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Preliminary Remarks

Ohm-Joule’s laws are among the most resilient laws of (classical) electricity theory.

Their microscopic origin is still not completely understood (at least from a
mathematical perspective).

Indeed, Ohm’s law is not only valid at macroscopic scales, but also at the atomic
scale for purely quantum systems (2012). Such a behavior was unexpected:

“...In the 1920s and 1930s, it was expected that classical be-
havior would operate at macroscopic scales but would break
down at the microscopic scale, where it would be replaced by
the new quantum mechanics. The pointlike electron motion of
the classical world would be replaced by the spread out quan-
tum waves. These quantum waves would lead to very different
behavior. ... Ohm’s law remains valid, even at very low tem-
peratures, a surprising result that reveals classical behavior in
the quantum regime.”

[D.K. Ferry, Science 335(6064), 45 (2012)]
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Preliminary Remarks

This work is inspired by [1] (see also [2,3]) where an AC–conductivity measure has
been introduced for the first time in 2007:

For the Anderson model in presence of electric field E(t) constant in space, there exists,

with probability 1, a “conductivity measure” µ such that, if Ê is compactly supported,

then the expected (in–phase) component of the velocity v(t) of the electron obeys:

v(t) =

∫
Ê (ν)e iνtdµ(ν),

at leading order in E . Initial condition: Fermi-Dirac “density matrix” at t = −∞.

[1] A. Klein, O. Lenoble, P. Müller, Annals of Mathematics (2007).

[2] A. Klein, P. Müller, J. of Mathematical Physics, Analysis, Geometry (2008).

[3] J.-M. Bouclet, F. Germinet, A. Klein, J.H. Schenker, J. of Funct. Anal. (2005).
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Preliminary Remarks

[4] is another example on free fermions proving Ohm’s law for graphene–like
materials subjected to space–homogeneous and time–periodic electric fields. See
also works of V. Jakšić, Y. Ogata and C.-A. Pillet on linear response theory.

We propose a different approach to the conductivity measure based on the 2nd law
of thermodynamics saying that systems at equilibrium are unable to perform
mechanical work in cyclic processes.

It is related to Joule’s law for the heat production of conducting media in presence
of currents.

We use the second quantized setting such that interacting systems can also be
considered.

[4] M.H. Brynildsen, H.D. Cornean, Rev. Math. Phys. 25(4) (2013) 1350007.
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2nd Law of Thermodynamics and Thermal States

Algebraic Formulation of Quantum Mechanics

Let U be some C∗–algebra. Observables are self–adjoint elements of U .

States on U are ρ ∈ U∗ so that ρ(1) = 1 and ρ(A∗A) ≥ 0 for all A ∈ U .

Dynamics: strongly continuous group τ ≡ {τt}t∈R of ∗–automorphisms of U with
generator δ.

If the state of the system at t = t0 ∈ R is ρ ∈ U∗, then it evolves as ρt = ρ ◦ τt for
any t ≥ t0.

For any differential family {At}t≥t0 ⊂ U of observables, one produces some
“excitation” by perturbing the dynamics:

∀ t ≥ t0 : ∂tτt,t0 (B) = τt,t0 (δ (B) + i [At ,B]) , τt0,t0 (B) := B ∈ U .
The state of the system evolves now as ρt = ρ ◦ τt,t0 for any t ≥ t0.

Work performed by the external device at time t1 ≥ t0:

Qρ (A) :=

∫ t1

t0

ρ ◦ τt,t0 (∂tAt)dt .
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2nd Law of Thermodynamics and Thermal States

Thermal Equilibrium States

2nd Law of Thermodynamics:

[LY99]: “one of the most perfect laws in physics”. It has never been faulted by
reproducible experiments.

Kelvin-Planck statement: Systems at equilibrium are unable to do mechanical work
in cyclic processes.

Algebraic Formulation of the 2nd Law:

A cyclic process is by definition a differential family {At}t≥t0 ⊂ U of observables
such that At≥t1 = 0 for some t1 ≥ t0.

A state ρ ∈ U∗ is at equilibrium iff the full work Qρ (A) ≥ 0 for any cyclic process
{At}t≥t0 ⊂ U . (Passivity [PW78])

A state % ∈ U∗ is at thermal equilibrium iff ⊗n
j=1% is a passive state of (U , τ, %)n for

all n ∈ N. (Complete Passivity [PW78])

Theorem (Pusz–Woronowicz)

% is a thermal equilibrium state iff it is a (τ, β)–KMS state for some β ∈ [0,∞].
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Setup of the Problem

Interacting Lattice Fermions in Disordered Media

Host material for conducting fermions: a cubic crystal L := Zd (d ∈ N).

