Uniqueness for an inverse boundary value problem in electromagnetism

Malcolm Brown

School of Computer Science & Informatics, Cardiff University, United Kingdom

Joint work with Marco Marletta and Juan Manuel Reyes J. Differential Equations 260 (2016), no. 8, 65256547

April 2016

Outline

Background

An IBVP for the (scalar) Schrödinger equation

An IBVP for Maxwell equations

Background

An IBVP for the (scalar) Schrödinger equation

An IBVP for Maxwell equations

Global uniqueness with partial data

Habib Ammari and Gunther Uhlmann, Indiana Univ. Math. J. 53 (2004)

Consider the Schrödinger equation on a bounded domain $\Omega \subset \mathbb{R}^d$, $d \geq 3$, with $\partial \Omega \in C^2$, for a real-valued potential $q \in L^{\infty}(\Omega)$: $(\Delta - q)u = 0$ in Ω , where $u \in H^1(\Omega)$.

Let $\Gamma \subset \partial \Omega$ and $\Gamma_c := \partial \Omega \setminus \overline{\Gamma}$. Define the partial Cauchy data set associated to q as

$$C_q := \{ (u|_{\partial\Omega}, \partial_{\nu} u|_{\Gamma}) : u \in H^1(\Omega), \, (\Delta - q)u = 0 \text{ in } \Omega, \, u|_{\Gamma_c} = 0 \}.$$

Theorem (Ammari and Uhlmann). If $q_1 = q_2$ a.e. near $\partial \Omega$, and $C_{q_1} = C_{q_2}$ then $q_1 = q_2$ a.e. in Ω .

Proof

- ▶ Integration by parts. Assume that $(\Delta q_j)u_j = 0$ in Ω , supp $(q_1 - q_2) \subset \Omega' \subset \subset \Omega$, $u_j|_{\Gamma_c} = 0$, and $C_{q_1} = C_{q_2}$. Then $\int_{\Omega'} (q_1 - q_2)u_1u_2dx = 0$.
- Density argument. Assume that Ω \ Ω' is connected. Then the set of solutions to (Δ − q)v = 0 in Ω s.t. v = 0 on Γ_c, is dense in the set of all the solutions, in L²(Ω').
- ► CGO solutions. Use the special solutions $v_j(x) = e^{x \cdot \rho_j} (1 + \psi_j(x))$ (with $\rho_j \in \mathbb{C}^d$) to $(\Delta - q_j)v_j = 0$ in \mathbb{R}^d , so that $e^{x \cdot \rho_j}$ is harmonic, i.e. $\rho_j \cdot \rho_j = 0$, and ψ_j tends to zero in a weighted L^2 space for large $|\rho_j|$.
- Extract information on the Fourier transform. Thanks to the density result, $\int_{\Omega'} (q_1 q_2) v_1 v_2 dx = 0$. Fix $k \in \mathbb{R}^d$. For certain ρ_j depending on $\tau >> 1$, get

$$\mathcal{F}(q_1\!-\!q_2)(k)=-\int_{\mathbb{R}^d}(q_1\!-\!q_2)e^{-ik\cdot x}(\psi_1\!+\!\psi_2\!+\!\psi_1\psi_2)dx=0 \quad ext{as } au o\infty$$

Outline

Background

An IBVP for the (scalar) Schrödinger equation

An IBVP for Maxwell equations

Let μ , ε , σ be positive functions on a $C^{1,1}$ bounded domain Ω in \mathbb{R}^3 , describing the permeability, permittivity and conductivity, respectively, of an inhomogeneous, isotropic medium Ω .

Consider the electric and magnetic fields, *E*, *H*, satisfying the so-called time-harmonic Maxwell equations at a frequency $\omega > 0$, namely

$$\begin{cases} \nabla \times H + i\omega\gamma E = 0, \\ \nabla \times E - i\omega\mu H = 0, \end{cases}$$
(1)

in Ω , where $\gamma = \varepsilon + i\sigma/\omega$, and $\nabla \times$ denotes the *curl* operator.

There exist positive ω 's for which there are nontrivial solutions to (1) in $H(\operatorname{curl}; \Omega)$ such that $N \times E|_{\partial\Omega} = 0$ or $N \times H|_{\partial\Omega} = 0$. These ω 's are called resonant frequencies.

