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1. Definition of the transmission eigenvalues

1. Definition of the transmission eigenvalues

Let Ω ⊂ Rd , d ≥ 2, be a bounded, connected domain with a C∞ smooth boundary
Γ = ∂Ω. A complex number λ ∈ C, λ 6= 0, will be said to be a transmission eigenvalue if
the following problem has a non-trivial solution:

(∇c1(x)∇+ λn1(x)) u1 = 0 in Ω,
(∇c2(x)∇+ λn2(x)) u2 = 0 in Ω,
u1 = u2, c1∂νu1 = c2∂νu2 on Γ,

(1)

where ν denotes the exterior Euclidean unit normal to Γ, cj , nj ∈ C∞(Ω), j = 1, 2 are
strictly positive real-valued functions. The transmission eigenvalues can be viewed as the
eigenvalues of the non-symmetric operator A defined by

A
(

u1

u2

)
=

(
− 1

n1(x)
∇c1(x)∇u1

− 1
n2(x)
∇c2(x)∇u2

)
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1. Definition of the transmission eigenvalues

with domain

D(A) =
{

(u1, u2) ∈ H : ∇c1(x)∇u1 ∈ L2(Ω), ∇c2(x)∇u2 ∈ L2(Ω),

u1 = u2, c1∂νu1 = c2∂νu2 on Γ}

where H = H1 ⊕ H2, Hj = L2(Ω, nj(x)dx). Then the transmission eigenvalues are the
poles of the resolvent of A (if it forms a meromorphic family) and the multiplicity of a
pole λk is defined by

mult(λk) = rank(2πi)−1

∫
|λ−λk |=ε

(λ−A)−1dλ = tr(2πi)−1

∫
|λ−λk |=ε

(λ−A)−1dλ.

Our goal is to study the asymptotic behaviour of the counting function
N(r) = #{λ− trans. eig. : |λ| ≤ r 2}, r > 1. We will see that it is closely related to the
localization of the transmission eigenvalues on the complex plane.
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2. The Dirichlet-to-Neumann map

2. The Dirichlet-to-Neumann map.

The Dirichlet-to-Neumann map, Nj(λ) : H1(Γ)→ L2(Γ), associated to the pair (cj , nj) is
defined by

Nj(λ)f = ∂νuj |Γ,

where uj solves the equation{
(∇cj(x)∇+ λnj(x)) uj = 0 in Ω,
uj = f on Γ.

(2)

Denote by Gj , j = 1, 2, the Dirichlet self-adjoint realization of the operator −n−1
j ∇cj∇

on the Hilbert space Hj . It is well-known that Nj(λ) is meromorphic with poles the
eigenvalues of Gj . Introduce the operator

T (λ) = c1N1(λ)− c2N2(λ).
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2. The Dirichlet-to-Neumann map

We have the following trace formula.

Lemma 1

Suppose that the inverse T (λ)−1 exists as a meromorphic function. Then the resolvent
of the operator A is meromorphic, too, and we have the formula

M(γ) = M1(γ) + M2(γ) + tr(2πi)−1

∫
γ

dT (λ)

dλ
T (λ)−1dλ (3)

where γ is a simple, positively orientied, piecewise smooth, closed curve in the complex
plane, which avoids the poles of T (λ)−1 and the eigenvalues of G1 and G2, M(γ) is the
number of the transmission eigenvalues inside γ, and Mj(γ) is the number of the
eigenvalues of the operator Gj inside γ.
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3. Weyl asymptotics for the counting function

3. Weyl asymptotics for the counting function

Theorem 1 (Petkov-V., J. Spectral Theory 2016)

Suppose either the condition

c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), n1(x) 6= n2(x), ∀x ∈ Γ, (isotropic case) (4)

or the condition
c1(x) 6= c2(x), ∀x ∈ Γ. (anisotropic case) (5)

Suppose also that the operator T (λ) is invertible in a region of the form{
λ ∈ C : |Imλ| ≥ C (|Reλ|+ 1)1−κ

2

}
, C > 0, 0 < κ ≤ 1, (6)

and satisfies there the bound∥∥∥T (λ)−1
∥∥∥
L2(Γ)→L2(Γ)

≤ C0|λ|M0 , C0,M0 > 0.

Then we have the asymptotics

N(r) = (τ1 + τ2)rd + Oε(rd−κ+ε), ∀ 0 < ε� 1, (7)
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3. Weyl asymptotics for the counting function

where

τj =
ωd

(2π)d

∫
Ω

(
nj(x)

cj(x)

)d/2

dx ,

ωd being the volume of the unit ball in Rd .

