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Global uniqueness with partial data

Habib Ammari and Gunther Uhlmann, Indiana Univ. Math. J. 53 (2004)

Consider the Schrödinger equation on a bounded domain Ω ⊂ Rd , d ≥ 3,
with ∂Ω ∈ C 2, for a real-valued potential q ∈ L∞(Ω): (∆− q)u = 0 in Ω,
where u ∈ H1(Ω).

Let Γ ⊂ ∂Ω and Γc := ∂Ω \ Γ. Define the partial Cauchy data set
associated to q as

Cq := {(u|∂Ω, ∂νu|Γ) : u ∈ H1(Ω), (∆− q)u = 0 in Ω, u|Γc = 0}.

Theorem (Ammari and Uhlmann). If q1 = q2 a.e. near ∂Ω, and
Cq1 = Cq2 then q1 = q2 a.e. in Ω.



Proof

I Integration by parts. Assume that (∆− qj)uj = 0 in Ω,
supp(q1 − q2) ⊂ Ω′ ⊂⊂ Ω, uj |Γc = 0, and Cq1 = Cq2 . Then∫

Ω′(q1 − q2)u1u2dx = 0.

I Density argument. Assume that Ω \ Ω′ is connected. Then the set of
solutions to (∆− q)v = 0 in Ω s.t. v = 0 on Γc , is dense in the set
of all the solutions, in L2(Ω′).

I CGO solutions. Use the special solutions vj(x) = ex ·ρj (1 + ψj(x))
(with ρj ∈ Cd) to (∆− qj)vj = 0 in Rd , so that ex ·ρj is harmonic, i.e.
ρj · ρj = 0, and ψj tends to zero in a weighted L2 space for large |ρj |.

I Extract information on the Fourier transform. Thanks to the density
result,

∫
Ω′(q1 − q2)v1v2dx = 0. Fix k ∈ Rd . For certain ρj depending

on τ >> 1, get

F(q1−q2)(k) = −
∫
Rd

(q1−q2)e−ik·x(ψ1+ψ2+ψ1ψ2)dx = 0 as τ →∞.
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Let µ, ε, σ be positive functions on a C 1,1 bounded domain Ω in R3,
describing the permeability, permittivity and conductivity, respectively, of
an inhomogeneous, isotropic medium Ω.

Consider the electric and magnetic fields, E , H, satisfying the so-called
time-harmonic Maxwell equations at a frequency ω > 0, namely{

∇× H + iωγE = 0,
∇× E − iωµH = 0,

(1)

in Ω, where γ = ε+ iσ/ω, and ∇× denotes the curl operator.

There exist positive ω’s for which there are nontirivial solutions to (1) in
H(curl ; Ω) such that N × E |∂Ω = 0 or N ×H|∂Ω = 0. These ω’s are called
resonant frequencies.



The impedance map Λim and the admittance map Λad given by
Λim : N × H|∂Ω 7→ N × E |∂Ω , Λad : N × E |∂Ω 7→ N × H|∂Ω are not
well-defined for resonant frequencies.

For any ω > 0, one can consider the (global) Cauchy data set C (µ, γ) as
boundary measurements defined by

C (µ, γ) := {(N×E |∂Ω,N×H|∂Ω) : (E ,H) ∈ H(curl; Ω)2 solves (1) in Ω}.

For partial data restricted to a smooth, open subset Γ of ∂Ω, define

C (µ, γ; Γ) := {(N × E |∂Ω,N × H|Γ) : (E ,H) ∈ H(curl; Ω)2 solves (1) in Ω,

and supp (N × E |∂Ω) ⊂ Γ}.



Definition. Fix M > 0. The pair of coefficients (µ, γ) is called admissible
if µ, γ ∈ C 1,1(Ω) and
• Reγ ≥ M−1, µ ≥ M−1 in Ω,
• ‖γ‖W 2,∞(Ω) + ‖µ‖W 2,∞(Ω) ≤ M.

Theorem (B, Marletta, Reyes). Assume that (µj , γj) is an admissible
pair of coeffcients for j = 1, 2, supp(µ1 − µ2), supp(γ1 − γ2) ⊂ Ω and
C (µ1, γ1; Γ) = C (µ2, γ2; Γ). Then µ1 = µ2 and γ1 = γ2 in Ω.
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The equations

E ,H solve the Maxwell system ⇔ X = (h Ht | e E t)t solves the
augmented system (P + V )X = 0 and e = h = 0, where

P :=


D·

D −D×
D·

D D×


,

V :=


ωµ Dα·

ωµI3 Dα
Dβ· ωγ

Dβ ωγI3


,

D := (1/i)∇, α := log γ, β := logµ.

Note that P2 = −∆I8. Further, X solves (P + V )X = 0 if and only if

Y = diag(µ1/2I4 , γ
1/2I4)X

solves the rescaled system (P + W )Y = 0.



The opertor −PW t + WP is zeroth-order. Thus, the matrix operator
(P + W )(P −W t) is Schrödinger-type, since

(P + W )(P −W t) = −∆I8 + Q,

where Q := −PW t + WP −WW t .

We can get solutions to the Maxwell system via solutions to a
Schrödinger-type system as follows:

If (−∆ + Q)Z = 0 and the scalar fields of

X := diag(µ−1/2I4 , γ
−1/2I4) (P −W t)Z

vanish, then the vector fields of X satisfy the Maxwell system.