The impedance map Λ^{im} and the admittance map Λ^{ad} given by $\Lambda^{\text{im}}: N \times H|_{\partial\Omega} \mapsto N \times E|_{\partial\Omega}$, $\Lambda^{\text{ad}}: N \times E|_{\partial\Omega} \mapsto N \times H|_{\partial\Omega}$ are not well-defined for resonant frequencies.

For any $\omega > 0$, one can consider the (global) Cauchy data set $C(\mu, \gamma)$ as boundary measurements defined by

$$C(\mu,\gamma) := \{ (\mathsf{N} \times \mathsf{E}|_{\partial\Omega}, \mathsf{N} \times \mathsf{H}|_{\partial\Omega}) : (\mathsf{E},\mathsf{H}) \in \mathsf{H}(\mathsf{curl};\Omega)^2 \text{ solves } (1) \text{ in } \Omega \}.$$

For partial data restricted to a smooth, open subset Γ of $\partial\Omega$, define

 $C(\mu,\gamma;\Gamma) := \{ (N \times E|_{\partial\Omega}, N \times H|_{\Gamma}) : (E,H) \in H(\operatorname{curl};\Omega)^2 \text{ solves (1) in } \Omega, \\ \operatorname{and } \operatorname{supp}(N \times E|_{\partial\Omega}) \subset \overline{\Gamma} \}.$

Definition. Fix M > 0. The pair of coefficients (μ, γ) is called *admissible* if $\mu, \gamma \in C^{1,1}(\overline{\Omega})$ and

- $\operatorname{Re}\gamma\geq M^{-1},\quad \mu\geq M^{-1}$ in Ω ,
- $\|\gamma\|_{W^{2,\infty}(\Omega)} + \|\mu\|_{W^{2,\infty}(\Omega)} \leq M.$

Theorem (B, Marletta, Reyes). Assume that (μ_j, γ_j) is an admissible pair of coeffcients for j = 1, 2, supp $(\mu_1 - \mu_2)$, supp $(\gamma_1 - \gamma_2) \subset \Omega$ and $C(\mu_1, \gamma_1; \Gamma) = C(\mu_2, \gamma_2; \Gamma)$. Then $\mu_1 = \mu_2$ and $\gamma_1 = \gamma_2$ in Ω .

Some references:

Global data

- E. Somersalo, D. Isaacson and M. Cheney; J. Comp. Appl. Math. 42 (1992).
- P. Ola, L. Päivärinta and E. Somersalo; Duke Math. J. 70 (1993).
- P. Ola and E. Somersalo; SIAM J. Appl. Math. 56 (1996).
- P. Caro; Inverse Problems 26 (2010).
- P. Caro and T. Zhou; Analysis and PDE 7, no. 2 (2014).

Partial data

- P. Caro, P. Ola and M. Salo; Comm. PDE. 34 (2009).
- P. Caro; Inverse Probl. Imaging 5 (2011).
- F. J. Chung, P. Ola, M. Salo and L. Tzou; ArXiv:1502.01618.

Outline

Background

An IBVP for the (scalar) Schrödinger equation

An IBVP for Maxwell equations

The equations

E, *H* solve the Maxwell system $\Leftrightarrow X = (h \ H^t | e \ E^t)^t$ solves the augmented system (P + V)X = 0 and e = h = 0, where

$$P := \begin{pmatrix} D \cdot \\ D & -D \times \\ \hline D & D \times \\ \hline D & D \times \\ \end{pmatrix}, \quad V := \begin{pmatrix} \omega \mu & D \alpha \cdot \\ \omega \mu I_3 & D \alpha \\ \hline D \beta \cdot & \omega \gamma \\ D \beta & \omega \gamma I_3 \\ \end{pmatrix},$$

$$D := (1/i)\nabla, \qquad \alpha := \log \gamma, \qquad \beta := \log \mu.$$

Note that $P^2 = -\Delta I_8$. Further, X solves (P + V)X = 0 if and only if

$$Y = \operatorname{diag}(\mu^{1/2} I_4 \,,\, \gamma^{1/2} I_4) X$$

solves the rescaled system (P + W)Y = 0.

The opertor $-PW^t + WP$ is zeroth-order. Thus, the matrix operator $(P + W)(P - W^t)$ is Schrödinger-type, since

$$(P+W)(P-W^t)=-\Delta I_8+Q,$$

where $Q := -PW^t + WP - WW^t$.