Infinite system of charged fermions: Let U be the CAR C∗–algebra of the infinite
system generated by the identity 1 and creation/annihilation operators {a∗x , ax}x∈L
satisfying the CAR:

axay + ayax = 0 , axa
∗
y + a∗y ax = δx,y1 .

Disorder in the crystal modeled by a random external potential coming from a
probability space (Ω,AΩ, aΩ) with Ω := [−1, 1]L.

Interparticle forces are represented by a two–body potential v : R+
0 → R from a

(Banach) space of short range interactions.
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Setup of the Problem

Electromagnetic Fields

Electromagnetic potential:

A ≡ A(t, x) ∈ C∞0 :=
⋃
l∈R+

C∞0 (R× [−l , l ]d ; (Rd)∗) .

Electric field in the Weyl gauge: For A ∈ C∞0 (R× [−l , l ]d ; (Rd)∗) and all t ∈ R:

EA(t, x) := −dA

dt
(t, x) if x ∈ [−l , l ]d and EA(t, x) := 0 else.

Cyclic electromagnetic process (AC): Since A ∈ C∞0 , there are t0 ≤ t1 such that

A(t, x) = 0 for all t /∈ [t0, t1] and x ∈ Rd .

In particular, one has AC-electric fields:∫ t1

t0

EA(s, x)ds = A(t0, x)− A(t1, x) = 0 , x ∈ Rd .
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Setup of the Problem

Dynamics

d–dimensional discrete Laplacian ∆d ∈ B(`2(L)) (up to a minus sign).

Electromagnetic discrete Laplacian ∆
(A)
d ∈ B(`2(L)) (up to a minus sign):

〈ex ,∆(A)
d ey 〉 = exp

(
i

∫ 1

0

[A(t, αy + (1− α)x)] (y − x)dα

)
〈ex ,∆dey 〉

for all x , y ∈ L, where {ex}x∈L is the orthonormal basis ex(y) ≡ δx,y of `2(L).

For ω ∈ Ω, there is a unique two–parameter family {τ (ω)
t,s }s,t∈R of automorphisms

of U formally generated by the commutator i [H(t), ·] (“Heisenberg picture”) with

H(t) :=
∑
x,y∈L

〈ex ,∆(A)
d ey 〉a∗x ay + λ

∑
x∈L

ω(x)nx +
∑
x,y∈L

v(|x − y |)nxny ,

where nx := a∗x ax is the density operator at lattice site x ∈ L.

For any ω ∈ Ω, the automorphism group with A ≡ 0 is denoted by τ (ω).
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For ω ∈ Ω, there is a unique two–parameter family {τ (ω)
t,s }s,t∈R of automorphisms

of U formally generated by the commutator i [H(t), ·] (“Heisenberg picture”) with

H(t) :=
∑
x,y∈L

〈ex ,∆(A)
d ey 〉a∗x ay + λ

∑
x∈L

ω(x)nx +
∑
x,y∈L

v(|x − y |)nxny ,

where nx := a∗x ax is the density operator at lattice site x ∈ L.

For any ω ∈ Ω, the automorphism group with A ≡ 0 is denoted by τ (ω).
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Setup of the Problem

Time–Evolving State

For all ω ∈ Ω, ρ(ω) is a thermal equilibrium state (2nd law of Thermodynamics).

In particular, for any cyclic process {At}t≥t0 ⊂ U , the full work Q(ω) (A) ≥ 0.

By the Pusz-Woronowicz theorem, it means that ρ(ω) is a (τ (ω), β)–KMS state for
some β ∈ [0,∞].

β ∈ [0,∞] is named inverse temperature and results from the 2nd law. It fixes a
time scale since % is a (τt , β)–KMS state iff % is a (τβt , 1)–KMS state.

For all ω ∈ Ω and thermal equilibrium state ρ(ω), define the time–evolving states
ρ

(ω)
t , t ∈ R, by:

ρ
(ω)
t := ρ(ω) ◦ τ (ω)

t,t0
.
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Genesis of Ohm and Joule’s laws

G.S. Ohm was born in 1789 in Erlangen and is son of a master locksmith.

Being teacher of mathematics and physics in Cologne, he had been able to
elaborate his own experiments on electrical resistivity.

Inspired by Fourier’s theory of heat (1822), he published his famous theory (1827),
which was a theoretical deduction of his law from “first principles”. His theory was
at best completely ignored and at worst treated really negatively:

Ohm’s theory, to quote one critic, was “a web of naked fancies”, which could
never find the semblance of support from even the most superficial observation of
facts; “he who looks on the world”, proceeds the writer, “with the eye of reverence
must turn aside from this book as the result of an incurable delusion, whose sole
effort is to detract from the dignity of nature”.

Although at the origin of Ohm’s intuition, the relation between heat and electrical
conduction has not been established by himself, but J.P. Joule (born in 1818).

