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1. Definition of the transmission eigenvalues

1. Definition of the transmission eigenvalues

Let Q C RY, d > 2, be a bounded, connected domain with a C* smooth boundary
= 09Q. A complex number XA € C, A # 0, will be said to be a transmission eigenvalue if
the following problem has a non-trivial solution:

(Va(x)V+An(x))u =0 in Q
(VCz(X)V + )\nz(X)) =0 in , (1)
up = wp, c10yur = 0yux  on

o)

)

where v denotes the exterior Euclidean unit normal to I', ¢;, n; € C=(Q), j = 1,2 are
strictly positive real-valued functions. The transmission eigenvalues can be viewed as the
eigenvalues of the non-symmetric operator A defined by

a(u)-( Zeveie )
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1. Definition of the transmission eigenvalues

with domain
D(A) = {(ul, W) €H : Va(x)Vu € 13(Q), Ve (x)Vu € L2(Q),

up = uz, clayul = C28,,U2 on F}

where H = Hy @ Ha, H; = L*(Q, nj(x)dx). Then the transmission eigenvalues are the
poles of the resolvent of A (if it forms a meromorphic family) and the multiplicity of a
pole A\ is defined by

mult(\) = rank(2mi) /

[A=Xg|=e

(A —A)HdA = tr(2mi) / (A —A)td
[A=X|=e

Our goal is to study the asymptotic behaviour of the counting function

N(r) = #{\ — trans.eig. : |A\| < r’}, r > 1. We will see that it is closely related to the

localization of the transmission eigenvalues on the complex plane.
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2. The Dirichlet-to-Neumann map

2. The Dirichlet-to-Neumann map.

The Dirichlet-to-Neumann map, N;(\) : H(I') — L?(T"), associated to the pair (g, n;) is
defined by
Ni(Nf = Do ujlr,

where u; solves the equation

{ EIJViJ(;()V +2ni(x)u =0 ionn ?, @)

Denote by Gj, j = 1,2, the Dirichlet self-adjoint realization of the operator —nfchjV
on the Hilbert space H;. It is well-known that N;(\) is meromorphic with poles the
eigenvalues of G;. Introduce the operator

T()\) = ClNl()\) — CzNz()\).
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2. The Dirichlet-to-Neumann map

We have the following trace formula.

Lemma 1

Suppose that the inverse T(\)™! exists as a meromorphic function. Then the resolvent
of the operator A is meromorphic, too, and we have the formula

MG) = M) + ) + s [ T 0y 20 3)

where 7y is a simple, positively orientied, piecewise smooth, closed curve in the complex
plane, which avoids the poles of T(\)™! and the eigenvalues of Gi and G,, M(y) is the
number of the transmission eigenvalues inside -y, and Mj(~y) is the number of the
eigenvalues of the operator G; inside .
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3. Weyl asymptotics for the counting function

3. Weyl asymptotics for the counting function

Theorem 1 (Petkov-V., J. Spectral Theory 2016)

Suppose either the condition
a(x) = a(x),0vya(x) = dve(x), ni(x) # m(x), Vx €T, (isotropic case) (4)

or the condition
ci(x) # e(x), Vx€T. (anisotropic case) (5)

Suppose also that the operator T () is invertible in a region of the form
{Aec;|1mA|ZC(|ReA|+1)1*%}, C>0,0<r<1, (6)

and satisfies there the bound

|Tn < G, G, Mo>0.
L2(T)—L2(T)
Then we have the asymptotics
N(r) = (1 +72)r" + 0-(r "), Vo<e<1, @)
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3. Weyl asymptotics for the counting function

where

d/2
T = _Wd_ / (nj(X)) ! dx
(2m)9 Ja \ 6(x) ’
wy being the volume of the unit ball in R?.

Known results. In the isotropic case when ci = 2 =1, no =1, mi(x) > 1 on Q, the
asymptotic for N(r) with a remainder term o(r9) is proved by M. Faierman, SIAM J.
Math. Anal. 2014, and by L. Robbiano, preprint 2013.

Idea of the proof. It is inspired by the paper F. Cardoso, G. Popov and G. Vodev, CPDE
2001, where Weyl type asymptotics have been proved for the counting function of the
resonances associated to an exterior transmission problem. We can get an asymptotic for
N(r) — N(r/2) by using the trace formula (3), the Weyl asymptotics for the counting
functions of the eigenvalues of G; and Gy, and the Theorems of Caratheodory and
Jensen. We use in an essential way that diml' = d — 1.
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4. Eigenvalue-free regions

4. Eigenvalue-free regions

Theorem 2 (CMP 2015)

Isotropic case. Assume the condition
a(x) = a(x), odva(x)=0va(x), m(x)# m(x), VxeT. (8)
Then there are no transmission eigenvalues in A U A_, where
&
Ay = {,\ €C:ReA >0, [ImA| > C. (ReA+1)K+E}, V0 <e< 1,

AL={AeC:ReA<-G}U{XAeC: -G <ReA<O0, |[Im)>GC}, G,&>0.
In this case the asymptotic (7) holds with k = 1/2.
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4. Eigenvalue-free regions

Theorem 3 (CMP 2015)

Anisotropic case. Assume the condition

(a(x) — a(x))(a(x)m(x) — c(x)n(x)) <0, VxeT. (9)
Then there are no transmission eigenvalues in Ay UN_, where A, is as above and
N = {,\ €C:ReA <0, [ImA| > Cy(JRe| + 1)*”} . VN> 1.

