A Polyakov formula for sectors

Julie Rowlett

CHALMERS

April 28, 2016 Evolution Equations on Singular Spaces Centre International de Rencontres Mathématiques

- Closed surface (*M*, *g*)
- Smooth conformal family of metrics $\{g_t = e^{2\sigma(t)}g\}$
- $\partial_t \log \det(\Delta_{g_t}) = -\frac{1}{24\pi} \int_M \sigma'(t) \operatorname{Scal}_t dA_{g_t} + \partial_t \log \operatorname{Area}(M, g_t)$
- Polyakov Quantum geometry of bosonic strings, (1981); Alvarez, Theory of strings...(1983); Osgood, Phillips & Sarnak Extremals..., (1988) and Compact isospectral sets of surfaces (1988).

Polyakov's formula on surfaces with conical singularities

- Alexey Kokotov, On the Spectral theory... (2013).
- The boundary of a connected polyhedron in \mathbb{R}^3 is a polyhedral surface which has the structure of a complex manifold. Near vertex local parameter $\zeta = z^{2\pi/\alpha}$, α is sum of angles adjacent to the vertex.
- This is a Riemann surface with a conformal metric which is flat and has conical singularities at the vertices.
- Two *smooth* conformal metrics m_1 and m_2 on such a surface. Kokotov proved that

$$\frac{\det \Delta^{m_1}}{\det \Delta^{m_2}} = C \frac{\text{Area}^{m_1}}{\text{Area}^{m_2}} \frac{\prod_{l=1}^M |g_l|^{b_1/6}}{\prod_{k=1}^N |f_k|^{a_k/6}}.$$

Computing the uncomputable: Alexey & co.

• Yulia Klochko & Alexey Kokotov *Genus one* ... (2007); Alexey (all genus) Polyhedral surfaces and ... (2013)

$$\det \Delta^m = C \operatorname{Area}^m(X) \det \Im B |\tau(X,w)|^2 \frac{\prod_{l=1}^{2g-2} |g_l|^{1/6}}{\prod_{k=1}^N |f_k|^{b_k/6}}.$$

Further results:

- ESCSs giving ration of determinants via S-matrix (Luc Hillairet & Alexey Kokotov, 2013).
- Comparison formula for determinants (Luc & Alexey 2015).
- Spectral determinants on Mandelstam diagrams (Luc & Alexey 2015).
- Our inspiration comes from these works (and others!), spiritual inspiration from Aurell & Salomonson 1994.

Differentiating the determinant with respect to angular variation

Theorem (Clara & moi)

Let $\{S_{\gamma}\}_{\gamma \in (0,\pi)}$ be a family of finite circular sectors in \mathbb{R}^2 , where S_{γ} has opening angle γ and unit radius. Let Δ_{γ} be the Euclidean Dirichlet Laplacian on S_{γ} . Then for any $\alpha \in (0,\pi)$

$$\left. rac{\partial}{\partial \gamma} ig(- \log(\det(\Delta_\gamma)) ig)
ight|_{\gamma = a}$$

$$= p.f._{t=0} \int_{S_{\alpha}} \frac{2}{\alpha} (1 + \log(r)) H_{S_{\alpha}}(t, r, \phi) r dr d\phi, \qquad (1)$$

where $H_{S_{\alpha}}$ denotes the heat kernel on the finite angular sector S_{α} .

Exercise: Determine how the determinant depends on variation of the radius of the sector.

Theorem (Clara & moi)

Let $S_{\pi/2} \subset \mathbb{R}^2$ be a circular sector of opening angle $\pi/2$ and radius one. Then the corner at the origin gives a purely local contribution to (1), in the sense that this contribution is identical for a circular sector of opening angle $\pi/2$ and any radius. This corner contribution is

$$-\frac{1}{4\pi}-\frac{\gamma_e}{4\pi},$$

where γ_e is the Euler-Mascheroni constant.

Conjecture (Clara & moi)

Amongst all convex n-gons of fixed area, the regular one maximizes the determinant.

Exercise

Compute the eigenvalues of a regular n-gon.

Hint: Ask Alex Strohmaier & Ville Uski, An Algorithm... (2013) to help you.

Conjecture (Alex)

Clara & J's conjecture is false. It holds for some n but not all.

Proposition (Clara & moi)

Let R be a rectangle of dimensions $L \times L^{-1}$. Then the zeta regularized determinant is uniquely maximized for L = 1, and tends to 0 as $L \rightarrow 0$ or equivalently as $L \rightarrow \infty$.

Our ultimate goal is to compute $\zeta'(0)$ for a polygonal domain, in the spirit of $\zeta(0)$. The first baby steps have been made.

- Compute the corner contribution for a general corner of opening angle α . Two ways to do this: Sommerfeld or Kantorovich-Lebedev/Inverse Laplace transform.
- Use Schwarz-Christoffel mapping and spiritual inspiration of Aurell & Salomonson, *On functional determinants* ... (1994) to determine the variation due to the side lengths.
- Obtain a formula for $\dot{\zeta}'(0)$. Integrate it.
- Use computable example to determine constant of integration: det $\Delta_L = e^{-\zeta'_L(0)} = \frac{|\eta(i/L^2)|^2}{2L}$, on rectangle of dimensions $L \times L^{-1}$. (Dedikind η function).

Merci à la CIRM, Jared, Luc, Dean, et vous tous!!

Avez-vous des questions?

All realities, all dimensions are open to me!

