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Introduction

An eigenvalue problem: the Robin Laplacian

Context:

Ω ⊂ Rn a bounded Lipschitz domain.

Eigenvalue problem: Find (λ, u) ∈ R× H1(Ω) such that{
−∆u = λu on Ω,

∂nu − βu = 0 on ∂Ω.

β ∈ R and ∂n the outward derivative.

Associated operator:

Qβ[Ω](u) =

∫
Ω

|∇u|2 − β
∫
∂Ω

|u|2dS ≡ Qβ(u), u ∈ H1(Ω).

Compactness of H1(Ω) ↪→ L2(∂Ω): Qβ[Ω] is lower semibounded.

Lβ[Ω] the associated self-adjoint operator.

λj(β,Ω) ≡ λj(β) the j-th eigenvalue of Lβ[Ω].
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Introduction

Basic properties for Lipschitz domains:
If β > 0, then λ1(β) < 0.
β 7→ λ1(β) is concave, decreasing on R.
λj(β)→ −∞ when β → +∞ (to be continued).
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Figure: λ1(β) as a function of β on the unit disk.
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Introduction

Problematics and applications

Problematics: Behavior of λj(β) when β → +∞.

Influence of the geometry of Ω:
Singularities of the boundary, curvature, symmetries.
Localization of the eigenfunctions as β → +∞.

To go further: reduction to the boundary, precise asymptotics, WKB
expansion.

Some applications:

Reaction-diffusion with competition between boundary source and absorption.

Enhanced surface superconductivity with zero magnetic field:
The critical temperature is linked to λ1(β).
The associated eigenfunctions described the superconducting electrons.

Trace inequality from the compacity of H1(Ω) ↪→ L2(∂Ω) (Ehrling’s Lemma):

‖u‖2
L2(∂Ω) ≤ ε‖∇u‖

2
L2(Ω) + C (ε)‖u‖2

L2(Ω), C (ε) > 0.

Best constant : C (ε) = −ελ1( 1
ε ,Ω).
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Introduction

Semi-classical reformulation and homogeneity:

Set h = β−2, so that h2Lβ[Ω] writes

−h2∆ with boundary condition h1/2∂nu − u = 0

Dilation invariant domain Π (unbounded) are important:

Scaling X = βx : Lβ[Π] ≡ β2L[Π] with L[Π] = L1[Π].

Define the ground state energy of L[Π]:

E (Π) = inf
u∈H1(Π)

‖∇u‖2
L2(Π)
−‖u‖2

L2(∂Π)

‖u‖2
L2(Π)

. Then, either


E (Π) = −∞

or E (Π) is an eigenvalue

or E (Π) is essential spectrum
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Introduction

(Elementary) model case

The regular case:

Separation of variables on a half-space R+
n := Rn−1 × R+:

L[R+
n ] = Id⊗ L[R+] + (−∆Rn−1 )⊗ Id.

The case of R+ is explicit: solve{
−u′′(x) = Eu(x), x > 0

−u′(0)− u(0) = 0

Only one eigenpair: E = −1 and u(x) = Ce−x . The spectrum is {−1} ∪ R+.

Therefore E (Π) = −1 if Π is a half-space. It is essential spectrum for L[Π].

2D infinite sectors:

Let Sθ be an infinite sector with opening angle θ ∈ (0, 2π):

σ(L[Sθ]) =

{
− sin−2( θ2 ) ∪ {µk , k ≤ 2 ≤ N} ∪ [−1,+∞) if θ < π

[−1,+∞) if θ ≥ π

E (Sθ) is a discrete eigenvalue iff θ < π.
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Introduction

Known results on the asymptotics

Particular cases:

Let Ω be a C 1 bounded domain, then

∀j ≥ 1, λj(β,Ω) = −β2 + o(β2).

Let Ω ⊂ R2 be a polygonal domain with n vertices of angle (θk)1≤k≤n.

λ1(β,Ω) = − max
θk∈(0,π)

(
1, sin−2 θk

2 )
)
β2 + o(β2).

General cases, from a short article of Levitin and Parnovski (08’):

Assume that Ω ⊂ Rn is bounded, has corners, and for all x ∈ Ω, denotes by
Πx ⊂ Rn the tangent geometry (a cone).

Theorem [Levitin and Parnovski 08]

Assume that Ω satifies the uniform interior cone condition. Denote by E (Πx) the
bottom of the spectrum of L[Πx ]. Then, as β → +∞:

λ1(β,Ω) = inf
x∈∂Ω

E (Πx)β2 + o(β2).
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Introduction

Some questions

Definition: Infimum of the local energies

We define E (Ω) = infx∈∂Ω E (Πx).

