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An IBVP for the (scalar) Schrédinger equation



Global uniqueness with partial data

Consider the Schrodinger equation on a bounded domain Q C RY, d > 3,
with 9Q € C2, for a real-valued potential g € L°(Q): (A — q)u=0in L,
where u € H(Q).

Let T € 9Q and I'c := 9Q \ T. Define the partial Cauchy data set
associated to g as

Cq = {(ulon, dyulr) : v € HY(Q), (A~ q)u=0in Q, ulr, = 0}.

Theorem (Ammari and Uhlmann). If g; = ¢» a.e. near 99, and
Cq = Cg, then g1 = g2 a.e. in Q.



Proof

> Assume that (A — gj)u; =0 in Q,
supp(g1 — q2) C Q' CC Q, ujlr, =0, and Cg, = Cg,. Then
Jor (g1 — q2)urundx = 0.

> Assume that Q \ ' is connected. Then the set of
solutions to (A — q)v =0in Q2 s.t. v=0on I, is dense in the set
of all the solutions, in L2().

> Use the special solutions vj(x) = e¥7i(1 + 9;(x))
(with p; € C9) to (A — q;)v; = 0 in RY, so that e<*i is harmonic, i.e.
pj - pj =0, and 9; tends to zero in a weighted L2 space for large 1pjl.

> Thanks to the density
result, [o,(q1 — g2)vivedx = 0. Fix k € RY. For certain pj depending
onT>>1, get

Fla1—q2)(k) = — /Rd(qlq2)e_ik.x(¢1+7[)2+¢11/)2)dx =0 as7—> 0
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An IBVP for Maxwell equations



Let i, €, o be positive functions on a CY1 bounded domain Q in R3,
describing the permeability, permittivity and conductivity, respectively, of
an inhomogeneous, isotropic medium 2.

Consider the electric and magnetic fields, E, H, satisfying the so-called
time-harmonic Maxwell equations at a frequency w > 0, namely

V x H+ iwyE =0, (1)
V x E —iwuH =0,

in ©Q, where v = ¢ + jo/w, and Vx denotes the curl operator.

There exist positive w's for which there are nontirivial solutions to (1) in
H(curl; ) such that N x E|gq =0 or N x H|spq = 0. These w's are called
resonant frequencies.



The impedance map AIM and the admittance map Aad given by
AM N X H‘@Q — N x E|8Q , /\ad : N x E|aQi—> N x H‘@Q are not
well-defined for resonant frequencies.

For any w > 0, one can consider the (global) Cauchy data set C(u,~) as
boundary measurements defined by

C(p,7) == {(NxE|aa, Nx Hlaq) : (E,H) € H(curl; Q)? solves (1) in Q}.
For partial data restricted to a smooth, open subset ' of 0%, define

C(u,7:T) = {(N x E|pq, N x H|f) : (E,H) € H(curl; Q)? solves (1) in Q,
and supp (N x El|sq) C T}.



Definition. Fix M > 0. The pair of coefficients (,7) is called admissible
if 4,y € CH(Q) and

eRey>M1, u>M1inQ,

o [Vllwzeo() + 1l waee @) < M.

Theorem (B, Marletta, Reyes). Assume that (u;,;) is an admissible
pair of coeffcients for j = 1,2, supp(u1 — p2), supp(y1 —12) € Q and
C(p1,71;T) = Clua,72;T). Then py = pp and 41 =72 in Q.
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Steps of the proof



The equations

E, H solve the Maxwell system < X = (h H'|e E')! solves the
augmented system (P + V)X =0 and e = h = 0, where

D. Wi Da-
D —Dx . with

Dp-

Da
wy
wyls

D Dx , DB

D :=(1/i)V, a = log~, B :=log .
Note that P2 = —Alg. Further, X solves (P + V)X = 0 if and only if
Y =diag(u'/?la, 712 ls) X

solves the rescaled system (P + W)Y = 0.

)



The opertor —PW* + WP is zeroth-order. Thus, the matrix operator
(P + W)(P — W?") is Schrédinger-type, since

(P+W)(P—W')=-Al+Q,

where Q := —PW? + WP — WW?E.

We can get solutions to the Maxwell system via solutions to a
Schrodinger-type system as follows:

If (—A 4+ Q)Z = 0 and the scalar fields of
X :=diag(p~ 21y, y12h) (P — WHZ

vanish, then the vector fields of X satisfy the Maxwell system.