Known results. In the isotropic case when c1 ≡ c2 ≡ 1, n2 ≡ 1, n1(x) > 1 on Ω, the
asymptotic for N(r) with a remainder term o(rd) is proved by M. Faierman, SIAM J.
Math. Anal. 2014, and by L. Robbiano, preprint 2013.

Idea of the proof. It is inspired by the paper F. Cardoso, G. Popov and G. Vodev, CPDE
2001, where Weyl type asymptotics have been proved for the counting function of the
resonances associated to an exterior transmission problem. We can get an asymptotic for
N(r)− N(r/2) by using the trace formula (3), the Weyl asymptotics for the counting
functions of the eigenvalues of G1 and G2, and the Theorems of Caratheodory and
Jensen. We use in an essential way that dim Γ = d − 1.
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4. Eigenvalue-free regions

4. Eigenvalue-free regions

Theorem 2 (CMP 2015)

Isotropic case. Assume the condition

c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), n1(x) 6= n2(x), ∀x ∈ Γ. (8)

Then there are no transmission eigenvalues in Λ+ ∪ Λ−, where

Λ+ =
{
λ ∈ C : Reλ > 0, |Imλ| ≥ Cε (Reλ+ 1)

3
4

+ε
}
, ∀0 < ε� 1,

Λ− = {λ ∈ C : Reλ ≤ −C1} ∪ {λ ∈ C : −C1 ≤ Reλ ≤ 0, |Imλ| ≥ C2} , C1,C2 > 0.

In this case the asymptotic (7) holds with κ = 1/2.
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4. Eigenvalue-free regions

Theorem 3 (CMP 2015)

Anisotropic case. Assume the condition

(c1(x)− c2(x))(c1(x)n1(x)− c2(x)n2(x)) < 0, ∀x ∈ Γ. (9)

Then there are no transmission eigenvalues in Λ+ ∪ Λ′−, where Λ+ is as above and

Λ′− =
{
λ ∈ C : Reλ ≤ 0, |Imλ| ≥ CN (|Reλ|+ 1)−N

}
, ∀N � 1.

In this case the asymptotic (7) holds with κ = 1/2.
Assume the condition

(c1(x)− c2(x))(c1(x)n1(x)− c2(x)n2(x)) > 0, ∀x ∈ Γ. (10)

Then there are no transmission eigenvalues in Λ′+ ∪ Λ−, where Λ− is as above and

Λ′+ =
{
λ ∈ C : Reλ > 0, |Imλ| ≥ C (Reλ+ 1)

4
5

}
.

In this case the asymptotic (7) holds with κ = 2/5.
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4. Eigenvalue-free regions

Moreover, if in addition to (10) we assume either the condition

n1(x)

c1(x)
6= n2(x)

c2(x)
, ∀x ∈ Γ, (11)

or the condition
n1(x)

c1(x)
=

n2(x)

c2(x)
, ∀x ∈ Γ, (12)

then there are no transmission eigenvalues in Λ+ ∪ Λ−.

Remark 1

One can show that under the condition (9) there are infinitely many transmission
eigenvalues in {λ ∈ C : Reλ < 0} and that their counting function, N−(r), satisfies an
asymptotic of the form

N−(r) = τ0rd−1 + O(rd−2).
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4. Eigenvalue-free regions

Known results. In the isotropic case when c1 ≡ c2 ≡ 1, n2 ≡ 1, n1(x) > 1 on Ω, it was
proved by M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Math. Res. Lett. 2011, that
there are no transmission eigenvalues in Λ′′+ ∪ Λ−, where

Λ′′+ =
{
λ ∈ C : Reλ > 0, |Imλ| ≥ C (Reλ+ 1)

24
25

}
.

To prove the above theorems we make our problem semi-classical by putting
h = |Reλ|−1/2, z = h2λ = ±1 + iIm z , if |Reλ| ≥ |Imλ|, and h = |Imλ|−1/2,
z = h2λ = Re z + i , if |Reλ| ≤ |Imλ|. The proof of Theorems 2 and 3 is based on the
following semi-classical properties of the Dirichlet-to-Neumann map Nj(z , h) = −ihNj(λ).