The pivotal ingredient was the wide concept of energy. Seminal Joule’s works,
although very controversial, yielded the 1st Law of Thermodynamics (1850).
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1st Law of Thermodynamics

1st Law of Thermodynamics

Full heat produced by the cyclic electromagnetic process A ∈ C∞0 :

H(ω) (A) := β−1S(ρ
(ω)
t1
, ρ

(ω)
t0

) ∈ [0,∞] ,

where S(ρ, ρ′) is Araki’s relative entropy of ρ w.r.t. ρ′.

Full work of the cyclic electromagnetic process A ∈ C∞0 :

Q(ω) (A) :=

∫ t1

t0

ρ
(ω)
t (∂tA

(A)
t )dt ∈ [0,∞) .

Theorem (Bru-dSP-K – 1st Law)

For any A ∈ C∞0 and ω ∈ Ω, one has:

Q(ω) (A) = H(ω) (A) ∈ [0,∞) .
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1st Law of Thermodynamics

Heat production – Quadratic Response

For simplicity, consider electromagnetic potentials A of the form

Aη,l(t, x) := ηA(t)1[x ∈ [−l/2, l/2]d ]w,

where η, l > 0, A ∈ C∞0 (R,R), and w is a unit vector in Rd .

The full heat production or electromagnetic work per unit volume equals

Q(ω)
η,l := l−dQ(ω) (Aη,l) = l−dH(ω) (Aη,l) ∈ [0,∞) ,

Theorem (Bru-dSP – Quadratic response of the heat production)

If η > 0 is sufficiently small, then there is Q
(ω)
l not depending on η, such that, uniformly

w.r.t. to l > 0 and ω ∈ Ω:
Q(ω)
η,l = η2Q

(ω)
l +O(η3) .

Bru, Pedra, Hertling (Bilbao-São Paulo-Mainz) AC–Conductivity April 2016 13 / 18



1st Law of Thermodynamics

Heat production – Quadratic Response

For simplicity, consider electromagnetic potentials A of the form

Aη,l(t, x) := ηA(t)1[x ∈ [−l/2, l/2]d ]w,

where η, l > 0, A ∈ C∞0 (R,R), and w is a unit vector in Rd .

The full heat production or electromagnetic work per unit volume equals

Q(ω)
η,l := l−dQ(ω) (Aη,l) = l−dH(ω) (Aη,l) ∈ [0,∞) ,

Theorem (Bru-dSP – Quadratic response of the heat production)

If η > 0 is sufficiently small, then there is Q
(ω)
l not depending on η, such that, uniformly

w.r.t. to l > 0 and ω ∈ Ω:
Q(ω)
η,l = η2Q

(ω)
l +O(η3) .

Bru, Pedra, Hertling (Bilbao-São Paulo-Mainz) AC–Conductivity April 2016 13 / 18



1st Law of Thermodynamics

Heat production – Quadratic Response

For simplicity, consider electromagnetic potentials A of the form

Aη,l(t, x) := ηA(t)1[x ∈ [−l/2, l/2]d ]w,

where η, l > 0, A ∈ C∞0 (R,R), and w is a unit vector in Rd .

The full heat production or electromagnetic work per unit volume equals

Q(ω)
η,l := l−dQ(ω) (Aη,l) = l−dH(ω) (Aη,l) ∈ [0,∞) ,

Theorem (Bru-dSP – Quadratic response of the heat production)

If η > 0 is sufficiently small, then there is Q
(ω)
l not depending on η, such that, uniformly

w.r.t. to l > 0 and ω ∈ Ω:
Q(ω)
η,l = η2Q

(ω)
l +O(η3) .

Bru, Pedra, Hertling (Bilbao-São Paulo-Mainz) AC–Conductivity April 2016 13 / 18



AC-Conductivity Measures

Microscopic AC–Conductivity Measure

For all smooth electric fields E = −∂tA satisfying the AC-condition∫
R
E (s) ds = 0 ∈ Rd ,

we have

Q
(ω)
l =

1

2

∫
R
ds

∫
R
dt
〈
E (s) ,Ξ(ω)

l (t − s)E (t)
〉
Rd

By the 2nd law, Q
(ω)
l ≥ 0 for any E ∈ C∞0 (R;Rd) and Ξ(ω)

l ∈ C(R;B(Rd)) is
conditionally positive definite (or negative definite in the sense of Schoenberg).

Therefore, there is a Lévy-Khintchine representation of Ξ(ω)
l with Lévy measure

µ
(ω)
l on R\{0} and

Q
(ω)
l =

∫
R\{0}

dµ
(ω)
l (ν)|Ê (ν) |2 ,

where Ê is the Fourier transforms of E with support outside ν = 0.

