rotation around at least two of the three axes, say x_1 and x_2 , then $a=a_1=a_2=a_3$ and $\beta(\omega)=\beta_1(\omega)=\beta_2(\omega)=\beta_3(\omega)$. If $\beta(\omega)\neq 0$, then $\tilde{u}(\tilde{m})$ is an arbitrary element of \mathbb{R}^2 and $\hat{u}(m)=C(\tilde{m})^\top \tilde{u}(\tilde{m})$ is an arbitrary vector of the (2-dimensional) eigenspace spanned by the vectors $\tilde{e}_1(\tilde{m})$ and $\tilde{e}_2(\tilde{m})$.

Isotropic propagation (no "weak" band gaps)

Different admissible propagation regimes

If the inclusion Q_0 is symmetric under a rotation by π around at least two of the three coordinate axes, then matrices A^{hom} and $\Gamma(\omega)$ are diagonal:

 $A^{\text{hom}} = \text{diag}(a_1, a_2, a_3), \Gamma(\omega) = \text{diag}(\beta_1(\omega), \beta_2(\omega), \beta_3(\omega)).$

The eigenvalues $\lambda_{1,2}(\tilde{m})$ of $\mathcal{M}(\tilde{m})$ are the solutions to the quadratic equation

$$\lambda^2 - \lambda \left\{ (a_2 + a_3) \tilde{m}_1^2 + (a_1 + a_3) \tilde{m}_2^2 + (a_1 + a_2) \tilde{m}_3^2 \right\} + \left(a_1 a_2 \tilde{m}_3^2 + a_2 a_3 \tilde{m}_1^2 + a_1 a_3 \tilde{m}_2^2 \right) = 0. \tag{9}$$

Suppose Q_0 is symmetric by a $\pi/2$ rotation around at least two of the three axes, say x_1 and x_2 , then $a=a_1=a_2=a_3$ and $\beta(\omega)=\beta_1(\omega)=\beta_2(\omega)=\beta_3(\omega)$. If $\beta(\omega)\neq 0$, then $\tilde{u}(\tilde{m})$ is an arbitrary element of \mathbb{R}^2 and $\hat{u}(m)=C(\tilde{m})^\top \tilde{u}(\tilde{m})$ is an arbitrary vector of the (2-dimensional) eigenspace spanned by the vectors $\tilde{e}_1(\tilde{m})$ and $\tilde{e}_2(\tilde{m})$.

Isotropic propagation (no "weak" band gaps)

Suppose Q_0 is symmetric by a $\pi/2$ rotation around one of the three coordinate axis, say x_1 , and by a π rotation around another axis, say x_2 , one has $a=a_1$, $b=a_2=a_3$ and $\beta_2(\omega)=\beta_3(\omega)$.

Propagation is restricted solely to the direction of $\tilde{e}_1(\tilde{m})$ (resp. $\tilde{e}_2(\tilde{m})$) which is orthogonal to the eigenvector(s) corresponding to the negative eigenvalue of $\Gamma(\omega)$. Directional propagation (existence of "weak" band gaps)

Proposition

The spectrum of the limit problem is the union of the following sets.

• The elements of $\{\alpha_k: k\in\mathbb{Z}\}$ such that at least one of the corresponding ϕ^k has zero mean over Q. These are eigenvalues of infinite multiplicity and the corresponding eigenfunctions $H^0(x,y)$ are of the form

$$w(x) \left(\nabla \int_{Q_0} G(y - y') \operatorname{div} \phi^k(y') dy' + \phi^k(y) \right), \quad w \in L^2(\mathbb{T}).$$

ⓐ The set $\{\omega^2: \exists m \in \mathbb{Z}^3 \text{ such that } (8) \text{ holds} \}$, with eigenfunctions $H^0(x,y)$ of the limit problem having the form $u(x) + \nabla_y v(x,y) + z(x,y)$, where $u(x) = \exp(2\pi \mathrm{i} m \cdot x) \hat{u}(m)$ is an eigenfunction of macroscopic problem and

$$\nabla_y v(x,y) + z(x,y) = \omega^2 B(y) u(x,y)$$
 a.e. $(x,y) \in \mathbb{T} \times Q$,

that is $H^0(x,y) = (I + \omega^2 B(y)) \exp(2\pi i m \cdot x) \hat{u}(m)$.

Proposition

The spectrum of the limit problem is the union of the following sets.

• The elements of $\{\alpha_k: k\in\mathbb{Z}\}$ such that at least one of the corresponding ϕ^k has zero mean over Q. These are eigenvalues of infinite multiplicity and the corresponding eigenfunctions $H^0(x,y)$ are of the form

$$w(x) \bigg(\nabla \int_{Q_0} G(y - y') \operatorname{div} \phi^k(y') \, dy' + \phi^k(y) \bigg), \qquad w \in L^2(\mathbb{T}).$$

ⓐ The set $\{\omega^2: \exists m \in \mathbb{Z}^3 \text{ such that } (8) \text{ holds} \}$, with eigenfunctions $H^0(x,y)$ of the limit problem having the form $u(x) + \nabla_y v(x,y) + z(x,y)$, where $u(x) = \exp(2\pi \mathrm{i} m \cdot x) \hat{u}(m)$ is an eigenfunction of macroscopic problem and

$$\nabla_y v(x,y) + z(x,y) = \omega^2 B(y) u(x,y) \ \text{ a.e. } (x,y) \in \mathbb{T} \times Q,$$

that is $H^0(x,y) = (I + \omega^2 B(y)) \exp(2\pi i m \cdot x) \hat{u}(m)$.