Theorem 4 (CMP 2015)

For every 0 < ε� 1, 0 < h� 1, |Im z | ≥ h1/2−ε, the Dirichlet-to-Neumann map
Nj(z , h) is an h −Ψ DO of class OPS1

1/2−ε(Γ) with a principal symbol

ρj(x , ξ) =
√
−r0(x , ξ) + mj(x)z with Im ρj > 0, where mj denotes the restriction on Γ of

the function nj/cj , and r0 is the principal symbol of the Laplace-Beltrami operator −∆Γ,
Γ being considered as a Riemannian manifold equipped with the Riemannian metric
induced by the Euclidean one.
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4. Eigenvalue-free regions

Recall that a ∈ Sk
δ (Γ), 0 ≤ δ < 1/2, if a ∈ C∞(T ∗Γ) satisfies the bounds∣∣∣∂αx ∂βξ a(x , ξ)

∣∣∣ ≤ Cα,βh−δ(|α|+|β|)〈ξ〉k−|β|.

Set χj(x , ξ) = φ((r0(x , ξ)−mj(x))/hε/2), where φ ∈ C∞0 (R), φ(t) = 1 for |t| ≤ 1,
φ(t) = 0 for |t| ≥ 2. That is, χj(x , ξ) = 1 in an O(hε/2) neighbourhood of the glancing
region Σj = {(x , ξ) ∈ T ∗Γ : r0(x , ξ)−mj(x) = 0}. Theorem 4 implies the following

Corollary 1

For every 0 < ε� 1, 0 < h� 1, h1/2−ε ≤ |Im z | ≤ hε, we have the bound

‖Nj(z , h)Oph(χj)‖L2(Γ)→L2(Γ) ≤ Chε/4. (13)
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5. The case of strictly concave domains

5. The case of strictly concave domains

We can improve (13) for strictly concave domains. More precisely, we have the following

Theorem 5 (Math. Ann. 2016)

Assume that Γ is strictly concave with respect to the Riemannian metric gj =
nj (x)

cj (x)
gE in

Ω, where gE denotes the Euclidean metric in Rd . Then, for every 0 < ε� 1, 0 < h� 1,
h1−ε ≤ |Im z | ≤ hε, we have the bound

‖Nj(z , h)Oph(χj)‖L2(Γ)→L2(Γ) ≤ Chε/4. (14)

We derive (14) from the following property of the Airy function Ai(z) and its first
derivative Ai′(z).

Lemma 2 (Melrose-Taylor)

There exists a constant C > 0 such that for all z ∈ C \ (−∞, 0) we have the bound∣∣∣∣Ai′(z)

Ai(z)

∣∣∣∣ ≤ C |z |1/2 + C |Im z |−1. (15)
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5. The case of strictly concave domains

Using Theorem 5 we can prove the following

Theorem 6 (Math. Ann. 2016)

Assume that Γ is strictly concave with respect to both Riemannian metrics gj =
nj (x)

cj (x)
gE

in Ω, j = 1, 2. Assume also either the condition (8) or the condition (9). Then there are
no transmission eigenvalues in{

λ ∈ C : Reλ > 0, |Imλ| ≥ Cε (Reλ+ 1)
1
2

+ε
}
, ∀0 < ε� 1.

In this case the asymptotic (7) holds with κ = 1.

Thus getting eigenvalue-free regions is reduced to inverting the operator
T (z , h) = c1N1(z , h)− c2N2(z , h) with a principal symbol

c1ρ1 − c2ρ2 =
c̃(x)(c0(x)r0(x , ξ)− z)

c1ρ1 + c2ρ2
(16)

where c̃ and c0 are the restrictions on Γ of the functions

c1n1 − c2n2 and
c2

1 − c2
2

c1n1 − c2n2

respectively. In the isotropic case we have c0 ≡ 0 on Γ, while in the anisotropic case we
have c0(x) 6= 0, ∀x ∈ Γ. Under the condition (9) we have c0(x) < 0, ∀x ∈ Γ.
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6. Parametrix construction in the glancing region

6. Parametrix construction in the glancing region.

Known results. A parametrix for the DN map has been constructed by Sjöstrand,
Mémoire de la SMF, 2014, (see Section 11), when C1h2/3 ≤ |Im z | ≤ C2h2/3,
C2 > C1 > 0 being arbitrary, independent of h, without using the Airy function.