We can get solutions to the Maxwell system via solutions to a Schrödinger-type system as follows:

If $(-\Delta + Q)Z = 0$ and the scalar fields of

$$X := diag(\mu^{-1/2}I_4, \gamma^{-1/2}I_4)(P - W^t)Z$$

vanish, then the vector fields of X satisfy the Maxwell system.

An orthogonality identity

Proposition. Assume that (μ_j, γ_j) are admissible (j = 1, 2) such that

•
$$C(\mu_1, \gamma_1; \Gamma) = C(\mu_2, \gamma_2; \Gamma),$$

•
$$\mu_1 = \mu_2, \ \gamma_1 = \gamma_2, \ \nabla \mu_1 = \nabla \mu_2, \ \nabla \gamma_1 = \nabla \gamma_2$$
 on Γ ,

• $Z_1 \in H^1(\Omega; \mathbb{C}^8)$ solves $(-\Delta I_8 + Q_1)Z_1 = 0$ in Ω and "gives solutions" (E_1, H_1) to the Maxwell system, with $N \times E_1|_{\partial\Omega} = 0$ on $\Gamma_c := \partial\Omega \setminus \overline{\Gamma}$.

• $Y_2 \in H^1(\Omega; \mathbb{C}^8)$ solves $(P + W_2^*)Y_2 = 0$ in Ω and $Y_2|_{\partial\Omega} = 0$ on Γ_c .

Then $\langle (Q_1 - Q_2)Z_1 | Y_2 \rangle_{\Omega} = 0.$

The idea of this kind of identity relating a solution to a Schrödinger-type equation corresponding to the Maxwell system and a solution to a Dirac-type operator not related to the Maxwell system comes from the paper

C. E. Kenig, M. Salo and G. Uhlmann; Duke Math. J. (2011).

Density results (inspired by [H. Ammari and G. Uhlmann (2004)])

Remarks:

• We proved that if $(P + W^*)Y = 0$ then Y also satisfies a Schrödinger-type equation $(-\Delta I_8 + \widetilde{Q})Y = 0$, where \widetilde{Q} is zeroth-order.

• If $(E, H) \in H(\operatorname{curl}; \Omega)^2$ solves the Maxwell system in Ω then E is a solution to LE = 0 in Ω , where $LE := \nabla \times (\mu^{-1}\nabla \times E) - \omega^2 \gamma E$.

Results:

Let $\Omega' \subset \subset \Omega$ with $\partial \Omega' \in C^2$ such that $\Omega \setminus \overline{\Omega'}$ is connected.

• $\widetilde{K}(\Omega) := \{ \widetilde{Y} \in H^2(\Omega; \mathbb{C}^8) : (-\Delta I_8 + \widetilde{Q}) \widetilde{Y} = 0 \text{ in } \Omega, \ \widetilde{Y}|_{\partial\Omega} = 0 \text{ on } \Gamma_c \}$ is dense in the set $K(\Omega) := \{ Y \in H^2(\Omega; \mathbb{C}^8) : (-\Delta I_8 + \widetilde{Q}) Y = 0 \text{ in } \Omega \}$ with respect to the topology in $L^2(\Omega'; \mathbb{C}^8)$.

• Let $\widetilde{N}(\Omega)$ be the set of functions $\widetilde{E} \in H(\operatorname{curl}; \Omega)$ with $\nabla \times (\nabla \times \widetilde{E}) \in L^2(\Omega; \mathbb{C}^3)$ solving $L\widetilde{E} = 0$ in Ω such that $N \times \widetilde{E}|_{\partial\Omega} = 0$ on Γ_c . Then $\widetilde{N}(\Omega)$ is dense in the set $N(\Omega) := \{E \in H(\operatorname{curl}; \Omega) : \nabla \times (\nabla \times E) \in L^2(\Omega; \mathbb{C}^3), LE = 0 \text{ in } \Omega\}$ with respect to the topology in $L^2(\Omega'; \mathbb{C}^3)$.

Proof of the theorem

Let $\Omega' \subset \subset \Omega$ with $\partial \Omega' \in C^2$ and $\operatorname{supp}(\mu_1 - \mu_2)$, $\operatorname{supp}(\gamma_1 - \gamma_2) \subset \Omega'$.