An orthogonality identity

Proposition. Assume that (µj , γj) are admissible (j = 1, 2) such that

• C (µ1, γ1; Γ) = C (µ2, γ2; Γ),

• µ1 = µ2, γ1 = γ2, ∇µ1 = ∇µ2, ∇γ1 = ∇γ2 on Γ,

• Z1 ∈ H1(Ω;C8) solves (−∆I8 + Q1)Z1 = 0 in Ω and “gives solutions”
(E1,H1) to the Maxwell system, with N × E1|∂Ω = 0 on Γc := ∂Ω \ Γ.

• Y2 ∈ H1(Ω;C8) solves (P + W ∗
2 )Y2 = 0 in Ω and Y2|∂Ω = 0 on Γc .

Then 〈(Q1 − Q2)Z1|Y2〉Ω = 0.

The idea of this kind of identity relating a solution to a Schrödinger-type
equation corresponding to the Maxwell system and a solution to a
Dirac-type operator not related to the Maxwell system comes from the
paper

C. E. Kenig, M. Salo and G. Uhlmann; Duke Math. J. (2011).



Density results (inspired by [H. Ammari and G. Uhlmann (2004)])

Remarks:
• We proved that if (P + W ∗)Y = 0 then Y also satisfies a
Schrödinger-type equation (−∆I8 + Q̃)Y = 0, where Q̃ is zeroth-order.
• If (E ,H) ∈ H(curl; Ω)2 solves the Maxwell system in Ω then E is a
solution to LE = 0 in Ω, where LE := ∇× (µ−1∇× E )− ω2γE .

Results:

Let Ω′ ⊂⊂ Ω with ∂Ω′ ∈ C 2 such that Ω \ Ω′ is connected.

• K̃ (Ω) := {Ỹ ∈ H2(Ω;C8) : (−∆I8 + Q̃)Ỹ = 0 in Ω, Ỹ |∂Ω = 0 on Γc}
is dense in the set K (Ω) := {Y ∈ H2(Ω;C8) : (−∆I8 + Q̃)Y = 0 in Ω}
with respect to the topology in L2(Ω′;C8).

• Let Ñ(Ω) be the set of functions Ẽ ∈ H(curl; Ω) with
∇× (∇× Ẽ ) ∈ L2(Ω;C3) solving L Ẽ = 0 in Ω such that N × Ẽ |∂Ω = 0
on Γc . Then Ñ(Ω) is dense in the set
N(Ω) := {E ∈ H(curl; Ω) : ∇× (∇× E ) ∈ L2(Ω;C3), LE = 0 in Ω} with
respect to the topology in L2(Ω′;C3).



Proof of the theorem

Let Ω′ ⊂⊂ Ω with ∂Ω′ ∈ C 2 and supp(µ1 − µ2), supp(γ1 − γ2) ⊂ Ω′.

Let Z1, Y2 be certain special solutions of almost exponential growth
(Faddeev-Calderón-Sylvester-Uhlmann) satisfying (−∆I8 + Q1)Z1 = 0,
(P + W ∗

2 )Y2 = 0 in R3, where Z1 “gives solutions” to the Maxwell system
with µ1, γ1. Here the coefficients are extended to the whole Euclidean
space.

More precisely, for some ζj ∈ C3 with ζj · ζj = ω2ε0µ0, depending on a
large free parameter τ (|ζj | ≥ τ),

Z1(x , ζ1) = e iζ1·x(L1(ζ1) + R1(x , ζ1)),

Y2(x , ζ2) = e iζ2·x(M2(ζ2) + S2(x , ζ2)),

where R1,S2 tend to zero in some sense when τ →∞.



Then, thanks to the density results in L2(Ω′) and the bounded invertibility
of P −W t

1 with certain boundary conditions, it follows that

〈(Q1 − Q2)Z1|Y2〉Ω = 0. (2)

For fixed ξ ∈ R3, we take ζ1 − ζ2 = −ξ and have

〈(Q1 − Q2)Z1|Y2〉Ω =

∫
Ω

(Q1 − Q2)Z1 · Y2dx

=

∫
Ω
e−iξ·x(Q1 − Q2)(L1 + R1)(M2 + S2)dx

=

{
f̂ (ξ) +O(τ−1), for certain choice of L1,M2,
ĝ(ξ) +O(τ−1), for certain choice of L1,M2.

Thus, from (2) we obtain

|f̂ (ξ)|+ |ĝ(ξ)| ≤ C

τ
,



where

f = χΩ ·
(

1

2
∆(α1 − α2) +

1

4
(∇α1 · ∇α1 −∇α2 · ∇α2) + (κ2

2 − κ2
1)

)
,

g = χΩ ·
(

1

2
∆(β1 − β2) +

1

4
(∇β1 · ∇β1 −∇β2 · ∇β2) + (κ2

2 − κ2
1)

)
,

with αj := log γj , βj := logµj , κj := ωµ
1/2
j γ

1/2
j .

Deduce that f = g = 0. Using a Carleman estimate, Pedro Caro proves
that

ed1/h
∑
j=1,2

(h‖φj‖2
L2(Ω) + h3‖∇φj‖2

L2(Ω)) ≤ C ed2/h

×
(
h4
(
‖f ‖2

L2(Ω) + ‖g‖2
L2(Ω)

)
+
∑
j=1,2

(
h‖φj‖2

L2(∂Ω) + h3‖∇φj‖2
L2(∂Ω)

))
,

where φ1 := γ
1/2
1 − γ1/2

2 , φ2 := µ
1/2
1 − µ1/2

2 , C = C (Ω,M),
0 < h < C−1/3 ≤ 1, and

d1 := inf{|x − x0|2 : x ∈ Ω}, d2 := sup{|x − x0|2 : x ∈ Ω},
for certain point x0 /∈ Ω. Thus, we are done.
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