Idea of the proof of Theorem 5. We build a parametrix for the operator
Nj(z , h)Oph(χj). To this end, we use the global symplectic normal form proved by Popov
and Vodev, CMP 1999, valid in an O(hε) neigbourhoud of the glancing region, which
alows a complete separation of the normal and tangential variables. More precisely, after
a suitable symplectic change of the variables, we are led to study a model operator of the
form

P0 = D2
t + t +Dy1 + iµq(y ,Dy ) + hq̃(y ,Dy ; h, µ), t > 0,

where µ = Im z satisfies h1−2ε ≤ |µ| ≤ hε, Dt = −ih∂t , Dy = −ih∂y , y ∈ Y , Y being a
bounded manifold without boundary, dimY = d − 1. The function q ∈ C∞(T ∗Y ),
q ∈ S0

0 , is real-valued and does not depend on t, h and µ, satisfying 0 < C1 ≤ q ≤ C2, C1

and C2 being constants, q̃ ∈ S0
0 uniformly in h and µ. Let η = (η1, η

′) be the dual
variables of y = (y1, y

′). Then in these coordinates the glancing region is defined by
η1 = 0.
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6. Parametrix construction in the glancing region

Given any integer M ≥ 1 and any function f ∈ L2(Y ), ‖f ‖ = 1, we construct a function
ũ(t, y) = ũM(t, y ; h, µ) such that

P0ũ = O
(

h(M+1)ε/2
)
, ũ(0, y) = Oph

(
φ(η1|µ|/h1+ε)

)
f + O(h∞)

where φ ∈ C∞0 (R), φ(σ) = 1 for |σ| ≤ 1, φ(σ) = 0 for |σ| ≥ 2. We will be looking for ũ
in the form

ũ = φ(t/hε)Oph(A(t))g

where g ∈ L2(Y ) is determined such that ‖g‖L2(Y ) ≤ O(1)‖f ‖L2(Y ), and

A(t) =
M∑
k=0

ak(y , η; h, µ)ψk(t, y , η; h, µ),

ψk = hk/3
Ai (k)

(
(t + η1 + iµq(y , η))h−2/3

)
Ai ((η1 + iµq(y , η))h−2/3)

.

Using the properties of the Airy functions we can prove the following

Georgi Vodev ( Université de Nantes) Asymptotic behavior of the interior transmission eigenvalues 17 / 21



6. Parametrix construction in the glancing region

Proposition 1

For t = 0, all k ≥ 0 and multi-indices α, we have the bound∣∣∂αy ψk

∣∣ ≤ Ck,α pk
1 . (17)

For all t > 0, k ≥ 0 and multi-indices α, we have the bound∣∣∂αy ψk

∣∣ ≤ Ck,α h−1/3pk
1 . (18)

Here

p1 = |η1|1/2 + |µ|1/2 +
h

|µ| < 1.

The functions ak do not depend on t, a0 = φ(η1|µ|/h1+ε), and satisfy relationships of the
form

∂αy ak+1 =

|α|+1∑
|α1|=0

O(p2
2)∂α1

y ak−1 +

|α|∑
|α2|=0

O(p2)∂α2
y ak +

k∑
`=0

k+|α|∑
|β|=0

O(1)∂βy a` (19)

for every multi-index α, where

p2 =
|µ|p1

h
+

√
|µ|
h
> 1.
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6. Parametrix construction in the glancing region

By induction we can deduce from (19) that the functions ak satisfy the bounds∣∣∂αy ak

∣∣ ≤ Ck,αpk
2 . (20)

We have
p1p2 ≤ O(hε/2) (21)

as long as
|µ| (|µ|+ |η1|) ≤ h1+ε. (22)

Using (21) we can conclude that the function ũ provides a parametrix in the region
|η1| ≤ h1+ε/|µ|. The parametrix construction in the region h1+ε/|µ| ≤ |η1| ≤ hε is easier
and can be done as in the hyperbolic region, showing that in our case the solutions of the
corresponding eikonal and transport equations belong to better classes.
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7. The case of a ball

7. The case of a ball.

Better eigenvalue-free regions can be obtained if the functions cj , nj are constants and Ω
is a ball. In this case we can use the properties of the Bessel functions to prove the
following

Theorem 7 (Petkov-V., preprint 2016)

Assume that Ω = {x ∈ Rd : |x | ≤ 1} and the functions nj(x) and cj(x) are constants in a
neighbourhood of the boundary Γ, j = 1, 2. Assume also either the condition (8) or the
condition (9). Then there are no transmission eigenvalues in{

λ ∈ C : Reλ > 0, |Imλ| ≥ C (Reλ+ 1)
1
2 log (Reλ+ 2)

}
.

If the functions nj(x) and cj(x) are constants everywhere in Ω, then there are no
transmission eigenvalues in{

λ ∈ C : Reλ > 0, |Imλ| ≥ C (Reλ+ 1)
1
2

}
. (23)

We conjecture that the eigenvalue-free region (23) is optimal, but this is hard to prove
even in the case of a ball.
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7. The case of a ball

Thank you !
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