Let Z_1 , Y_2 be certain special solutions of almost exponential growth (Faddeev-Calderón-Sylvester-Uhlmann) satisfying $(-\Delta I_8 + Q_1)Z_1 = 0$, $(P + W_2^*)Y_2 = 0$ in \mathbb{R}^3 , where Z_1 "gives solutions" to the Maxwell system with μ_1 , γ_1 . Here the coefficients are extended to the whole Euclidean space.

More precisely, for some $\zeta_j \in \mathbb{C}^3$ with $\zeta_j \cdot \zeta_j = \omega^2 \epsilon_0 \mu_0$, depending on a large free parameter τ $(|\zeta_j| \geq \tau)$,

$$Z_1(x,\zeta_1) = e^{i\zeta_1 \cdot x} (L_1(\zeta_1) + R_1(x,\zeta_1)),$$

$$Y_2(x,\zeta_2) = e^{i\zeta_2 \cdot x} (M_2(\zeta_2) + S_2(x,\zeta_2)),$$

where R_1, S_2 tend to zero in some sense when $\tau \to \infty$.

Then, thanks to the density results in $L^2(\Omega')$ and the bounded invertibility of $P - W_1^t$ with certain boundary conditions, it follows that

$$\langle (Q_1-Q_2)Z_1|Y_2\rangle_{\Omega}=0. \tag{2}$$

For fixed $\xi \in \mathbb{R}^3$, we take $\zeta_1 - \overline{\zeta_2} = -\xi$ and have

$$\begin{aligned} \langle (Q_1 - Q_2)Z_1 | Y_2 \rangle_{\Omega} &= \int_{\Omega} (Q_1 - Q_2)Z_1 \cdot \overline{Y_2} dx \\ &= \int_{\Omega} e^{-i\xi \cdot x} (Q_1 - Q_2)(L_1 + R_1)(\overline{M_2} + \overline{S_2}) dx \\ &= \begin{cases} \widehat{f}(\xi) + \mathcal{O}(\tau^{-1}), & \text{for certain choice of } L_1, M_2, \\ \widehat{g}(\xi) + \mathcal{O}(\tau^{-1}), & \text{for certain choice of } L_1, M_2. \end{cases} \end{aligned}$$

Thus, from (2) we obtain

$$|\widehat{f}(\xi)| + |\widehat{g}(\xi)| \leq \frac{C}{\tau},$$

where

w 0

$$\begin{split} f &= \chi_{\Omega} \cdot \left(\frac{1}{2} \Delta(\alpha_1 - \alpha_2) + \frac{1}{4} \left(\nabla \alpha_1 \cdot \nabla \alpha_1 - \nabla \alpha_2 \cdot \nabla \alpha_2 \right) + \left(\kappa_2^2 - \kappa_1^2 \right) \right), \\ g &= \chi_{\Omega} \cdot \left(\frac{1}{2} \Delta(\beta_1 - \beta_2) + \frac{1}{4} \left(\nabla \beta_1 \cdot \nabla \beta_1 - \nabla \beta_2 \cdot \nabla \beta_2 \right) + \left(\kappa_2^2 - \kappa_1^2 \right) \right), \\ \text{with } \alpha_j &:= \log \gamma_j, \qquad \beta_j := \log \mu_j, \qquad \kappa_j := \omega \mu_j^{1/2} \gamma_j^{1/2}. \end{split}$$

Deduce that f = g = 0. Using a Carleman estimate, Pedro Caro proves that

$$\begin{split} e^{d_1/h} \sum_{j=1,2} (h \|\phi_j\|_{L^2(\Omega)}^2 + h^3 \|\nabla\phi_j\|_{L^2(\Omega)}^2) &\leq C e^{d_2/h} \\ \times \left(h^4 \big(\|f\|_{L^2(\Omega)}^2 + \|g\|_{L^2(\Omega)}^2 \big) + \sum_{j=1,2} \big(h \|\phi_j\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla\phi_j\|_{L^2(\partial\Omega)}^2 \big) \Big), \\ \text{here } \phi_1 &:= \gamma_1^{1/2} - \gamma_2^{1/2}, \ \phi_2 &:= \mu_1^{1/2} - \mu_2^{1/2}, \ C &= C(\Omega, M), \\ < h < C^{-1/3} \leq 1, \ \text{and} \\ d_1 &:= \inf\{|x - x_0|^2 \,:\, x \in \Omega\}, \qquad d_2 &:= \sup\{|x - x_0|^2 \,:\, x \in \Omega\}, \end{split}$$

for certain point $x_0 \notin \Omega$. Thus, we are done.