In this case the asymptotic (7) holds with k = 1/2.
Assume the condition

(aa(x) = e(x))(a(x)m(x) — e2(x)m(x)) >0, VxeT. (10)
Then there are no transmission eigenvalues in Ny U A_, where A_ is as above and
N, = {,\ €C:Re) >0, [ImA| > C(Re,\+1)%}.

In this case the asymptotic (7) holds with k = 2/5.
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4. Eigenvalue-free regions

Moreover, if in addition to (10) we assume either the condition

ni(x)
C1 (X)

or the condition
n (X)

a(x)

no(x)

o(x)’ Vx €T, (11)
_m(x)

ooy xEn (12)

then there are no transmission eigenvalues in Ay U A_.

One can show that under the condition (9) there are infinitely many transmission
eigenvalues in {\ € C: Re\ < 0} and that their counting function, N~ (r), satisfies an
asymptotic of the form

N=(r) = 7or' " + O(r*7?).
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4. Eigenvalue-free regions

Known results. In the isotropic case when ci = =1, i =1, ni(x) > 1 on £, it was
proved by M. Hitrik, K. Krupchyk, P. Ola and L. Paivarinta, Math. Res. Lett. 2011, that
there are no transmission eigenvalues in A’} UA_, where

N = {/\GC:Re)\>0, Im | > C(ReA+1)%}.

To prove the above theorems we make our problem semi-classical by putting

h=|ReA ™2 z=hmX=+1+ilmz if [ReA| > [Im )|, and h = |[Im \|~%/2,
z=HhX=Rez+i, if [ReA| < [Im )\|. The proof of Theorems 2 and 3 is based on the
following semi-classical properties of the Dirichlet-to-Neumann map N;j(z, h) = —ihN;()).

Theorem 4 (CMP 2015)

Forevery0 < e < 1,0< h< 1, [Imz| > h'/?>=<, the Dirichlet-to-Neumann map

N;(z, h) is an h — W DO of class OPSi/z_e(r) with a principal symbol

pi(x,&) = \/—r(x,€) + mj(x)z with Im p; > 0, where m; denotes the restriction on I' of
the function nj/c;, and ry is the principal symbol of the Laplace-Beltrami operator —Ar,
I being considered as a Riemannian manifold equipped with the Riemannian metric
induced by the Euclidean one.
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4. Eigenvalue-free regions

Recall that a € S¥(I), 0 < § < 1/2, if a € C°°(T*T) satisfies the bounds

33853(&5)( < Cogh0UelH1BD gy k=181,

Set xj(x,€) = ¢((ro(x,€) — m;(x))/h*/?), where ¢ € G°(R), ¢(t) =1 for [t <1,
#(t) = 0 for |t| > 2. That is, x;(x,£) = 1 in an O(h*/?) neighbourhood of the glancing
region X; = {(x,€) € T*T : ro(x,&) — mj(x) = 0}. Theorem 4 implies the following

Forevery0<e<1,0< h< 1, h/?c< |Im z| < h®, we have the bound

[IN; (2, ))OPA ()l 2y 120y < CHE*. (13)
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5. The case of strictly concave domains

5. The case of strictly concave domains

We can improve (13) for strictly concave domains. More precisely, we have the following

Theorem 5 (Math. Ann. 2016)

_ (¥

Assume that I is strictly concave with respect to the Riemannian metric gj = <0 8E in
J

Q, where ge denotes the Euclidean metric in RY. Then, for every 0 < ¢ < 1,0 < h < 1,
h'=¢ < [Im z| < h°, we have the bound

| Nj(z, h)Oph(XJ‘)HLZ(r)_)LZ(r) < /. (14)

We derive (14) from the following property of the Airy function Ai(z) and its first
derivative Ai'(z).

Lemma 2 (Melrose-Taylor)

There exists a constant C > 0 such that for all z € C\ (—o0,0) we have the bound

’ Ai'(2)
Ai(z)

< Clz|'? + C|im 2| ™. (15)
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5. The case of strictly concave domains

Using Theorem 5 we can prove the following

Theorem 6 (Math. Ann. 2016)

nj(x)

5() 8E
in Q, j =1,2. Assume also either the condition (8) or the condition (9). Then there are
no transmission eigenvalues in

Assume that I is strictly concave with respect to both Riemannian metrics gj =

{/\ €C:ReA >0, [Im) > C. (Re,\+1)%+€}, VO < e< 1.

In this case the asymptotic (7) holds with k = 1.