Corollary

If the matrix $\Gamma(\omega)$ is negative-definite, the value $\lambda=\omega^2$ does not belong to the spectrum of the limit problem.

Ingredients of proof:

Ingredients of proof:

A) We seek solutions in the form of an asymptotic expansion

$$H^{\eta}(x) = H^{0}\left(x, \frac{x}{\eta}\right) + \eta H^{1}\left(x, \frac{x}{\eta}\right) + \eta^{2} H^{2}\left(x, \frac{x}{\eta}\right) + ..., \tag{10}$$

where $H^j(x,y),\,j=0,1,2,...,$ are Q-periodic in the variable y.

Ingredients of proof:

A) We seek solutions in the form of an asymptotic expansion

$$H^{\eta}(x) = H^{0}\left(x, \frac{x}{\eta}\right) + \eta H^{1}\left(x, \frac{x}{\eta}\right) + \eta^{2} H^{2}\left(x, \frac{x}{\eta}\right) + ...,\tag{10}$$

where $H^j(x,y),\,j=0,1,2,...,$ are Q-periodic in the variable y.

B) \mathcal{A}_{η} operator in $L^2_{\#\mathrm{sol}}(\mathbb{T})$ defined by the form

$$\int_{\mathbb{T}} \varepsilon_{\eta}^{-1} \left(\frac{\cdot}{\eta}\right) \operatorname{curl} u \cdot \operatorname{curl} v, \qquad u,v \in [H^1_{\#}(\mathbb{T})]^3 \cap L^2_{\#\mathrm{sol}}(\mathbb{T}) =: \mathcal{H}.$$

For fixed ω in the spectrum of limit problem let H^0 be a corresponding eigenfunction. Consider solution $\widetilde{H}^\eta\in\mathcal{H}$ to

$$(\mathcal{A}_{\eta} + I)\widetilde{H}^{\eta} = (\omega^2 + 1)H^0(\cdot, \frac{\cdot}{\eta}). \tag{11}$$

and

$$H^{(2)}(\cdot,\eta) := H^0\left(\cdot,\frac{\cdot}{\eta}\right) + \eta H^1\left(\cdot,\frac{\cdot}{\eta}\right) + \eta^2 H^2\left(\cdot,\frac{\cdot}{\eta}\right),\tag{12}$$

Ingredients of proof:

A) We seek solutions in the form of an asymptotic expansion

$$H^{\eta}(x) = H^{0}\left(x, \frac{x}{\eta}\right) + \eta H^{1}\left(x, \frac{x}{\eta}\right) + \eta^{2} H^{2}\left(x, \frac{x}{\eta}\right) + ...,\tag{10}$$

where $H^j(x,y),\,j=0,1,2,...,$ are Q-periodic in the variable y.

B) \mathcal{A}_{η} operator in $L^2_{\#\mathrm{sol}}(\mathbb{T})$ defined by the form

$$\int_{\mathbb{T}} \varepsilon_{\eta}^{-1} \left(\frac{\cdot}{\eta} \right) \operatorname{curl} u \cdot \operatorname{curl} v, \qquad u,v \in [H^1_{\#}(\mathbb{T})]^3 \cap L^2_{\#\mathrm{sol}}(\mathbb{T}) =: \mathcal{H}.$$

For fixed ω in the spectrum of limit problem let H^0 be a corresponding eigenfunction. Consider solution $\widetilde{H}^\eta\in\mathcal{H}$ to

$$(\mathcal{A}_{\eta} + I)\widetilde{H}^{\eta} = (\omega^2 + 1)H^0(\cdot, \frac{\cdot}{\eta}). \tag{11}$$

and

$$H^{(2)}(\cdot,\eta) := H^0\left(\cdot,\frac{\cdot}{\eta}\right) + \eta H^1\left(\cdot,\frac{\cdot}{\eta}\right) + \eta^2 H^2\left(\cdot,\frac{\cdot}{\eta}\right),\tag{12}$$

C) There exists a constant $\widehat{C}>0$ such that the estimate

$$\mathfrak{b}_{\eta}\big(\widetilde{H}^{\eta}-H^{(2)}(\cdot,\eta),\varphi\big)\leq \widehat{C}\eta\sqrt{\mathfrak{b}_{\eta}(\varphi,\varphi)} \quad \ \forall \varphi\in [H^{1}_{\#}(\mathbb{T})]^{3},$$

where

$$\mathfrak{b}_{\eta}(u,v):=\int_{\mathbb{T}}\varepsilon_{\eta}^{-1}\big(\tfrac{\cdot}{\eta}\big)\operatorname{curl} u\cdot\operatorname{curl} v+\int_{\mathbb{T}^{+}}u\cdot v$$