An orthogonality identity

Proposition. Assume that (1,7;) are admissible (j = 1,2) such that

o C(p1,7:T) = Clpz,72:T),

® (1 = f2, 71 = Y2, Vi1 = Vuz, Vy1 =Vy2on T,

o Z; € HY(Q; C?®) solves (—Alg + Q1)Z1 = 0 in Q and “gives solutions”
(E1, Hp) to the Maxwell system, with N X Ej|go =0on . :=0Q\T.

e Yy € HY(Q;C8) solves (P + W5)Y2 =0in Q and Y2|sq =0 on I..
Then <(Ql — Qz)Zl‘Y2>Q =0.

The idea of this kind of identity relating a solution to a Schrodinger-type
equation corresponding to the Maxwell system and a solution to a
Dirac-type operator not related to the Maxwell system comes from the

paper
C. E. Kenig, M. Salo and G. Uhlmann; Duke Math. J. (2011).



Density results (inspired by [H. Ammari and G. Uhlmann (2004)))

Remarks:

e We proved that if (P + W*)Y = 0 then Y also satisfies a
Schrodinger-type equation (—Alg + Q)Y = 0, where Q is zeroth-order.
o If (E, H) € H(curl; Q)? solves the Maxwell system in Q then E is a
solution to LE =0 in Q, where LE :=V x (u~ 1V x E) — w?~E.

Results:
Let Q' cC Q with 9Q' € C? such that Q\ €’ is connected.

e K(Q) :={Y € HA(Q;C8) : (~Alg+ Q)Y =0inQ, Y]sn = 0on I}
is dense in the set K(Q) := {Y € H3(Q;C?8) : (-Al+ Q)Y =0in Q}
with respect to the topology in L?('; C8).

o Let KI(Q) be the set of functions E € H(curl; Q) with

V x (V x E) € L?(Q; C3) solving LE =0inQ such that N x E|sq =0
on [c. Then N(Q) is dense in the set

N(Q) := {E € H(curl;Q) : Vx (V x E) € [?(;C3), LE =0 in Q} with
respect to the topology in L%(€'; C3).



Proof of the theorem

Let Q' cC Q with 9Q' € C? and supp(p1 — p2), supp(m1 — 72) € .

Let Z;, Y2 be certain special solutions of almost exponential growth
(Faddeev-Calderdn-Sylvester-Uhlmann) satisfying (—Alg + Q1)Z1 = 0,
(P+ W)Y, =0 in R3, where Z; “gives solutions” to the Maxwell system
with g1, 71. Here the coefficients are extended to the whole Euclidean
space.

More precisely, for some (; € C3 with GG = w?eofio, depending on a
large free parameter 7 (|(j| > 7),

Z1(x, 1) = €U (L(G) + Ri(x, 1)),
Ya(x, 2) = €% (Ma(G2) + Sa(x, C2)),

where Ry, S, tend to zero in some sense when 7 — o0.



Then, thanks to the density results in L2(Q') and the bounded invertibility
of P — W with certain boundary conditions, it follows that

(Qr— @)Z1|Y2)q = 0. (2)

For fixed & € R3, we take (; — (o = —¢ and have

(QL— Q)21 Yo)a = /Q(Ql — Q)71 - Yadx

_ /Q e Q1 — Q)(Ls + Ry)(W + S5)dx

_ ?(f) + O(171Y), for certain choice of Ly, M,
| g(é) +O(r7 1), for certain choice of Ly, My.

Thus, from (2) we obtain

F()] +18(6)] <

S0

)



where

1 1
f=xa- <2A(a1 — o)+ 7 (Vai - Vag — Vag - Vag) + (k3 — /i%)),

g=xa- <;A(51 — f2) + % (VB1- VB — VB2 V) + (k3 — H%)>,

) 1/2 1/2
with Qj = |0g’7j, Bj = Iog,uj, Kj = U.),uj/ ’YJ/ .

Deduce that f = g = 0. Using a Carleman estimate, Pedro Caro proves
that
e N (hlldjlIai) + PP IVEilT2q) < Ce®/"
Jj=1,2
(1 1By + lel) + 3 (Hloslom + 185 B0m) ).

j=1,2

where ¢1 1= ')/:1[/2 1/2, o = ui/2 1/2 C=C(Q,M),
0<h<C13<1, and

di = inf{|x — xo|* : x € Q}, dy := sup{|x — x0|® : x € Q},

for certain point xg ¢ Q. Thus, we are done.
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