Thus getting eigenvalue-free regions is reduced to inverting the operator
T(z,h) = aaNi(z, h) — c2Na(z, h) with a principal symbol

c(x)(co(x)ro(x,€) — 2) (16)
cip1 + C2p2

Cip1 — Op2 =

where ¢ and ¢y are the restrictions on I of the functions

2 2
g — ¢
am—cnm and —— 2
Cing — Cnp

respectively. In the isotropic case we have ¢ = 0 on I', while in the anisotropic case we
have cp(x) # 0, Vx € I'. Under the condition (9) we have ¢y(x) < 0, Vx € L.
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6. Parametrix construction in the glancing region

6. Parametrix construction in the glancing region.

Known results. A parametrix for the DN map has been constructed by Sjéstrand,
Mémoire de la SMF, 2014, (see Section 11), when C;h** < |Im z| < Gh*/3,
G, > G > 0 being arbitrary, independent of h, without using the Airy function.

Idea of the proof of Theorem 5. We build a parametrix for the operator
N;(z, h)Op,(x;). To this end, we use the global symplectic normal form proved by Popov
and Vodev, CMP 1999, valid in an O(h°) neigbourhoud of the glancing region, which
alows a complete separation of the normal and tangential variables. More precisely, after
a suitable symplectic change of the variables, we are led to study a model operator of the
form

Py = D} + t 4+ Dy, + inq(y,D,) + hg(y,Dy; h, 1), t >0,

where p1 = Im z satisfies h'=%¢ < |u| < h®, Dy = —ihd;, D, = —ihd,, y € Y, Y being a
bounded manifold without boundary, dim Y = d — 1. The function g € C=°(T"Y),

q € S, is real-valued and does not depend on t, h and y, satisfying 0 < G, < g < G, G
and G, being constants, g € S¢ uniformly in h and u. Let p = (m1,7") be the dual
variables of y = (y1,y’). Then in these coordinates the glancing region is defined by

m = 0.
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6. Parametrix construction in the glancing region

Given any integer M > 1 and any function f € L?(Y), ||f|]| = 1, we construct a function

u(t,y) = um(t,y; h, n) such that
Poii = O (H*™/?) | (0, ) = Op, (&(mul /H%)) £ + O(h™)
where ¢ € G5°(R), ¢(0) =1 for |o| < 1, ¢(c) = 0 for |o| > 2. We will be looking for u

in the form
o(t/h")Op,(A(t))g
where g € L?(Y) is determined such that llgllzevy < Ol i2(y), and

M
A(t) =" akly, m; h m)bi(t, v, i hy ),
k=0
At ((t+771 +ipq(y,m)h~ 2/3)

Ai ((m + ing(y,n))h=2/%)
Using the properties of the Airy functions we can prove the following

b = K3
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6. Parametrix construction in the glancing region
Proposition 1

For t =0, all k > 0 and multi-indices o, we have the bound

|05 4i| < Chau pr- (17)

For all t > 0, k > 0 and multi-indices a;, we have the bound
|05 4i| < Cua h™*/pf. (18)

Here b
V2L o<1

_ 1/2
p1 = |m["" + |u
|| |l m

v

The functions ax do not depend on t, ag = ¢(n:|u|/h*T°), and satisfy relationships of the
form

la|+1 la k ko
o= > OO a1+ Y Op)ofa+ " > 0)dfa  (19)
la1|=0 [z |=0 £=0 |8|=0

for every multi-index «, where

|1 p1 |l
o Lol
2 h + h >
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6. Parametrix construction in the glancing region

By induction we can deduce from (19) that the functions ax satisfy the bounds

|0y ak| < Ciaps- (20)
We have
pip2 < O(h™/?) (21)
as long as
|l (|l + Im]) < A5 (22)

Using (21) we can conclude that the function T provides a parametrix in the region

|| < h**¥/|u|. The parametrix construction in the region h*™¢/|u| < |m| < h® is easier
and can be done as in the hyperbolic region, showing that in our case the solutions of the
corresponding eikonal and transport equations belong to better classes.
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7. The case of a ball

7. The case of a ball.

Better eigenvalue-free regions can be obtained if the functions ¢j, n; are constants and
is a ball. In this case we can use the properties of the Bessel functions to prove the
following

Theorem 7 (Petkov-V., preprint 2016)

Assume that Q = {x € R? : |x| < 1} and the functions n;(x) and c;(x) are constants in a
neighbourhood of the boundary T', j = 1,2. Assume also either the condition (8) or the
condition (9). Then there are no transmission eigenvalues in

{)\ €C:ReA>0, Im) > C(ReA+1): Iog(Re)\+2)}.

If the functions nj(x) and cj(x) are constants everywhere in S, then there are no
transmission eigenvalues in

{/\EC:ReA>O, |Im)\|2C(Re)\+1)%}. (23)

V.

We conjecture that the eigenvalue-free region (23) is optimal, but this is hard to prove
even in the case of a ball.
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7. The case of a ball

Thank you !
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