On the asymptotics:

Is E (Ω) finite? Is it a minimum?

Can you estimate λ(β,Ω)− β2E (Ω) as β → +∞?

Can you construct “good” quasi-modes?

Analysis in corner domains:

Asymptotics very close to the first eigenvalue of the semiclassical magnetic
Laplacian in corner domain (Bonnaillie-Dauge-Popoff 16).

The local energy Ω 3 x 7→ E (Πx) is clearly discontinuous. Can you say
something?

Can you describe the essential spectrum of L[Π]?

Can you go further in the asymptotics, with the minimum assumptions on the
geometry?
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Corner domains

The corner domains

Definition of corner domains D(M) with M = Rn of M = Sn and admissible
cones Pn in Rn:
Initialisation:

P0 = {0} and D(S0) = {−1, 1, {−1, 1}}.
Recursion:

An open set Ω is in D(M) iif for all x ∈ Ω, there exists a tangent cone
Πx ⊂ Rn to Ω at x with Πx ∈ Pn:

Ω

xC•

•xB
•xA

•

•

•

Πx ∈ Pn iif the section Πx ∩ Sn−1 belongs to D(Sn−1).

Dimension 2 : polygonal domains with finite number of vertices (opening angles
6= 0, π, 2π).
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Corner domains

The tangent cones in dimension 3

With each point x ∈ Ω is associated its tangent cone Πx whose section by S2 is a
curvilinear polygon.

Situation of x ∈ Ω Model geometry Πx

Interior point Space R3

Regular boundary Half-space R3
+

Edge Infinite wedge Sθ × R

Corner 3d cone C

Ω polyhedral: all the tangent cone are straight (no curvature).

In general corner domains: the regular boundary of a tangent cone has
non-zero curvature. It blows up at the origin! Example: circular cone.
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Corner domains

Examples

Figure: Domains with conical points
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Corner domains

Examples

Figure: Tangent cone at a conical point
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Corner domains

Examples

Figure: Domains with edges
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Corner domains

Examples

Figure: Domains with corners and edges
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Corner domains

Examples

Figure: Tangent cone at the top of the seed
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Corner domains

Structure of corner domains

Reduced cone:

Up to a rotation, Π ∈ Pn writes

Π =Rn−d×Γ with Γ ∈ Pd

If d is maximal, then Γ is the reduced cone and d is the reduced dimension of
Π.

Exemple: for half spaces, d = 1. For wedges, d = 2.

Strata:
For a corner domain Ω ∈ D(M) and 0 ≤ k ≤ n, we define

Ak(Ω) := {x ∈ Ω, the reduced dimension of d(Πx) is k}.

The strata are the connected componant of Ak .

Proposition (structure of a stratum)

Each stratum of Ak is a submanifold of codimension k .

Said differently: a corner domain admits a Whitney stratification.
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Corner domains

Singular chains X

The idea of singular chains is inspired by

V. G. Maz’ya, B. A. Plamenevskii.
Elliptic boundary value problems on manifolds with singularities
Probl. Mat. Anal. 6 (1977) 85–142.

and extensively used in

M. Dauge. Elliptic boundary value problems on corner domains
Lecture Notes in Mathematics 1341 Springer-Verlag (1988)

Singular chains X. Typical singular chain starting from a vertex:

X =


(x0) x0 ∈ Ω, Γx0 the reduced tangent cone

(x0, x1) x1 ∈ Ω0 where Ω0 = Γx0 ∩ Sd0−1

(x0, x1, x2) x2 ∈ Ω1 where Ω1 = Γx0,x1 ∩ Sd1−1

Denote by C(Ω) the set of singular chains in Ω.
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Corner domains

Singular chains X
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Corner domains

x0

x1

x2

x3

Ω

•

• Space Half • Wedge • • Cone

Space

•
Space

•
Half

•
Space

•
Half

•
Wedge

•

Space

•
Space

•
Space

• •
Half

Space

•

The tree of singular chains (Half is for half-space)

With a singular chain X is associed a tangent structure ΠX.

Examples: Let Ω ∈ D(R3), and x0 ∈ A3(Ω):

If x1 is a vertex of Πx0 ∩ S2, then Π(x0,x1) is a wedge.

If x1 is in the regular boundary of Πx0 ∩ S2, then Π(x0,x1) is a half-space.
If x1 is in Πx0 ∩ S2, then Π(x0,x1) = R3.
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Corner domains

Structure of the singular chains

Distance between X = (x0, · · · ) and X′ = (x ′0, · · · ):

D(X,X′) = ‖x0 − x ′0‖+ inf
JΠX=ΠX′

‖J − Id‖+ inf
JΠX′=ΠX

‖J − Id‖

The infimum is taken over J ∈ GLn(R3) and ‖J‖ ≤ 1.