Theorem

$$\exists C>0 \text{ such that } \left\|\widetilde{H}^{\eta}-H^0(\cdot,\cdot/\eta)\right\|_{L^2(\mathbb{T})}\leq C\eta \qquad \ \, \forall \eta.$$

Theorem

$$\exists C>0 \text{ such that } \big\|\widetilde{H}^{\eta}-H^0(\cdot,\cdot/\eta)\big\|_{L^2(\mathbb{T})}\leq C\eta \qquad \ \, \forall \eta.$$

Proof

Setting
$$\varphi = \widetilde{H}^{\eta} - H^{(2)}(\cdot, \eta)$$

$$\widehat{C}^2\eta^2 \geq \mathfrak{b}_{\eta} \left(\widetilde{H}^{\eta} - H^{(2)}(\cdot, \eta), \ \widetilde{H}^{\eta} - H^{(2)}(\cdot, \eta) \right) \geq \left\| \widetilde{H}^{\eta} - H^{(2)}(\cdot, \eta) \right\|_{L^2(\mathbb{T})}^2.$$

Note that

$$\left\|H^{(2)}(\cdot,\eta)-H^0(\cdot,\cdot/\eta)\right\|_{L^2(\mathbb{T})}\leq \widetilde{C}\eta, \quad \ \widetilde{C}>0,$$

and hence

$$\begin{split} \big\| \widetilde{H}^{\eta} - H^0(\cdot, \cdot/\eta) \big\|_{L^2(\mathbb{T})} &\leq \big\| \widetilde{H}^{\eta} - H^{(2)}(\cdot, \eta) \big\|_{L^2(\mathbb{T})} \\ &+ \big\| H^{(2)}(\cdot, \eta) - H^0(\cdot, \cdot/\eta) \big\|_{L^2(\mathbb{T})} \leq (\widehat{C} + \widetilde{C}) \eta. \end{split}$$

Symmetry of A^{hom} and $\Gamma(\omega)$ under rotations

Proposition

Suppose that σ is a rotation such that $\sigma Q=Q$ and assume that

$$a(y) = \sigma^{-1}a(\sigma y)\sigma, \quad y \in Q.$$
 (13)

Then , $A^{
m hom}$ inherits the same symmetry, i.e. one has

$$A^{\text{hom}} = \sigma^{-1} A^{\text{hom}} \sigma.$$

In particular, $A_{kl}^{\mathrm{hom}}=A_{lk}^{\mathrm{hom}}=0$, for all $l\neq k$.

Symmetry of A^{hom} and $\Gamma(\omega)$ under rotations

Proposition

Suppose that σ is a rotation such that $\sigma Q = Q$ and assume that

$$a(y) = \sigma^{-1}a(\sigma y)\sigma, \quad y \in Q.$$
 (13)

Then , A^{hom} inherits the same symmetry, i.e. one has

$$A^{\text{hom}} = \sigma^{-1} A^{\text{hom}} \sigma$$

In particular, $A_{kl}^{\mathrm{hom}}=A_{lk}^{\mathrm{hom}}=0$, for all $l\neq k$.

Corollary

- 1. If (13) holds for $\sigma=\sigma_k$, where σ_k is the rotation by π around the x_k -axis, then $A_{kl}^{\mathrm{hom}}=0$, for all $l\neq k$.
- 2. If (13) holds for $\sigma=\sigma_k$, where σ_k is the rotation by $\pi/2$ around the x_k -axis, then $A_{kl}^{\mathrm{hom}}=0$, for all $l\neq k$ and $A_{ii}^{\mathrm{hom}}=A_{jj}^{\mathrm{hom}}$, $i,j\neq k$.

Symmetry of A^{hom} and $\Gamma(\omega)$ under rotations

Proposition

Suppose that σ is a rotation such that $\sigma Q = Q$ and assume that

$$a(y) = \sigma^{-1}a(\sigma y)\sigma, \quad y \in Q.$$
 (13)

Then , $A^{
m hom}$ inherits the same symmetry, i.e. one has

$$A^{\text{hom}} = \sigma^{-1}A^{\text{hom}}\sigma.$$

In particular, $A_{kl}^{\mathrm{hom}}=A_{lk}^{\mathrm{hom}}=0$, for all $l\neq k$.

Corollary

- 1. If (13) holds for $\sigma=\sigma_k$, where σ_k is the rotation by π around the x_k -axis, then $A_{kl}^{\mathrm{hom}}=0$, for all $l\neq k$.
- 2. If (13) holds for $\sigma=\sigma_k$, where σ_k is the rotation by $\pi/2$ around the x_k -axis, then $A_{kl}^{\mathrm{hom}}=0$, for all $l\neq k$ and $A_{ii}^{\mathrm{hom}}=A_{jj}^{\mathrm{hom}}$, $i,j\neq k$.

Similar results can be demonstrated for $\Gamma(\omega)$.