µ
(ω)
l is the (microscopic) AC–conductivity measure we are looking for.
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l (ν)|Ê (ν) |2 ,
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l with Lévy measure

µ
(ω)
l on R\{0} and

Q
(ω)
l =

∫
R\{0}

dµ
(ω)
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Joule’s Law

Conductivity Measure and Joule’s Law

By the 1st law, the quantity
dµ

(ω)
l (ν)|Ê(ν)|2

is the heat production due to the component Ê(ν) of frequency ν of the electric field E ,
in accordance with Joule’s law:

“...the calorific effects of equal quantities of transmitted elec-
tricity are proportional to the resistances opposed to its pas-
sage, whatever may be the length, thickness, shape, or kind of
metal which closes the circuit: and also that, coeteris paribus,
these effects are in the duplicate ratio of the quantities of trans-
mitted electricity; and consequently also in the duplicate ratio
of the velocity of transmission.”

[Joule, 1840]

We have verified this by using the Legendre–Fenchel transform Q
(ω)∗
l of the map

E 7→ Q
(ω)
l =

∫
R
dµ

(ω)
l (ν)|Ê(ν)|2

w.r.t. a convenient dual pair.
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Macroscopic conductivity measure

Random Time–Evolving State

We say that {ρ(ω)}ω∈Ω is a random thermal equilibrium state if:

(i) For all ω ∈ Ω, ρ(ω) is a thermal equilibrium state (2nd law) with inverse
temperature β.

(ii) The map ω 7→ ρ(ω) is measurable w.r.t. the (Borel) σ–algebra generated by
the weak∗ topology for states.

Let {ρ(ω)}ω∈Ω be a random equilibrium state and define the (random)

time–evolving states ρ
(ω)
t , t ∈ R, by:

ρ
(ω)
t := ρ(ω) ◦ τ (ω)

t,t0
.

Example: If, for all ω ∈ Ω, ρ(ω) is the unique (τ (ω), β)–KMS state, then {ρ(ω)}ω∈Ω

is a random thermal equilibrium state at inverse temperature β.
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Macroscopic conductivity measure

Macroscopic AC–Conductivity Measure

Under certain conditions, the relation

Q
(ω)
l =

1

2

∫
R
ds

∫
R
dt
〈
E (s) ,Ξ(ω)

l (t − s)E (t)
〉
Rd
≥ 0

for all smooth electric fields E satisfying the AC-condition almost surely survives the
limit l →∞. There is a limiting non–random AC-conductivity measure µ∞, as l →∞,
as some Lévy measure.

Theorem (Existence of the macroscopic cond. measure)

Assume that the random external potential ω ∈ Ω is ergodic.

1 [Bru–dSP–Hertling] If v = 0, there exists a positive measure on µ∞ on R\{0},
such that, almost surely:

lim
l→∞

Q
(ω)
l =

∫
R\{0}

|Ê(ν)|2 dµ∞(ν)

2 [Bru–dSP] The same is true if, for all ω ∈ Ω, the (τ (ω), β)–KMS state is unique.

Bru, Pedra, Hertling (Bilbao-São Paulo-Mainz) AC–Conductivity April 2016 17 / 18



Macroscopic conductivity measure

Macroscopic AC–Conductivity Measure

Under certain conditions, the relation

Q
(ω)
l =

1

2

∫
R
ds

∫
R
dt
〈
E (s) ,Ξ(ω)

l (t − s)E (t)
〉
Rd
≥ 0

for all smooth electric fields E satisfying the AC-condition almost surely survives the
limit l →∞. There is a limiting non–random AC-conductivity measure µ∞, as l →∞,
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as some Lévy measure.
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Q
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R\{0}

|Ê(ν)|2 dµ∞(ν)

2 [Bru–dSP] The same is true if, for all ω ∈ Ω, the (τ (ω), β)–KMS state is unique.
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Final Remarks

For finite l , the conductivity measure µ
(ω)
l is finite, has finite first moment and is

strictly positive.

µ
(ω)
l can be identified with the spectral measure of the Liouvillean of the system

w.r.t. to an explicit vector in the GNS representation of the equilibrium state ρ(ω).

µ∞ is the trivial measure if v = λ = 0 (i.e., no disorder and no interparticle forces,
perfect conductor case) or in the limit λ→∞ (v = 0, perfect insulator case), but
is strictly positive, in general.

Green–Kubo relations: If the fluctuations of the current w.r.t. ρ(ω) converge to a
finite value as l →∞, then µ∞ is the Fourier transform of the time correlation of
(bosonic) fields w.r.t. the vacuum of the Fock representation of the corresponding
CCR algebra of current fluctuations.

µ
(ω)
l and µ∞ determine the current linear response in accordance with Ohm’s law.

In other words, Ohm’s law remains valid in the quantum regime. Cf. [Ferry, 2012].
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