Define a natural partial order on singular chains:

X ≤ X′ if X′ = (X, x ′p+1, . . .)

Theorem [Bonnaillie-Dauge-P. 16]

Let F : C(Ω) 7→ R, continuous with respect to D and order preserving. Then
x 7→ F ((x)) is lower semi-continuous on Ω.

Application to the local ground energy

F : X = (x0, · · · ) 7−→ E (ΠX)
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Tangent operators

Essential spectrum

For a m.w.c., from [Melrose GST]:

For an admissible cones Π ∈ Pn

Note that L[Rν × Π] = −∆|Rν ⊗ Id + Id⊗ L[Π]. Therefore
E (Rν × Π) = E (Π), and we focus on irreductible cones.

Following [BN-D-P]: we parametrize the essential spectrum of L[Π] by the
singular chains of ω := Π ∩ Sn−1:

{X ∈ C0(Π),ΠX 6= Π} = {X = (0, x1, . . .), x1 ∈ ω} ' C(ω)
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Tangent operators

Second energy level and monotonicity

Definition: Ground energy along higher singular chains

We define
E ∗(Π) := inf

ΠX 6=Π
E (ΠX)

where the infimum is taken over higher singular chains: l(X) ≥ 2.

Easy to see that E ∗(Π) = E (ω) where ω is the section of the reduced cone.

Theorem [Bruneau P. 16]

Let Π ∈ Pn be an irreductible cone and ω := Π ∩ Sn−1 its section.Then L(Π) is
lower semi-bounded and the bottom of its essential spectrum is E ∗(Π).

Therefore: E (Π) ≤ E ∗(Π), and

X 7→ E (ΠX) is order preserving from C(Ω) into R
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Tangent operators

Regularity of the local energy

Continuity:

The local energy C(Ω) 3 X 7→ E (ΠX) is continuous for the distance D of the
singular chains.

In particular x 7→ E (Πx) is continuous on each stratum of Ω.

The local energy is continuous and order preserving on singular chains:

Theorem [Bruneau P. 16]

The local energy x 7→ E (Πx) is lower semicontinuous on Ω.Therefore

E (Ω) = inf
x∈Ω

E (Πx) > −∞.

The proof of these is done by a recursion over the dimension n.
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Asymtotics with remainder

Theorem [Bruneau P. 16’]

Let Ω ∈ D(M) with n ≥ 2 the dimension of M. Then there exists β0 ∈ R, two
constants C± > 0 and two integers 0 ≤ ν ≤ ν+ ≤ n − 2 such that

∀β ≥ β0, −C−βγ(ν+) ≤ λ(Ω, β)− β2E (∂Ω) ≤ C+βγ(ν), γ(ν) = 2− 2

2ν + 3
.

The exponant:
The exponent ν+ is the longest chain X ∈ C(Ω) such that ΠX is not
polyhedral. Similar for ν, but the chains originates at a minimizer of
x 7→ E (Πx). Moreover 4

3 = γ(0) ≤ γ(ν) < 2, and ν+ = 0 iff the domain is
polyhedral.

Ideas of the proof
Lower bound: Multiscale analysis on a suitable partition of the unity.
Upper bound: Recursive quasi-mode from a singular chain minimizing E (ΠX).

Difficulty for non polyhedral domains:
The curvature is unbounded.
In dimension 3, the “worst” blow-up curvature may be

1

d(x0,A3(Ω))
.
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Asymtotics with remainder

Let Ω ∈ D(M) and let ν+ be the smallest integer satisfying

∀X ∈ C(Ω), l(X) ≥ ν+ =⇒ ΠX is polyhedral.

Given scales (δk)0≤k≤ν+ in (0,+∞), we construct an β-dependand finite set of
points C ⊂ Ω such that for all p ∈ C, there exists 0 ≤ k ≤ ν+ with

the ball B(p, 2β−(δ0+...+δk )) is contained in a map-neighboorhood of p.
the associated curvature satisfies κ(p) ≤ c(Ω)βδ0+...+δk−1 .
Ω ⊂ ∪p∈CB(p, β−(δ0+...+δk )).

Let (χp)p∈C be an associated partition of the unity:

Qβ[Ω](u)=
∑
p∈C

Qβ[Ω](χpu)−
∑
p∈C

‖∇χpu‖2, ∀u ∈ H1(Ω)

=
∑
p∈C

Qβ[Πp,Gp](χpu) + O(β2δ)‖u‖2, δ =

ν+∑
k=0

δk

≥
∑
p∈C

(1 + Cβ−(δ0+...+δk )κ(c))β2E (Πp)‖χpu‖2 + O(β2δ)‖u‖2

≥

(
β2E (Ω)+

ν+∑
k=0

O(β2−δk ) + O(β2δ)

)
‖u‖2
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Conclusion Reduction to the boundary

Reduction to the boundary for regular domains

Theorem [Pankrashkin-P.16]

Let Ω ⊂ Rn be a C2 domain with compact boundary, and H the mean curvature
of the boundary. Let −∆S be the Laplace-Beltrami operator on ∂Ω and µj(β) the
j-th eigenvalue of the operator −∆S − β(n − 1)H. Then for all j ≥ 1:

λj(β) =
β→+∞

−β2 + µj(β) + O(log β).

Moreover, if the boundary is C 3, the remainder is improved to O(1).

Comments:
You are led to a semi-classical Schrödinger operator on the boundary.
Asymptotic expansion when the mean curvature has wells.
In dimension 2, precise results from Helffer-Kachmar (16’).

Why a reduction on the boundary?
The local energy can be seen as an effective potential in the harmonic
approximation. For regular domains, it is piecewise constant, minimum on
the boundary.
One may think to [Helffer-Sjöstrand VI]: Cas des puits sous-variété (87’).
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Conclusion Reduction to the boundary

Perspective and open questions

Reduction to boundary for corner domains?

In dimension 2, the limit object could be a graph with model problems at
vertices.

The scattering of the model problems at vertices gives b.c. for the problem
on the sides.

What happens in higher dimension?

The method and the results

Study the regularity of the local energy near its minimizers.
Can you give Agmon estimates for the eigenfunctions using the distance to
the minimizers?

Find a class of operator for which the analysis remains true.

Same results for the δ-interaction with large coupling constant:

−∆− βδH on M, H ⊂ M an hypersurface with corners.

The quadratic form is u 7→
∫
M
|∇u|2dx − β

∫
H
|u|2dS
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The magnetic Laplacian Magnetic Laplacian

The magnetic Laplacian

Semiclassical Magnetic Laplacian with Neumann magnetic b.c. :

Hh[Ω,A] := (−ih∇− A)2 on Ω with h > 0

For Ω simply connected, the eigenvalues depends on A through the magnetic field
B = curl A. Tangent operator ar x ∈ Ω:

H1[Πx ,Ax ], with Ax the linear part of A at x .

Denote by E (Πx ,Bx) the corresponding local energy (Bx is constant) and
E (Ω,B) their infimum.

Theorem [Bonnaillie-Dauge-P. 16]

Let Ω ∈ D(R3) and B a regular magnetic field. The local energy x 7→ E (Πx ,Bx)
is lower semicontinuous and therefore E (Ω,B) > 0. Moreover there exists h0 > 0

∀h ∈ (0, h0), |λh(Ω,B)− hE (Ω,B)| ≤ C (Ω)(1 + ‖A‖2
W 2,∞(Ω))h

κ,

Ω polyhedral: κ = 5/4,

Ω general: κ = 11/10.
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The magnetic Laplacian Magnetic Laplacian

Specificities of the magnetic Laplacian

Comment on the dimension
We prove a lower bound valid in any dimension
No easy decomposition for tensor products. Possible partial Fourier
transform, depending on the dimension.

The exemple of a wedge Wβ := Sβ × R:

B = (b1, b2, b3) and A(x) = (0, b3x1, b1x2 − b2x1).
Model operator: H(Wβ ,A) = D2

1 + (D2 + b3x1)2 + (D3 + b1x2 − b2x1)2.
F3: Partial Fourier transform w.r.t. x3,

F3H(Wβ ,A)F∗3 =

∫ ⊕
k∈R

Ĥk(Sβ ,A)dk ,

Ĥk(Sβ ,A) = D2
1 + (D2 + b3x1)2 + (k + b1x2 − b2x1)2 sur Sβ .

Minimization of a band function

Let s(k) be the ground energy Ĥk(Sβ ,A). Then we have

E (Wβ ,B) = inf
k∈R

s(k) .
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The magnetic Laplacian Magnetic Laplacian

Numerical simulations

Band function
for a magnetic field tangent to a face and close to the edge
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k 7→ s(k), k 7→ sess(k) and E ∗(Wβ ,B).
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The magnetic Laplacian Magnetic Laplacian

Associated eigenfunctions

Fourier parameter k = 0 k = 0.5 k = 1 k = 1.5 k = 2

Modulus

Modulus (logarithm scale)

Phasis
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